Supporting information

Synthesis, characterization and catalytic epoxidation property of a new tellurotungstate(IV)-supported rhenium carbonyl derivative

Jingkun Lu, Xinyi Ma, Baijie Xu, Peipei He, Pengtao Ma, Jingyang Niu^{*} and Jingping Wang^{*}

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 P.R. China

E-mail address: jyniu@henu.edu.cn, jpwang@henu.edu.cn Fax: (+86)371-23886876.

CONTENTS

Section 1 The bond valence sum calculations Section 2 Selected bond lengths and angles Section 3 Additional structural figures Section 4 Additional measurements Section 5 Catalytic properties

Section 1 The bond valence sum calculations

Atoms	BVS	Atoms	BVS	
W1	6.241	W6	6.173	
W2	6.193	W7	6.181	
W3	6.164	W8	6.177	
W4	6.240	W9	6.189	
W5	6.307	W10	6.475	
Te1	3.964			

Table S1 The BVS calculations of Te and W atoms in polyoxoanion.

Table S2 The BVS calculations of all oxygen atoms in polyoxoanion.

Atoms	BVS	Atoms	BVS	
01	1.841	O20	2.013	
02	1.841	O21	1.989	
O3	1.995	022	2.268	
04	1.835	O23	2.066	
05	1.762	O24	1.962	
06	2.272	025	2.196	
07	1.849	O26	2.347	
08	1.741	027	1.918	
09	1.715	O28	1.975	
O10	1.969	O29	2.033	
011	2.000	O30	2.009	
012	2.051	O31	1.899	
013	1.991	O32	2.180	
014	2.147	O33	1.851	
015	1.982	O34	2.043	
O16	1.871	O35	1.416	
017	2.134	O36	1.867	
O18	2.051	037	1.610	
019	1.944	O38	1.987	

Bonds	Length(Å)	Bonds	Angle(°)	
Re-C(1)	1.88(2)	C(1)-Re-O(6)	93.1(8)	
Re-C(2)	1.86(2)	C(1)-Re-O(16)	176.6(8)	
Re-C(3)	1.91(2)	C(1)-Re-O(23)	101.5(8)	
Re-O(6)	2.144(14)	O(6)-Re-O(16)	83.6(5)	
Re-O(16)	2.148(13)	O(6)-Re-O(23)	83.4(6)	
Re-O(23)	2.163(14)	O(16)-Re-	77.1(6)	
		O(23)		
Te-O(14)	1.899(12)	O(22)-Te-O(14)	90.7(6)	
Te-O(22)	1.859(13)	O(22)-Te-O(32)	92.8(6)	
Te-O(32)	1.873(13)	O(32)-Te-O(14)	93.9(5)	
C(1)-O(36)	1.15(3)			
C(2)-O(37)	1.18(3)			
C(3)-O(38)	1.13(3)			

Section 2 Selected bond lengths and angles **Table S3** Selected bond length (Å) and bond angle (°) of compound **1**

Section 3 Additional structural figures

Figure S1. Packing diagram of **1** viewed along the a axis; Color code: Te, yellow; W, blue; Re, purple; C, black; O, red; WO₆, cyan.

Figure S2. Packing diagram of **1** viewed along the b axis; Color code: Te, yellow; W, blue; Re, purple; C, black; O, red; WO₆, cyan.

Figure S3. Packing diagram of **1** viewed along the c axis; Color code: Te, yellow; W, blue; Re, purple; C, black; O, red; WO₆, cyan.

Section 4 Additional measurements

4.1 IR Spectrum

Figure S4. The IR spectrum of compound 1

Figure S5. The IR spectrum of Re(CO)₅Cl

4.2 X-ray powder patterns

Fig. S6 The XPRD patterns for experiment (top) and simulated (bottom) of 1.

4.3 Thermogravimetric analysis

Fig. S7 Thermogravimetric curve of 1.

Figure S8. The UV–vis spectrum of 1 (5 imes 10⁻⁵ mol·L⁻¹)

Entry Substrate	Catalyst	Con. ^b	Sel. (%)	
		(%) ^c		
1	\bigcirc	-	2.9	>99
2		Re(CO)₅Cl	3.4	>99
3		Na ₂ WO ₄ ·2H ₂ O	3.2	>99
4		Na ₂ TeO ₃	5.0	>99
5		Catalyst 1	98.2	>99
6		(NH ₄) ₈ {[Te ₂ Mo ₁₂ (OH)O ₄₄][Re(CO) ₃]}·13H ₂ O	6.3	>99
$^{\it a}$ Reaction conditions: substrate (1 mmol), catalyst 1 (0.5 mol%), and H_2O_2 (3.0				
mmol) were mixed in 5 mL acetonitrile at 75 °C. Unless otherwise noted. ^b				
Determined by GC analyses based on initial substrate.				

Section 5 Catalytic properties Table S4 Oxidation of cis-cyclooctene with different catalysts ^a

We have checked the rate of H_2O_2 decomposition in the presence of catalyst without any organic substrate. The concentration of the H_2O_2 solution was determined by volumetric titration using a standard solution of potassium permanganate (0.1 M). The $ln(C_t/C_0)$ values are plotted against the reaction time in Fig. 5. C_0 and C_t are the initial H_2O_2 concentration and the H_2O_2 concentration at time t, respectively. The linear fit of the data reveals that the decomposition process follows pseudo-first-order kinetics for the H_2O_2 decomposition ($R^2 = 0.998$). By using Equations (1) ($-dC_t/d_t = kC_t$) and (2) ($ln C_0/C_t = kt$), the observed rate constant k for the H_2O_2 decomposition was determined to be -0.016 min^{-1} .

Figure S9. Kinetic profiles of the H₂O₂ decomposition reaction.

Two Theta(degree)

Figure S10. The XRPD of 1 before and after the recycling tests

Figure S11. IR spectra of catalyst **1** before and after the recycling tests; (a) IR spectrum of cataltst **1**; (b) IR spectrum of the sample tested 1st run; (c) IR spectrum of the sample tested 2nd run; (d) IR spectrum of the sample tested 3rd run.

(mainlib) (2,3,3-Trimethyloxiranyl)methanol

Figure S12. Mass spectra of the side products of entries 2, 4, 7, 8 and 10 in Table 4