Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

for

Metalation Behavior of a Bis-Saturated NHC Ligand with a Flexible *m*-Xylyl Linker

Magdalena Quezada-Miriel^a, J. Rubén Ochoa-Sanfelice^a, Sebastian Mendoza-Tellez^a, Diego Martinez-

Otero^b, and Matthew Asay^{a,*†}

^aInstituto de Química, Universidad Nacional Autonoma de Mexico, Circuito Exterior S/N, Cuidad Universitaria, Coyoacan, 04510, CDMX, Mexico

^bLaboratorio de Rayos X, Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco km. 14.5, C.P. 50200, Toluca, Estado de México, México

* Corresponding Author

E- mail address: masay@unam.mx (M. Asay)

[†]Current Address: Department of Chemistry and Biochemistry, University of California, Los Angeles. Los Angeles, CA 90095-1569.

Contents:

I.	Sp	oectroscopic data	
	a.	Compound [4a][Br]	S 3
	b.	Compound [4b][Br]	S 5
	c.	Compound [4a][PF ₆]	S 7
	d.	Compound [4b][PF ₆]	S 9
	e.	Compound [4a][BF ₄]	S11
	f.	Compound [4b][BF ₄]	S13
	g.	Compound [5a][PF ₆]	S15
	h.	Compound [5b][PF ₆]	S17
	i.	Compound [5a][BF ₄]	S19
	j.	Compound [5b][BF ₄]	S21
	k.	Compound 6	S23
	l.	Compound 7	S25
	m.	Compound 8	S27
	n.	Compound 9	S31
II.	X-ra	ay data	
	a.	Compound [4a][Br]	\$35
	b.	Compound [4b][Br]	S38
	c.	Compound [5b][PF ₆]	S41
	d.	Compound 6	S44
III.	Refe	erences	S47

Figure S1. The ¹H NMR spectrum of compound [4a][Br].

Figure S2. The ¹³C NMR spectrum of compound [4a][Br].

Figure S3. The 1H NMR spectrum of compound [4b[Br].

Figure S4. The ¹³C NMR spectrum of compound [4b[Br].

S7

Figure S7. The ¹H NMR spectrum of compound $[4b][PF_6]$.

Figure S8. The 13 C NMR spectrum of compound [4b][PF₆].

Figure S9. The ¹H NMR spectrum of compound $[4a][BF_4]$.

Figure S11. The ¹H NMR spectrum of compound [4b][BF₄].

Figure S13. The ¹H NMR spectrum of compound $[5a][PF_6]$.

Salt **[4a]**[**PF**₆] (0.105 g, 0.126 mmol), Ag₂O (0.044 g, 0.189 mmol) in acetonitrile (8 mL) gave **[5a]**[**PF**₆] as a white solid. Yield: 0.090 g, (97%). m.p. = 115.1–115.4°C (Decomp.). ¹H NMR (500 MHz, Acetonitrile- d_3 , 25°C) δ 1.85 (s, 12H, CH₃ *o-mesityl*), 2.30 (s, 6H, CH₃ *p-mesityl*), 3.59 – 3.72 (m, 8H, CH₂ *imid*), 4.26 (s, 4H, CH₂ *linker*), 6.83 (s, 4H, CH *m-mesityl*), 6.93 (s, 1H, CH *1-phenyl*) 7.01 (d, ³J_{HH} = 7.7 Hz, 2H, CH *3,5-phenyl*), 7.28 (t, ³J_{HH} = 7.6 Hz, 1H, CH *4-phenyl*). ¹³C[¹H] NMR (126 MHz, Acetonitrile- d_3 , 25°C) δ 17.47 (CH₃ *o-mesityl*), 20.79 (CH₃ *p-mesityl*), 50.27 (CH₂ *imid*), 51.74 (CH₂ *imid*), 53.28 (CH₂ *linker*), 126.00 (CH *4-phenyl*), 126.33 (CH *3,5-phenyl*), 129.93 (CH *m-mesityl*), 135.98 (CH *1-phenyl*), 136.35 (C *o-mesityl*), 138.23 (C *p-mesityl*), 138.94 (C *ipso-mesityl*), 206.6 (dd, ¹J_{CAg} = 194 Hz, ¹J_{CAg} = 169 Hz, C carbene). FAB⁺ (Acetonitrile) m/z: [M-PF₆]⁺ = 585.2158 (calc'd = 585.2147).

