Supporting Information

Stereospecific polymerization of conjugated dienes using neodymium alkylborohydride complexes

Ryo Tanaka*, Yuto Shinto, Ryusei Matsuzaki, Yuushou Nakayama and Takeshi Shiono

Table of Contents

NMR and IR spectra of Neodymium complexes 3 and 4	2-4
X-ray refinement data of complexes 3 and 4	5
NMR spectra of obtained polymer	6-19

Figure S1. ¹H NMR spectrum of complex 3 (500 MHz, in C₆D₆).

Figure S2. ¹¹B NMR spectrum of complex 3 (160 MHz, in C₆D₆).

Figure S4. ¹¹B NMR spectrum of complex 4 (160 MHz, in C₆D₆).

Figure S5. IR spectra of complexes 3 and 4 (Nujol).

 Table S1. Crystal refinement data for complexes 3 and 4.

Compound	3	4
Wavelength (Á)	0.71069 Á	0.71069 Á
Temperature (K)	123	123
Empirical formula	C ₄₀ H ₈₀ B ₄ NdO ₂	$C_{30}H_{72}B_{3}NdO_{3}$
	C ₂₄ H ₄₈ NaO ₆	
Formula weight	1236.13	657.54
Crystal system	Triclinic	Monoclinic
Space group	<i>P</i> -1	P21/c
a (Á)	11.2257(11)	11.2474(14)
b (Á)	11.2958(11)	16.788(2)
c (Á)	14.3024(14)	20.353(2)
α (deg)	77.2071(13)	90
β (deg)	80.0236(14)	101.486(2)
γ(deg)	79.6023(13)	90
Volume (Á ³)	1722.7(3)	3766.1(7)
Ζ	1	4
D _{calc} (g/cm ³)	1.192	1.160
μ (mm ⁻¹)	0.808	1.403
<i>F</i> (000)	667.0	1404.0
Crystal size (mm)	0.2 x 0.2 x 0.2	0.1 x 0.1 x 0.05
θ_{\max} (deg)	27.405	27.381
Index ranges	-12 ≤ h ≤ 14	-14 ≤ h ≤ 14
	-14 ≤ k ≤ 14	-21 ≤ k ≤ 20
	-10 ≤ I ≤ 18	-26 ≤ I ≤ 9
No. of reflections observed	7558	8506
No. of parameters refined	527	402
T _{min} , T _{max}	0.6789, 0.7455	0.6599, 0.7455
R ₁	0.0373	0.0484
wR ₂	0.0963	0.0998
GoF on F ²	1.049	0.994

Figure S6. ¹H NMR of polyisoprene obtained in Table 2, run 2 (500 MHz, in CDCl₃).

Figure S7. ¹³C NMR of polyisoprene obtained in Table 2, run 2 (125 MHz, in CDCI₃).

Figure S8. ¹H NMR of polyisoprene obtained in Table 2, run 3 (500 MHz, in CDCl₃).

Figure S9. ¹³C NMR of polyisoprene obtained in Table 2, run 3 (125 MHz, in CDCI₃).

Figure S10. ¹H NMR of polyisoprene obtained in Table 2, run 4 (500 MHz, in CDCl₃).

Figure S11. ¹³C NMR of polyisoprene obtained in Table 2, run 4 (125 MHz, in CDCl₃).

Figure S12. ¹H NMR of polyisoprene obtained in Table 2, run 5 (500 MHz, in CDCl₃).

Figure S13. 13 C NMR of polyisoprene obtained in Table 2, run 5 (125 MHz, in CDCl₃).

Figure S14. ¹H NMR of polyisoprene obtained in Table 2, run 6 (500 MHz, in CDCl₃).

Figure S15. ¹³C NMR of polyisoprene obtained in Table 2, run 6 (125 MHz, in CDCl₃).

Figure S16. ¹H NMR of polyisoprene obtained in Table 2, run 7 (500 MHz, in CDCl₃).

11

Figure S18. ¹H NMR of polybutadiene obtained in Table 2, run 10 (500 MHz, in CDCl₃).

Figure S19. ¹³C NMR of polybutadiene obtained in Table 2, run 10 (125 MHz, in CDCl₃).

Figure S20. ¹H NMR of polyisoprene obtained in Table 2, run 11 (500 MHz, in CDCl₃).

Figure S21. ¹³C NMR of polyisoprene obtained in Table 2, run 11 (125 MHz, in CDCl₃).

Figure S22. ¹H NMR of polybutadiene obtained in Table 2, run 12 (500 MHz, in CDCl₃).

Figure S23. ¹³C NMR of polybutadiene obtained in Table 2, run 12 (125 MHz, in CDCl₃).

Figure S24. ¹H NMR of polybutadiene obtained in Table 2, run 13 (500 MHz, in CDCl₃).

Figure S25. ¹³C NMR of polybutadiene obtained in Table 2, run 13 (125 MHz, in CDCl₃).

Figure S26. ¹H NMR of polybutadiene obtained in Table 2, run 14 (500 MHz, in CDCl₃).

Figure S27. ¹³C NMR of polybutadiene obtained in Table 2, run 14 (125 MHz, in CDCl₃).

Figure S28. ¹H NMR of polybutadiene obtained in Table 2, run 15 (500 MHz, in CDCl₃).

Figure S29. ¹³C NMR of polybutadiene obtained in Table 2, run 15 (125 MHz, in CDCl₃).

Figure S30. ¹H NMR of PMMA obtained in Table 3, run 1 (500 MHz, in CDCl₃).

Figure S32. ¹H NMR of PMMA obtained in Table 3, run 3 (500 MHz, in CDCl₃).

Figure S33. ¹H NMR of PMMA obtained in Table 3, run 6 (500 MHz, in $CDCI_3$).