Supporting Information

Comparing Molybdenum and Rhenium Oxo Bis-Pyrazine-Dithiolene Complexes – In Search of an Alternative Metal Center for Molybdenum Cofactor Models

Nicolas Chrysochos,^a Mohsen Ahmadi,^a Stefan Malte Wahlefeld,^b Yvonne Rippers,^b Ingo Zebger,^b Maria Andrea Mroginski,^b Carola Schulzke^{*,a} ^aInstitut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487 Greifswald, Germany ^bInstitut für Chemie, Physikalische Chemie/Biophysikalische Chemie, Technische Universität Berlin, Germany *E-Mail: carola.schulzke@uni-greifswald.de

Table S1: Redox potentials $(E_{1/2}^0)$ vs. Fc/Fc⁺ for the redox transition $M^{IV} \leftrightarrow M^V$ for IIa $[MoO(pdt)_2]^{2-}$ and IIb $[ReO(pdt)_2]^-$ at various temperatures between 278.15 K and 338.15 K.

Т [К]	IIa [MoO(pdt) ₂] ²⁻ [V]			IIb $[ReO(pdt)_2]^{-}[V]$		
278.15	-0.5	-0.51	-0.52	-2.07	-2.06	-1.92
283.15	-0.52	-0.51	-0.52	-2.07	-2.06	-2.06
288.15	-0.48	-0.5	-0.51	-2.07	-2.08	-1.94
293.15	-0.52	-0.5	-0.51	-2.08	-2.09	-2.11
298.15	-0.48	-0.45	-0.45	-2.24	-1.98	-1.94
298.15	-0.52	-0.5	-0.51	-2.09	-2.08	-2.06
303.15	-0.52	-0.49	-0.5	-2.09	-2.11	-2.14
308.15	-0.48	-0.45	-0.46	-2.24	-2.02	-1.96
313.15	-0.51	-0.49	-0.51	-2.1	-2.12	-2.15
318.15	-0.48	-0.47	-0.47	-2.24	-2.07	-1.96
323.15	-0.5	-0.49	-0.5	-2.1	-2.13	-2.15
328.15	-0.48	-0.46	-0.47	-2.2	-2.09	-2.01
333.15	-0.5	-0.48	-0.49	-2.12	-2.12	-2.15
338.15	-0.49	-0.46	-0.48	-2.15	-2.11	-2.09

Figure S1. First measurement cyclic voltammograms of $(Et_4N)_2[IIa]$ at varius temperatures between 5°C and 65°C in CH₃CN (0.1 mol/l Bu₄NPF). Data is referenced against Fc/Fc⁺ (= 0 V in this diagram).

Figure S2. Second measurement cyclic voltammograms of $(Et_4N]_2[IIa]$ at varius temperatures between 5°C and 65°C in CH₃CN (0.1 mol/l Bu₄NPF). Data is referenced against Fc/Fc⁺ (= 0 V in this diagram).

Figure S3. Third measurement cyclic voltammograms of $(Et_4N)_2[IIa]$ at varius temperatures between 5°C and 65°C in CH₃CN (0.1 mol/l Bu₄NPF). Data is referenced against Fc/Fc⁺ (= 0 V in this diagram).

Figure S4. First measurement cyclic voltammograms of K[IIb] at varius temperatures between 5°C and 65°C in CH₃CN (0.1 mol/l Bu₄NPF). Data is referenced against Fc/Fc⁺ (= 0 V in this diagram).

Figure S5. Second measurement cyclic voltammograms of K[IIb] at varius temperatures between 5°C and 65°C in CH₃CN (0.1 mol/l Bu₄NPF). Data is referenced against Fc/Fc⁺ (= 0 V in this diagram).

Figure S6. Third measurement cyclic voltammograms of K[IIb] at varius temperatures between 5°C and 65°C in CH₃CN (0.1 mol/l Bu₄NPF). Data is referenced against Fc/Fc⁺ (= 0 V in this diagram).

Figure S7. The 300 MHz ¹H NMR spectrum of compound K_2 [IIa] in D_2O .

Figure S8. The 19.56 MHz 95 Mo-NMR spectrum of compound K₂[IIa] in D₂O.

Figure S9. ESI MS spectrum from dissolution of $K_2[MoO(pdt)_2]$ ($K_2[IIa]$) in methanol showing its adduct $[C_8H_4N_4OMoS_4]^{2-}$ at 397.8 m/e and $[C_8H_4N_4OMoS_4]^{2-}K^+$ at 436.7 m/e.

Figure S10. UV-Vis spectrum of compound $K_2[MoO(pdt)_2]$ ($K_2[IIa]$) in methanol at 25°C.

Figure S11. The 300 MHz ¹H NMR spectrum of compound K[IIb] in CD₃OD.

Figure S12. ESI MS spectrum from dissolution of $K[ReO(pdt)_2]$ (K[IIb]) in methanol showing its adduct $[C_8H_4N_4OReS_4]^-$ at 486.6 m/e.

Figure S13. UV-Vis spectrum of compound $K[ReO(pdt)_2]$ (K[IIb]) in methanol at 25°C.

Figure S14. The 300 MHz ¹H NMR spectrum of compound I in DMSO-D6.

