Supporting Information

Hydrophilicquaternaryammonium-group-containing[FeFe]H2ase models prepared by quaternization of the pyridyl Natomsinpyridylazadiphosphine-atomsinpyridylazadiphosphine-pyridylmethylazadiphosphine-bridgeddiironcomplexesvarious electrophiles

Li-Cheng Song,*^{a,b} Li Feng,^a and Yuan-Qiang Guo^a

^aDepartment of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China ^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

Contents:

- 3. Fig. S3 and S4 Cyclic voltammograms of 1 and 3 at various scan rates
- 4. Fig. S5 Plots of i_p versus $v^{1/2}$ for the reduction peaks of 1 and 3
- 5. Fig. S6 and S7 Overpotential determinations for 1 and 3 in MeCN

12. References

The reduction event for **1** or **3** is a one-electron process since the final Q values for **1** and **3** determined by bulk electrolysis are both close to half that of the known two-electron reduction of dimer $[CpFe(CO)_2]_2$.¹

Fig. S1 Bulk electrolysis for the two-electron reduction of $[CpFe(CO)_2]_2$ and the oneelectron reductions of 1 and 3.

The oxidation event for 1 or 3 is a one-electron process since the final Q values for 1 and 3 determined by bulk electrolysis are both close to half that of the known two-electron reduction of dimer $[CpFe(CO)_2]_2$.¹

Fig. S2 Bulk electrolysis for the two-electron reduction of $[CpFe(CO)_2]_2$ and the oneelectron oxidations of 1 and 3.

3. Fig. S3 and S4 Cyclic voltammograms of 1 and 3 at various scan rates.

Fig. S3 Cyclic voltammograms of **1** (0.5 mM) in 0.1 M *n*-Bu₄NPF₆/MeCN at various scan rates.

Fig. S4 Cyclic voltammograms of 3 (0.5 mM) in 0.1 M *n*-Bu₄NPF₆/MeCN at various scan rates.

4. Fig. S5 Plots of i_p versus $v^{1/2}$ for the reduction peaks of 1 and 3.

Fig. S5 Plots of i_p versus $v^{1/2}$ for the reduction peaks of **1** and **3**.

5. Fig. S6 and S7 Overpotential determinations for 1 and 3 in MeCN.

The overpotential of **1** and **3** were calculated according to eqs. S1 and S2, where $E_{1/2}^{T}$ is theoretical half-wave potential for HOAc ($pK_a^{MeCN} = 22.3$)²⁻³ reduction in MeCN, and $E_{cat/2}$ is the potential at half-maximum of the catalytic current of complex **1** or **3** with HOAc.³⁻⁵ In equation S1, $E^0_{H^+/H^2}$ is the standard potential for the reduction of protons in V, *R* is the ideal gas constant in K-1mol⁻¹, *T* is the absolute temperature in K, *F* is Faraday's constant in C/mol, ε_D is a measure of how fast is the diffusion of the products with respect to that of the reactant in V, C_0 is the total concentration of HOAc in mol/L, $C^0_{H^2}$ is the concentration of dissolved hydrogen corresponding to a partial pressure of 10⁵ Pa in mol/L.

$$E_{1/2}^{T} = E^{0}_{H^{+}/H^{2}} - (2.303RT/F) \text{ p}K_{a} + \varepsilon_{D} - (RT/2F)\ln(C_{0}/C^{0}_{H^{2}}) \quad \text{eq. S1}$$

overpotential = $E_{1/2}^{T} - E_{\text{cat}/2}$ eq.S2

Fig. S6 Cyclic voltammograms of 1 (0.5 mM) with HOAc (0, 50 mM) in 0.1 M n-Bu₄NPF₆/MeCN at a scan rate of 0.1 Vs⁻¹.

Fig. S7 Cyclic voltammograms of 3 (0.5 mM) with HOAc (0, 50 mM) in 0.1 M n-Bu₄NPF₆/MeCN at a scan rate of 0.1 Vs⁻¹.

Fig. S8 Cyclic voltammograms of 50 mM HOAc with catalyst 1 (0.5 mM) (red line) and without 1 (black line) under different H₂O content in the mixed MeCN/H₂O solvent conditions: (a) 0% H₂O, (b) 5% H₂O, (c) 10% H₂O, (d) 15% H₂O at a scan rate of 0.1 Vs⁻¹.

7. Fig. S9–S12: IR and ¹H (¹³C, ³¹P) NMR spectra of 1

Fig. S10 ¹H NMR spectrum of 1

Fig. S12 ³¹P NMR spectrum of 1

8. Fig. S13–S16: IR and ¹H (¹³C, ³¹P) NMR spectra of 2

Fig. S13 IR spectrum of 2

Fig. S14 ¹H NMR spectrum of 2

Fig. S15 ¹³C NMR spectrum of 2

Fig. S18 ¹H NMR spectrum of 3

Fig. S20 ³¹P NMR spectrum of 3

10. Fig. S21–S24: IR and ¹H (¹³C, ³¹P) NMR spectra of 4

Fig. S21 IR spectrum of 4

Fig. S22 ¹H NMR spectrum of 4

Fig. S23 ¹³C NMR spectrum of 4

Fig. S24 ³¹P NMR spectrum of 4

11. Fig. S25–S28: IR and ¹H (¹³C, ³¹P) NMR spectra of 5

Fig. S25 IR spectrum of 5

Fig. S26 ¹H NMR spectrum of 5

Fig. S27 ¹³C NMR spectrum of 5

Fig. S28 ³¹P NMR spectrum of 5

12. References