Figure S14. The ¹³C NMR spectrum of compound [5a][PF₆].

Figure S15. Expanded view of the ¹³C NMR spectrum of compound [5a][PF₆] showing the $C_{carbene}$ -Ag coupling to both ¹⁰⁷Ag and ¹⁰⁹Ag.

Figure S16. The ¹H NMR spectrum of compound $[5b][PF_6]$.

Salt **[4b]**[**PF**₆] (0.110 g, 0.128 mmol), Ag₂O (0.045 g, 0.193 mmol) in acetonitrile (8 mL) gave **[5b]**[**PF**₆] as a white solid. Yield: 0.105 g, (95%).m.p. = 122.4–122.7°C (decomp.). ¹H NMR (300 MHz, Acetonitrile- d_3 , 25°C): δ 0.87 (d, ³J_{HH} = 6.8 Hz, 12H, CH₃ *iPr*), 1.210 (d, ³J_{HH} = 6.8 Hz, 12H, CH₃ *iPr*), 2.90 (m, 4H, CH *iPr*), 3.66–3.73 (m, 4H, CH₂ *imid*), 3.79–3.87 (m, 4H, CH₂ *imid*), 4.53 (s, 4H, CH₂ *linker*), 6.93 (s, 1H, CH *1-phenyl*), 7.06 (d, *J* = 8.7 Hz. 2H, CH *3,5-phenyl*), 7.19 (d, ³J_{HH} = 7.8 Hz, 4H, CH *m-Dipp*), 7.27–7.39 (m, 3H, CH *p-Dipp* and CH *4-phenyl*). ¹³C[¹H] NMR (76 MHz, Acetonitrile- d_3 , 25°C) δ 23.42 (CH₃ *iPr*), 25.45 (CH₃ *iPr*), 28.55 (CH *iPr*), 49.52 (CH₂ *imid*), 53.65 (CH₂ *linker*), 54.95 (CH₂ *imid*), 124.75 (CH *4-phenyl*), 125.05 (CH *m-Dipp*), 125.96 (CH *3,5-phenyl*), 130.07 (CH *1-phenyl*), 130.40 (C *2,6-phenyl*), 135.09 (CH *p-Dipp*), 137.38 (C *o-Dipp*), 147.45 (C *ipso-Dipp*), 205.60 (dd, ¹J_{CAg} = 171 Hz, ¹J_{CAg} = 197 Hz, C *carbene*). FAB⁺ m/z [M-PF₆]⁺ = 671.3078 (calc'd = 671.3081).

Figure S17. The ¹³C NMR spectrum of compound [5b][PF₆].

Figure S18. Expanded view of the ¹³C NMR spectrum of compound [5b][PF₆] showing the $C_{carbene}$ -Ag coupling to both ¹⁰⁷Ag and ¹⁰⁹Ag.

Figure S19. The ¹H NMR spectrum of compound [5a][BF₄].

