Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting information

A heterometallic sodium(I)-europium(III)-organic layer exhibiting dual-responsive luminescent

sensing for nitrofuran antibiotics, Cr₂O₇²⁻ and MnO₄⁻ anions

Shan Xu,^a Jing-Jing Shi,^a Bo Ding,^a Zheng-Yu Liu,^a Xiu-Guang Wang,^a Xiao-Jun Zhao^{*a, b} and En-Cui

Yang*a

Table S1 Selected bond lengths (Å) and angles (deg) for 1^{a}

Eu(1)–O(1)	2.441(5)	Eu(2)–O(10)	2.374(5)
Eu(1)–O(2)	2.467(5)	Eu(2)–O(11) ^{#1}	2.511(4)
Eu(1)–O(5)	2.473(5)	Eu(2)–O(12) ^{#1}	2.437(5)
Eu(1)–O(6)	2.523(4)	Eu(2)–O(14)	2.431(5)
Eu(1)–O(8) ^{#1}	2.392(5)	Eu(2)–O(16)	2.312(5)
Eu(1)–O(9)	2.315(5)	Na(1)–O(2)	2.506(5)
Eu(1)-O(13)	2.341(6)	Na(1)-O(4)#5	2.371(5)
Eu(1)–O(15)	2.422(5)	Na(1)–O(6)	2.292(6)
Eu(2)–O(3) ^{#3}	2.463(5)	Na(1)-O(11)#2	2.285(6)
Eu(2)–O(4) ^{#3}	2.453(5)	Na(1)-O(14) ^{#4}	2.546(6)
Eu(2)–O(7) ^{#1}	2.280(5)	Na(1)–O(15)	2.406(5)
O(1)–Eu(1)–O(2)	52.66(15)	O(7) ^{#1} -Eu(2)-O(12) ^{#1}	81.8(2)
O(1)-Eu(1)-O(5)	79.45(19)	O(7) ^{#1} -Eu(2)-O(14)	80.47(19)
O(1)-Eu(1)-O(6)	102.53(17)	O(7) ^{#1} -Eu(2)-O(16)	110.70(18)
O(2)–Eu(1)–O(5)	92.22(18)	O(10)-Eu(2)-O(3) ^{#2}	79.99(18)
O(2)–Eu(1)–O(6)	71.35(17)	O(10)-Eu(2)-O(4) ^{#2}	132.04(17)
O(5)–Eu(1)–O(6)	51.73(16)	O(10)-Eu(2)-O(11) ^{#1}	129.42(17)

O(8) ^{#1} –Eu(1)–O(1)	81.75(17)	O(10)-Eu(2)-O(12) ^{#1}	78.55(17)
O(8) ^{#1} -Eu(1)-O(2)	134.31(17)	O(10)–Eu(2)–O(14)	149.13(17)
O(8) ^{#1} -Eu(1)-O(5)	80.88(17)	O(12) ^{#1} -Eu(2)-O(3) ^{#2}	78.93(19)
O(8) [#] 1-Eu(1)-O(6)	129.54(17)	O(12) ^{#1} -Eu(2)-O(4) ^{#2}	96.22(19)
O(8) ^{#1} -Eu(1)-O(15)	147.05(16)	O(12) ^{#1} -Eu(2)-O(11) ^{#1}	52.00(16)
O(13)–Eu(1)–O(6)	148.25(18)	O(14)-Eu(2)-O(3)#2	122.30(18)
O(9)-Eu(1)-O(2)	141.91(16)	O(14)-Eu(2)-O(4) ^{#2}	71.41(16)
O(9)-Eu(1)-O(5)	84.55(19)	O(14)-Eu(2)-O(11) ^{#1}	72.53(17)
O(9)-Eu(1)-O(6)	77.17(16)	O(14)-Eu(2)-O(12) ^{#1}	123.65(17)
O(9)-Eu(1)-O(8) ^{#1}	82.72(18)	O(16)-Eu(2)-O(3) ^{#2}	82.10(18)
O(9)-Eu(1)-O(13)	107.29(19)	O(16)-Eu(2)-O(4) ^{#2}	86.36(18)
O(9)-Eu(1)-O(15)	79.45(18)	O(16)-Eu(2)-O(10)	80.37(19)
O(13)–Eu(1)–O(1)	84.07(19)	O(16)-Eu(2)-O(11) ^{#1}	149.97(18)
O(13)–Eu(1)–O(2)	89.63(19)	O(16)-Eu(2)-O(14)	82.02(18)
O(13)-Eu(1)-O(8) ^{#1}	81.94(19)	O(4)#5-Na(1)-O(2)	105.04(18)
O(13)–Eu(1)–O(15)	77.28(18)	O(4)-Na(1)-O(14)#4	70.75(17)
O(15)-Eu(1)-O(1)	120.62(17)	O(15)-Na(1)-O(14)#4	113.59(19)
O(15)–Eu(1)–O(2)	71.20(16)	O(6)-Na(1)-O(2)	74.53(19)
O(15)-Eu(1)-O(5)	124.26(16)	O(6)-Na(1)-O(4)#5	100.1(2)
O(15)-Eu(1)-O(6)	72.65(16)	O(6)-Na(1)-O(14)#4	111.1(2)
O(3) ^{#2} -Eu(2)-O(11) ^{#1}	98.02(17)	O(6)-Na(1)-O(15)	77.15(18)
O(4) [#] 2-Eu(2)-O(3) ^{#2}	52.50(16)	O(11) ^{#3} -Na(1)-O(4) ^{#5}	76.26(19)
O(4) ^{#2} -Eu(2)-O(11) ^{#1}	70.79(17)	O(11)#3-Na(1)-O(14)#4	74.26(18)
O(7) ^{#1} -Eu(2)-O(4) ^{#2}	144.78(17)	O(11) ^{#3} -Na(1)-O(15)	106.0(2)

