Supporting information

Trifunctional Metal-Organic Platform for Environmental Remediation: Structural Features With Peripheral Hydroxyl Groups Facilitate Adsorption, Degradation and Reduction

Harpreet Kaur,^a Rakesh Kumar,^a Ajay Kumar,^a Venkata Krishnan^{a*} and Rik Rani Koner^{b*} ^aSchool of basics Sciences, Indian Institute of Technology Mandi, Mandi-175001,HP India.

^bSchool of Engineeing, Indian Institute of Technology Mandi, Mandi-175001, HP India.

S. No	Contents	No.
1	Synthesis scheme of Cd-MOF	Figure S1
2	Crystal data and structure refinement for Cd-MOF	Table S1
3	Photographs showing a color change of different dyes during adsorption and separation study using Cd-MOF	Figure S2 (a, b)
4	Packing diagram of Cd complex along a-axis.	Figure S3
5	SEM and TEM images of Cd -MOF	Figure S4 (a-d)
6	N_2 Adsorption isotherm and Pore size distribution graph for Cd-MOF	Figure S5 (a, b)
7	DRS spectra of Cd-MOF	Figure S6 (a, b)
8	UV-vis spectra of adsorption study of RhB and MO using Cd- MOF up to 24 h	Figure S7

9	UV-vis spectra of pH dependent adsorption study of MB dye using Cd-MOF	Figure S8
10	Comparison of MB adsorption capacity with various other reported MOF materials	Table S2
11	Pseudo-second- order kinetics parameters for MB dye adsorbed into Cd-MOF	Table S3
12	Langmuir model for MB dye adsorption into Cd-MOF	Table S4
13	% Adsorption capacity of MB dye using Cd-MOF in three successive cycles of adsorption-desorption experiment.	Figure S9
14	XRD patterns of Cd-MOF before and after MB dye adsorption	Figure S10
15	SEM and TEM images of recovered Cd-MOF after MB dye adsorption	Figure S11
16	UV-Vis spectra of RhB dye degradation using recovered Cd- MOF.	Figure S12
17	UV-vis spectra for photocatalytic reduction of Cr(VI) during different amount of EtOH, UV-vis spectra of photocatalytic Cr(VI) reduction with addition of AgNO ₃ and without addition of AgNO ₃	Figure S13(a-f)
18	SEM and TEM images of recovered Cd-MOF after photocatalytic Cr(VI) reduction	Figure S14

Figure S1. Synthesis scheme of Cd-MOF.

 Table S1. Crystal data and structure refinement for Cd-MOF.

1.	Identification code	Cd-MOF		
2.	Emperical Formula	$C_{43}H_{30}CdN_4O_6$		
3.	Formula weight	811.11		
4.	Temperature/K	293 (2)		
5.	Crystal System	monoclinic		
6.	Space group	P2 ₁ /c		
7.	Unit Cell dimensions	a/Å = 13.6269 (3), b/Å = 16.8816 (4), c/Å = 19.4131 (5) $\alpha/^{\circ}$ = 90.00, $\beta/^{\circ}$ = 107.141(3), $\gamma/^{\circ}$ = 90.00		
8.	Volume/ Å ³	4267.52 (19)		

9.	Z	4
10.	P _{calc} g/cm ³	1.262
11.	μ mm ⁻¹	4.490
12.	F(000)	1648.0
13.	Crystal size/mm ³	$0.247 \times 0.147 \times 0.111$
14.	2θ range for data collection/°	7.08 to 133.86
15.	Index ranges	$-16 \le h \le 15, -19 \le k \le 13, -23 \le l \le 22$
16.	Reflection collected	15192
17.	Independent reflections	7484 [$R_{int} = 0.0279, R_{sigma} = 0.0350$]
18.	Goodness-of-fiton F ²	1.078
19.	Final R indexes[I>2o(1)]	R1 = 0.0331, $wR2 = 0.0889$
20.	Final R indexes(all data)	R1 = 0.0384, wR2 = 0.0945
21.	Largest diff. peak/ hole/e Å ³	0.80/ -0.49

Figure S2. (a) Photographs showing a color change of different dyes during adsorption study using Cd-MOF.

Figure S2. (b) Photographs showing color change during separation study of a mixture of two dyes (a: MB+MO, b: MB+NR, c: MB+RhB.) and three dyes (d: MB+NR+MO) using Cd-MOF.

Figure S3. Packing diagram of Cd complex along a-axis.

Figure S4. SEM images (a, b) and TEM images (c, d) of Cd-MOF.

Figure S5. (a) N₂ adsorption isotherms of Cd-MOF. (b) Pore size distribution graph. On the basis of N₂ adsorption studies, BET surface area for Cd-MOF at 77K was found to be 342.14 m² g⁻¹ and pore radius = 17.585 Å.

Figure S6. (a) Absorption spectra of Cd-MOF. (b) Plot showing transformed Kubelka–Munk function vs. energy of light for the band gap.