Salt **[4a][BF₄]** (0.126 g, 0.193 mmol), Ag₂O (0.068 g, 0.289 mmol) in acetonitrile (8 mL) gave **[5a][BF₄]** as a white solid. Yield: 0.125 g, (96%). m.p. = 112.0–112.6°C (Decomp.). ¹H NMR (500 MHz, Acetonitrile- d_3 , 25°C) δ 1.85 (s, 12H, CH₃ *o-mesityl*), 2.31 (s, 6H, CH₃ *p-mesityl*), 3.59 – 3.64 (m, 4H, CH₂ *imid*), 3.67–3.72 (m, 4H, CH₂ *imid*), 4.27 (s, 4H, CH₂ *linker*), 6.83 (s, 4H, CH *m-mesityl*), 6.94 (s, 1H, CH *1-phenyl*) 7.02 (d, ³J_{HH} = 7.7 Hz, 2H, CH *3,5-phenyl*), 7.29 (t, ³J_{HH} = 7.6 Hz, 1H, CH *4-phenyl*). ¹³C[¹H] NMR (126 MHz, Acetonitrile- d_3 , 25°C) δ 17.47 (CH₃ *o-mesityl*), 20.80 (CH₃ *p-mesityl*), 50.27 (CH₂ *imid*), 51.74 (CH₂ *imid*), 53.28 (CH *1-phenyl*), 126.01 (CH *4-phenyl*), 126.33 (CH *3,5-phenyl*), 129.92 (CH *m-mesityl*), 206.6 (dd, ¹J_{CAg} = 194 Hz, ¹J_{CAg} = 169 Hz, C carbene). FAB⁺ (Acetonitrile) m/z: [M-BF₄]⁺ = 585.2147 (calc'd = 585.2147).

Figure S20. The ¹³C NMR spectrum of compound [5a][BF₄]

10-31-16-MA211-CCCCCDipAgBF4.1.fid

Figure S22. The ¹H NMR spectrum of compound [5b][BF₄].

Salt **[4b][BF₄]** (0.300g, 0.461 mmol), Ag₂O (0.141g, 0.608 mmol) in acetonitrile (8 mL) gave **[5b][BF₄]** as a white solid. Yield: 0.287 g, (93%). m.p. = 118.3–118.5°C (decomp.). ¹H NMR (300 MHz, Acetonitrile- d_3 , 25°C): δ 0.77 (d, ³J_{HH} =6.8 Hz, 12H, CH₃ *iPr*) 1.10 (d, ³J_{HH} = 6.8 Hz, 12H, CH₃ *iPr*) 1.10 (d, ³J_{HH} = 6.8 Hz, 12H, CH₃ *iPr*), 2.78-2.82 (m, 4H, CH *iPr*), 3.60–3.64 (m, 4H, CH₂ *imid*), 3.69–3.73 (m, 4H, CH₂ *imid*), 4.43 (s, 4H, CH₂ *linker*), 6.84 (s, 1H, CH *1-phenyl*) 6.96 (d, ³J_{HH} = 7.5 Hz, 2H, CH *3,5-phenyl*), 7.08 (d, ³J_{HH} = 7.7 Hz, 4H, CH *m-Dipp*), 7.17–7.28 (m, 3H, CH *p-Dipp* and CH *4-phenyl*). ¹³C[¹H] NMR (76 MHz, Acetonitrile- d_3 , 25°C) δ 23.45 (CH₃ *iPr*), 25.47 (CH₃ *iPr*), 28.56 (CH *iPr*), 49.58 (CH₂ *imid*), 53.66 (CH₂ *linker*), 55.00 (CH₂ *imid*), 124.80 (CH *4-phenyl*), 135.12 (CH *p-Dipp*), 137.40 (C *o-Dipp*), 147.47 (C *ipso-Dipp*), 205.68 (dd, ¹J_{CAg} = 171 Hz, ¹J_{CAg} = 197 Hz, C *carbene*). FAB⁺ m/z [M-BF4]⁺ = 671.3081 (calc'd = 671.3083).

Figure S23. The ¹³C NMR spectrum of compound [5b][BF₄].

Figure S24. Expanded view of the ¹³C NMR spectrum of compound [5b][BF₄] showing the $C_{carbene}$ -Ag coupling to both ¹⁰⁷Ag and ¹⁰⁹Ag.

Figure S25. The ¹H NMR spectrum of compound $\mathbf{6}$.

Figure S26. The ¹³C NMR spectrum of Diiridium complex 6.