$O(7)^{\#1}-Eu(2)-O(10)$ 82.32(19) O(15)-Na(1)-O(2) 70.79(17)

 $O(7)^{\#1}$ -Eu(2)- $O(11)^{\#1}$ 80.97(16)

^{*a*} Symmetry codes: ^{#1} x, y + 1, z; ^{#2} x - 1, 3/2 - y, z - 1/2; ^{#3} - x, y + 1/2, 3/2 - z; ^{#4} - x, y - 1/2, 3/2 - z; ^{#5} 1 - x, 1 - y, 2 - z; ^{#6} 1 + x, 3/2 - y, z + 1/2; ^{#7} x, y - 1, z.

Fig. S1 Binding modes of pddb²⁻ and acetate anion.

D–Н…А	<i>d</i> (D–H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	\angle (D–H···A)		
C28–H28…O1	0.93	2.56	3.209	128		
C48–H48…O3	0.93	2.41	3.304	162		
^{<i>a</i>} Symmetry codes: ${}^{\#1} - x$, $1 - y$, $2 - z$.						

 Table S2 Hydrogen-boding parameters (Å, deg) in 1^a

Fig. S2 3D supramolecular framework of 1.

Fig. S3 TGA curve of 1.

 Table S3 Fluorescence lifetime of 1 in the solid state and dispersed in DMF in the absence and presence of

 NFZ, NFT and $Cr_2O_7^{2-}$ $\overline{\tau_1 (\mu s)}$ % $\tau_2 (\mu s)$ % Lifetime (μs)

Sample	$i_1 (\mu s)$	/0	t_2 (µs)	/0	Effettine (µs)
1	317	2.19	971	97.81	1018.78
1-DMF suspension	87	2.77	959	97.23	956.36
1 + NFZ (0.13 mM)	95	2.46	958	97.56	958.07
1 + NFT (0.13 mM)	85	2.07	954	97.93	951.56
1 + FZD (0.13 mM)	94	2.26	951	97.74	950.51
$1 + Cr_2O_7^{2-}$ (0.67 mM)	109	2.73	955	97.27	958.71
$1 + MnO_4^- (0.67 \text{ mM})$	89	1.68	955	98.32	953.71

Blank Readings	NFZ	NFT	FDZ	$Cr_2O_7^{2-}$	MnO_4^-
#1 Fluorescence Intensity (CPS)	1114385	1114385	1114385	1056255	1056255
#2 Fluorescence Intensity (CPS)	1110000	1110000	1110000	1067350	1067350
#3 Fluorescence Intensity (CPS)	1111070	1111070	1111070	1057650	1057650
#4 Fluorescence Intensity (CPS)	1108240	1108240	1108240	1055530	1055530
#5 Fluorescence Intensity (CPS)	1093660	1093660	1093660	1048050	1048050
Standard Deviation (σ)	8038.767	8038.767	8038.767	6898.514	6898.514

Table S4 Standard deviation (σ) calculated from the five blank measurements.

Fig. S4 (a) Fluorescence spectra of **1** upon incremental addition of $Cr_2O_7^{2-}$ in alkaline DMF solution. (b) Plot of I_0/I vs. $[Cr_2O_7^{2-}]$ in alkaline DMF solution (The blue solid lines represent the linear fit to the Stern–Volmer equation).

Fig. S5 PXRD patterns of 1 before after detecting of NFs, $Cr_2O_7^{2-}$ and MnO_4^{-} .

Fig. S6 FT-IR spectra of 1 before and after the detection of NFs, $Cr_2O_7^{2-}$ and MnO_4^{-} .