Figure S7. UV-vis spectra for the adsorption study of (a) RhB and (b) MO dye using Cd-MOF upto 24 h.

Figure S8. UV-vis spectra of pH dependent adsorption study of MB dye using Cd-MOF.

Table S2.	Comparison	of MB a	dsorption	canacity	with	various	other re	ported M	OF materi	ials.
I abic DE.	Comparison	or mid u	asorption	cupacity	** 1011	various	other re	ported m		iuib.

Material	%Adsorption/ Adsorption Capacity	Time	Ref.
[Cd ₃ (tib) ₂ (BTB) ₂]. 3DEF. 4.5H ₂ O	69%		YL. Li, Y. Zhao, P. Wang, YS. Kang O. Liu, XD
[Cd ₃ (tib) ₂ (BTB) ₂ (DMA) ₂ (H ₂ O) ₂]. 2 DMA. 8H ₂ O	55%	24 h	Zhang and WY. Sun, Inorg. Chem., 2016, 55, 11821- 11830.
{[Cd ₂ (BPTC)(DMA) ₂ (DMPU) _{.5} (H2O) _{.5}](DMPU) _{.5} }n	25mg/g	24 h	WJ. Ji, RQ. Hao, WW. Pei, L. Feng and QG. Zhai, Dalton Trans.,2018, 47, 700-707.
$[Co_{3}(tib)_{2}(BPT)_{2}(H_{2}O)_{2}] \cdot DMA \cdot$ 2.5H ₂ O $[Co_{3}(tib)_{2}(BTB)_{2}].2DMF.6H_{2}O$	0.6 x 10 ⁻³ mg/g 6.4 x 10 ⁻³ mg/g	24 h	YL. Li, Y. Zhao, YS. Kang, XH. Liu and WY. Sun, Cryst. Growth Des., 2016, 16, 7112- 7123.
[Cu ₂₄ (5-hip) ₂₄ (bpy) ₆ (H ₂ O) ₁₂]	0.546 mmol/g	48 h	HN. Wang, FH. Liu, XL. Wang, KZ. Shao and Z M. Su, J. Mater. Chem. A, 2013, 1, 13060-13063

[(CH ₃) ₂ NH ₂] ₂ [ZnNa ₂ (µ-H ₂ O) ₂ (H ₂ O) ₂ (TATAT)].2DMF	0.75 mg/g	-	C. Y. Sun, X. L. Wang, C. Qin, J. L. Jin, Z. M. Su, P. Huang and K. Z. Shao, Chem. Eur. J.,2013, 19, 3639- 3645
[Cd ₆ (L) ₂ (bib) ₂ (DMA) ₄]	30 mg/g	72 h	F. Y. Yi, J. P. Li, D. Wu and Z. M. Sun, Chem. Eur. J., 2015, 21, 11475-11482.
[(C ₂ H ₅) ₂ NH ₂] ₂ [Mn ₆ (L)(OH) ₂ (H ₂ O)) ₆].4DEF	67.5%	96 h	YC. He, J. Yang, WQ. Kan, HM. Zhang, YY. Liu and JF. Ma, J. Mater. Chem. A, 2015, 3, 1675-1681.
${[Cd(PA)(4,4'-bpy)_2](H2O)}_n$	29.60 mg/g	2 h	Present work

Table S3. Pseudo-second- order kinetics parameters for MB dye adsorbed into Cd-MOF.

Adsorbent	q _e (mg g ⁻¹)	K_2 (h g mg ⁻¹)	R ²
	6.66	0.085	0.997
	9.99	0.068	0.995
Cd-MOF	13.33	0.031	0.994
	16.66	0.200	0.997
	33.33	0.137	0.999

Table S4. Langmuir model for MB dye adsorption into Cd-MOF.

Adsorbent	Dye	K _L (L mg ⁻¹)	q _m (mg g ⁻¹)	R ²
Cd-MOF	MB	0.51	47.05	0.997

Figure S9. Adsorption caacity (%) of MB dye using Cd-MOF in three successive cycles of adsorption-desorption experiment (a to c). (d) Histogram for adsorption (%) of MB dye in adsorption-desorption experiment using Cd-MOF.

Figure S10. XRD patterns of Cd-MOF before and after MB dye adsorption.

Figure S11. (a) SEM and (b) TEM images of recovered Cd-MOF after MB dye adsorption.

Figure S12. UV-Vis spectra of RhB dye degradation using recovered Cd-MOF.

Figure S13. UV-vis spectra for photocatalytic reduction of Cr(VI) during different amount of EtOH (a to d). UV-vis spectra of photocatalytic Cr(VI) reduction. (e) with addition of AgNO₃. (f) without addition of AgNO₃.

Figure S14. (a) SEM and (b) TEM images of recovered Cd-MOF after photocatalytic Cr(VI) reduction.