Figure S27. The ¹H NMR spectrum of compound **7**.

Figure S28. The 13 C NMR spectrum of Iridium complex 7.

Figure S29. The ¹H NMR spectrum of chloroform adduct $\mathbf{8}$.

Figure S32. The ¹³C NMR spectrum of chloroform adduct $8-d_2$.

Figure S33. The ¹H NMR spectrum of reaction mixture of amide adduct **9** from the reaction in THF.

Figure S34. The ¹³C NMR spectrum of reaction mixture of amide adduct **9** performed in THF.

Figure S35. The ¹H NMR spectrum of reaction mixture of amide adduct **9** from the reaction in toluene- d_8 .

Figure S36. The ¹³C NMR spectrum of reaction mixture of amide adduct **9** performed in toluene- d_8 .

II. X-ray Data

Data for [4a][Br] (028ASM17_0m) was collected on a Bruker APEX II CCD Diffractometer at 150K, using Mo-K α radiation (k = 0.71073 Å), from an Incoatec ImuS source and multilayer optic monochromators.[3] Frames were collected using omega scans and integrated with SAINT.[4] Multi-scan absorption correction (SADABS) was applied.[4] Suitable crystals were coated with hydrocarbon oil (Paratone), picked up with a glass fiber, and mounted in the cold nitrogen stream of the diffractometer. The structures were solved using intrinsic phasing (SHELXT)[5] and refined by full-matrix least-squares on F²[6] using the ShelXle GUI.[7] The hydrogen atoms of the C–H bonds were placed in idealized positions and refined with U_{iso} tied to the parent atom.

Compound **[4a][Br]** crystalized in the monoclinic P2₁/c space group as clear blocks. One of water molecule presents positional disorder in two positons with occupation refined in a 60/40 ratio. The full crystallographic information file (.CIF) has been deposited at the CCDC and can be obtain free of charge using the CCDC identifier 1851164.

Table S1. Crystal and structure refinement data for [4a][Br].

Identification code	mo_028ASM17_0m		
Empirical formula	$C_{32}H_{44}Br_2N_4O_2$		
Formula weight	676.53		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/c$		
Unit cell dimensions	a = 7.91973(9) Å	$\alpha = 90^{\circ}$.	
	b = 37.0804(5) Å	$\beta = 106.6518(5)^{\circ}.$	
	c = 11.65888(13) Å	$\gamma = 90^{\circ}$.	
Volume	3280.24(7) Å ³		
Ζ	4		
Density (calculated)	1.370 Mg/m ³		
Absorption coefficient	2.505 mm ⁻¹		

F(000)	1400
Crystal size	0.317 x 0.210 x 0.184 mm ³
Theta range for data collection	1.904 to 27.446°.
Index ranges	-10<=h<=10, -47<=k<=47, -15<=l<=15
Reflections collected	45779
Independent reflections	7503 [R(int) = 0.0295]
Completeness to theta = 25.242°	100.0 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7503 / 17 / 395
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0266, wR2 = 0.0611
R indices (all data)	R1 = 0.0314, $wR2 = 0.0627$
Extinction coefficient	n/a
Largest diff. peak and hole	0.601 and -0.439 e.Å ⁻³

Figure S37. X-ray crystal structure of [4a][Br].

Data for [4b][Br] (twin5) was collected on a Bruker APEX II CCD Diffractometer at 100K, using Mo-K α radiation (k = 0.71073 Å), from an Incoatec ImuS sources and multilayer optic monochromators.[3] Frames were collected using omega scans and integrated with SAINT.[4] Multi-scan absorption correction (SADABS) was applied.[4] Suitable crystals were coated with hydrocarbon oil (Parabar), picked up with a nylon loop, and mounted in the cold nitrogen stream of the diffractometer. The structures were solved using intrinsic phasing (SHELXT)[5] and refined by full-matrix least-squares on F²[6] using the shelXle GUI.[7] The hydrogen atoms of the C–H bonds were placed in idealized positions and were refined with U_{iso} tied to the parent atom.