Figure S15. The 75.5 MHz ¹³C NMR spectrum of compound I in DMSO-D6.

Figure S16. The IR spectrum of compound I.

D-HA	d(D-H) / Å	d(HA) / Å	d(DA) / Å	<(DHA) / °
C(4)-H(4)S(1)#1	0.95	3.00	3.755(4)	1380
C(4)-H(4)S(3)#1	0.95	2.75	3.633(4)	1544
C(8)-H(8)S(2)#2	0.95	2.91	3.614(4)	1323
C(8)-H(8)S(4)#2	0.95	2.83	3.543(4)	1321
C(9)-H(9A)S(2)#3	0.99	3.02	3.959(5)	1596
C(10)-H(10A)O(1)	0.98	2.62	3.404(6)	1374
C(11)-H(11A)S(4)#3	0.99	2.87	3.855(4)	1742
C(12)-H(12C)S(2)#2	0.98	3.00	3.729(5)	1319
C(13)-H(13A)N(2)#2	0.99	2.53	3.463(5)	1580
C(14)-H(14B)O(2)#4	0.98	2.48	3.433(6)	1651
C(15)-H(15B)S(4)	0.99	3.01	3.930(5)	1543
C(17)-H(17B)O(1)#5	0.99	2.60	3.510(5)	1527
C(19)-H(19B)S(2)	0.99	2.97	3.915(5)	1608
C(20)-H(20B)N(4)#6	0.98	2.67	3.409(7)	1321
C(21)-H(21B)O(1)#5	0.99	2.57	3.498(5)	1560
C(23)-H(23A)N(2)	0.99	2.67	3.646(6)	1690
O(2)-H(1O2)N(3)#1	0.88(6)	2.29(6)	3.152(6)	167(6)
O(2)-H(2O2)N(1)	0.88(6)	2.10(6)	2.968(5)	171(8)

Table S2 Metrical hydrogen bond parameters in $(Et_4N)_2[IIa]$. In red: hydrogen bonds involving the terminal oxido ligand (Mo=O).

Symmetry transformations used to generate equivalent atoms: #1 -x,y+1/2,-z+1, #2 -x+1,y-1/2,-z+2, #3 x+1,y,z, #4 x+1,y,z+1, #5 -x+1,y+1/2,-z+1, #6 -x+1,y+1/2,-z+2

Figure S17. Uni-cell packing of compound $(Et_4N)_2[IIa]$ with hydrogen bonds shown as dashed lines.

Figure S18. Fold angle a of compound $(Et_4N)_2[IIa]$.

Figure S19. Fold angle b of compound $(Et_4N])_2[IIa]$.

Figure S20. Unit-cell packing of compound K[IIb] with hydrogen bonds shown as dashed lines.

Figure S21. Fold angle of compound K[IIb].

Table S3: Mo=O distances in crystal structures of [MoO(dithiolene) ₂] ^{2–} complexes with electro	า
withdrawing ligand backbones (e.g. aromatic, CN⁻).	

	Dithiolene	Mo=O distance [Å]	Reference
mnt	NC S ⁻	1.670	S. K. Das, P. K. Chaudhury, D. Biswas and S. Sarkar, <i>J. Am. Chem. Soc.</i> , 1994, 116 , 9061-9070.
prdt	N S ⁻	1.688	this work
dmit	$s \rightarrow s \rightarrow$	1.689	M. Atzori, E. Morra, L. Tesi, A. Albino, M. Chiesa, L. Sorace and R. Sessoli, <i>J. Am. Chem. Soc.</i> , 2016, 138 , 11234-11244.
bdt	S-	1.699	S. Boyde, S. R. Ellis, C. D. Garner and W. Clegg, J. Chem. Soc., Chem. Commun. , 1986, 1541-1543.
sdt	S ⁻	1.700	E. S. Davies, R. L. Beddoes, D. Collison, A. Dinsmore, A. Docrat, J. A. Joule, C. R. Wilson and C. D. Garner, <i>J. Chem. Soc., Dalton Trans.</i> , 1997, 3985- 3995.
ndt	S- S-	1.7023	A. C. Ghosh, P. P. Samuel and C. Schulzke, <i>Dalton</i> <i>Trans.</i> , 2017, 46 , 7523-7533.

Figure S22. The 300 MHz 1 H NMR spectrum of compound K[IIb] with 2.5 eq. of PPh₃ in DMSO-D6 after 90 h of catalysis.

Figure S23. The 75.5 MHz ^{13}C NMR spectrum of compound K[IIb] with 2.5 eq. of PPh_3 in DMSO-D6 after 90 h of catalysis.

Figure S24. The ^{31}P NMR spectrum of compound K[IIb] with 2.5 eq. of PPh₃ in DMSO-D6 after 90 h of catalysis

Figure S25. The 300 MHz ¹H NMR spectrum of compound K[IIb] with 2.5 eq. of PPh₃ in DMSO-D6 after 73 d or termination of catalytic experiment.

Figure S26. The ³¹P NMR spectrum of compound K[IIb] with 2.5 eq. of PPh₃ in DMSO-D6 after 73 d (i.e. at termination) of catalytic experiment.