Compound [4b][Br] crystalized in the triclinic P-1 space group. One molecule of water and one bromide anion present positional disorder, related to each other, in two positons with occupation refined in a 84/16 ratio, which was solved using geometry (SAME and DFIX) and Uij restraints (SIMU and RIGU) implemented in SHELXL[4] and the occupancy was refined using free variables. The full crystallographic information file (.CIF) has been deposited at the CCDC and can be obtain free of charge using the CCDC identifier 1851165.

Table S2. Cry	stal data a	d structure r	efinement for	: [4b][Br] .
---------------	-------------	---------------	---------------	---------------------

Identification code	twin5		
Empirical formula	C ₃₈ H _{57.70} Br ₂ N ₄ O _{2.84}		
Formula weight	775.89		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	$a = 9.2559(2) \text{ Å}$ $\alpha = 98.4942(11)^{\circ}$.		
	$b = 10.8530(2) \text{ Å} \qquad \beta = 90.4235(10)^{\circ}.$		
	$c = 20.0395(5) \text{ Å}$ $\gamma = 101.4568(9)^{\circ}$.		
Volume	1949.90(7) Å ³		
Ζ	2		
Density (calculated)	1.321 Mg/m^3		
Absorption coefficient	2.117 mm ⁻¹		
F(000)	813		
Crystal size	$0.268 \ge 0.262 \ge 0.090 \text{ mm}^3$		
Theta range for data collection	1.937 to 27.532°.		
Index ranges	-12<=h<=12, -14<=k<=13, 0<=l<=26		
Reflections collected	8891		
Independent reflections	8891		

- Completeness to theta = 25.242° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole
- 99.2 % None Full-matrix least-squares on F^2 8891 / 563 / 565 1.125 R1 = 0.0387, wR2 = 0.1068 R1 = 0.0429, wR2 = 0.1086 n/a 1.135 and -0.579 e.Å⁻³

Figure S38. X-ray crystal structure of [4b][Br].

Data for $[5b][PF_6]$ (083ASM17) was collected on a Bruker APEX II CCD Diffractometer at 100K, using Cu-K α radiation (k = 1.54178 Å), from an Incoatec ImuS sources and multilayer optic monochromators.[3] Frames were collected using omega scans and integrated with SAINT.[4] Multi-scan absorption correction (SADABS) was applied.[4] Suitable crystals were coated with hydrocarbon oil (Parabar), picked up with a nylon loop, and mounted in the cold nitrogen stream of the diffractometer. The structures were solved using intrinsic phasing (SHELXT)[5] and refined by full-matrix leastsquares on F2 [6] using the shelXle GUI.[7] The hydrogen atoms of the C–H bonds were placed in idealized positions and were refined with Uiso tied to the parent atom.

Compound $[5b][PF_6]$ crystalized as blocks in the triclinic P-1 space group. In the crystal of $[5b][PF_6]$ one of the acetonitrile molecule presents positional disorder in special position (inversion center) that was modeled in two different positions with occupation refined at a 80/20 ratio. The global occupation was fixed at 0.5. The full crystallographic information file (.CIF) has been deposited at the CCDC and can be obtain free of charge using the CCDC identifier 1851166.

Identification code	083AMS17_0m		
Empirical formula	$C_{86}H_{115}Ag_2F_{12}N_{13}P_2$		
Formula weight	1836.58		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 11.8752(2) Å a= 94.79	01(5)°.	
	b = 12.8426(2) Å b= 99.98	07(5)°.	
	c = 15.1054(2) Å $g = 100.9$	9198(5)°.	
Volume	2211.58(6) Å ³		
Z	1		
Density (calculated)	1.379 Mg/m ³		
Absorption coefficient	0.555 mm ⁻¹		
F(000)	954		
Crystal size	0.241 x 0.194 x 0.179 mm ³		
Theta range for data collection	1.780 to 27.446°.		
Index ranges	-15<=h<=15, -16<=k<=16, -19<=l<=19		
Reflections collected	73017		
Independent reflections	10113 [R(int) = 0.0212]		

Table S3. Crystal data and structure refinement for [5b][PF₆]

Completeness to theta = 25.242°	100.0 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	10113 / 87 / 572
Goodness-of-fit on F ²	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0195, wR2 = 0.0505
R indices (all data)	R1 = 0.0204, wR2 = 0.0512
Extinction coefficient	n/a
Largest diff. peak and hole	0.477 and -0.319 e.Å ⁻³

Figure S39. X-ray crystal structure of [5b][PF₆].

Data for 6 (163ASM18_2C2c) was collected on a Bruker APEX II CCD Diffractometer at 100K, using Cu-K α radiation (k = 1.54178 Å), from an Incoatec ImuS sources and multilayer optic monochromators.[3] Frames were collected using omega scans and integrated with SAINT.[4] Multi-scan absorption correction (SADABS) was applied.[4] Suitable crystals were coated with hydrocarbon oil (Parabar), picked up with a nylon loop, and mounted in the cold nitrogen stream of the diffractometer. The structures were solved using intrinsic phasing (SHELXT)[5] and refined by full-matrix least-squares on F2 [6] using the shelXle GUI.[7] The hydrogen atoms of the C–H bonds were placed in idealized positions and were refined with Uiso tied to the parent atom.

Compound 6 crystalized as orange blocks in the monoclinic C2/c space group. In the crystal of 6 one of the acetonitrile molecule is present. The full crystallographic information file (.CIF) has been deposited at the CCDC and can be obtain free of charge using the CCDC identifier 1851163.

Table S4. Crystal data and structure refinement for 6

Identification code	163ASM18_2C2c		
Empirical formula	C50 H65 Cl2 Ir2 N5		
Formula weight	1191.37		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 28.1877(7) Å	$\alpha = 90^{\circ}$.	
	b = 14.2540(3) Å	$\beta = 91.0523(11)^{\circ}.$	
	c = 11.8552(3) Å	$\gamma = 90^{\circ}$.	
Volume	4762.5(2) Å ³		
Z	4		
Density (calculated)	1.662 Mg/m ³		
Absorption coefficient	11.984 mm ⁻¹		
F(000)	2352		
Crystal size	0.137 x 0.117 x 0.115	mm ³	
Theta range for data collection	3.475 to 71.835°.		
Index ranges	-34<=h<=34, -17<=k	<=17, - 14<=1<=14	
Reflections collected	41917		
Independent reflections	4606 [R(int) = 0.0295]	

Completeness to theta = 67.679°	99.3 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4606 / 24 / 285
Goodness-of-fit on F ²	1.108
Final R indices [I>2sigma(I)]	R1 = 0.0201, wR2 = 0.0525
R indices (all data)	R1 = 0.0203, wR2 = 0.0526
Extinction coefficient	n/a
Largest diff. peak and hole	$1.352 \text{ and } -0.678 \text{ e.}\text{Å}^{-3}$

Figure S40. X-ray crystal structure of 6

III. References

- 1. A. Paczal, A. C. Bényei, A. Kotschy, J. Org. Chem. 2006, 71, 5969-5979.
- 2. M. Bessel, F. Rominger, B. F. Straub, *Synthesis* **2010**, *2010*, 1459-1466.
- 3. APEX 2 software suite. Bruker AXS Inc., Madison, Wisconsin, USA
- 4. SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
- 5. SHELXT, G.M. Sheldrick, Acta Cryst. 2015, A71, 3-8
- 6. G. M. Sheldrick, Crystal structure refinement with SHELXL. *Acta Crystallogr. Sect. C* 2015, 71, 3–8.
- 7. ShelXle, C.B. Hübschle, G.M. Sheldrick, B. Dittrich, *J. Appl. Cryst.* **2011**, 44, 1281–1284.