Electronic Supplementary Information (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2018

## **Supporting Information For**

## A new 3D luminescent Zn(II)-organic framework containing quinoline-2,6dicarboxylate linker for the highly selective sensing of Fe(III) ion

Chiranjib Gogoi, <sup>a</sup> Muhammed Yousufuddin<sup>b</sup> and Shyam Biswas<sup>\*a</sup>

<sup>a</sup> Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.

<sup>b</sup> Life and Health Sciences Department, The University of North Texas at Dallas, Dallas, Texas 75241, United States.

\* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in; Tel: 91-3612583309.



Figure S1. Ligand used for the present work.



Figure S2. FT-IR spectra of compound 1 (black), 1' (red) and DMF (green).



Scheme S1. Coordination and *bis*-chelation mode displayed by QDA ligand in compound 1.



Figure S3. (a) Metal-organic square pyramidal polyhedra found within compound 1 constructed via coordination of QDA ligands with  $Zn^{2+}$  ions. (b) Side view of the overall 3D framework of compound 1.

| Table S1. Single-crystal X-ray | data and structure refinement | parameters for compound 1. |
|--------------------------------|-------------------------------|----------------------------|
| 0 1 1                          |                               | 1 1                        |

| Formula                              | C <sub>11</sub> H <sub>5</sub> NO <sub>4</sub> Zn |
|--------------------------------------|---------------------------------------------------|
| Formula Weight                       | 280.53                                            |
| Crystal System                       | Tetragonal                                        |
| Space group                          | <i>I</i> 4 <sub>1</sub> /a                        |
| $a/\text{\AA}$                       | 19.9088(3)                                        |
| b/Å                                  | 19.9088(3)                                        |
| $c/{ m \AA}$                         | 12.1905(3)                                        |
| V/Å <sup>3</sup>                     | 4831.83(19)                                       |
| Ζ                                    | 16                                                |
| $D_{e}/\mathrm{g}~\mathrm{cm}^{-3}$  | 1.543                                             |
| $\mu$ Mo $K_{\alpha}/\text{mm}^{-1}$ | 2.033                                             |
| F000                                 | 2240.0                                            |
| T/K                                  | 293(2)                                            |
| Theta range                          | 2.894 to 28.697°                                  |
| Total no. of reflections             | 5395                                              |
| Independent reflections              | 2747 [R(int) = 0.0174]                            |
| Observed reflections                 | 1830                                              |
| Parameters refined                   | 154                                               |
| Final R indices [I>2sigma(I)]        | $R_1 = 0.0274, wR_2 = 0.0671$                     |
| R indices (all data)                 | $R_1 = 0.0378, wR_2 = 0.0723$                     |

| GOF (F <sup>2</sup> )          | 1.049                                                        |
|--------------------------------|--------------------------------------------------------------|
| Crystal Size                   | $0.26\times0.24\times0.22\ mm^3$                             |
| Index ranges                   | -26<= <i>h</i> <=13, -21<= <i>k</i> <=25, -16<= <i>l</i> <=8 |
| Absorption correction          | Semi-empirical from equivalents                              |
| Max. and min. transmission     | 0.639 and 0.595                                              |
| Refinement method              | Full-matrix least-squares on F <sup>2</sup>                  |
| Data / restraints / parameters | 2747 / 0 / 154                                               |
| Extinction coefficient         | n/a                                                          |
| Largest diff. peak and hole    | 0.379 and -0.207 e.Å <sup>-3</sup>                           |

**Table S2.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for compound **1**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| $\overline{Zn(1)}$ | 7017(1) | 449(1)  | 1674(1) | 28(1) |  |
|--------------------|---------|---------|---------|-------|--|
| O(13)              | 6705(1) | 4077(1) | 9034(1) | 50(1) |  |
| O(14)              | 6899(1) | 4606(1) | 7464(1) | 32(1) |  |
| O(16)              | 7059(1) | 550(1)  | 4253(1) | 52(1) |  |
| O(17)              | 6993(1) | 1190(1) | 2745(1) | 45(1) |  |
| C(2)               | 6773(1) | 3427(1) | 7404(2) | 35(1) |  |
| C(3)               | 6628(1) | 2822(1) | 7940(2) | 51(1) |  |
| C(4)               | 6632(2) | 2242(1) | 7344(2) | 55(1) |  |
| C(5)               | 6783(1) | 2265(1) | 6215(2) | 40(1) |  |
| C(6)               | 6822(1) | 1678(1) | 5562(2) | 46(1) |  |
| C(7)               | 6968(1) | 1723(1) | 4465(2) | 38(1) |  |
| C(8)               | 7066(1) | 2359(1) | 3987(2) | 45(1) |  |
| C(9)               | 7048(1) | 2929(1) | 4597(2) | 42(1) |  |
| C(10)              | 6912(1) | 2898(1) | 5731(2) | 34(1) |  |
| N(11)              | 6904(1) | 3474(1) | 6339(1) | 31(1) |  |
| C(12)              | 6785(1) | 4075(1) | 8043(2) | 35(1) |  |
| C(15)              | 7016(1) | 1097(1) | 3773(2) | 39(1) |  |
|                    |         |         |         |       |  |

| Zn(1)-O(17)           | 1.9708(15) |
|-----------------------|------------|
| Zn(1)-O(14)#1         | 1.9941(14) |
| Zn(1)-O(14)#2         | 2.0266(15) |
| Zn(1)-O(16)#3         | 2.0599(15) |
| Zn(1)-N(11)#2         | 2.1875(17) |
| O(13)-C(12)           | 1.218(3)   |
| O(14)-C(12)           | 1.293(3)   |
| O(16)-C(15)           | 1.239(3)   |
| O(17)-C(15)           | 1.268(3)   |
| C(2)-N(11)            | 1.327(3)   |
| C(2)-C(3)             | 1.400(3)   |
| C(2)-C(12)            | 1.507(3)   |
| C(3)-C(4)             | 1.365(3)   |
| C(3)-H(3)             | 0.9300     |
| C(4)-C(5)             | 1.409(3)   |
| C(4)-H(4)             | 0.9300     |
| C(5)-C(10)            | 1.415(3)   |
| C(5)-C(6)             | 1.416(3)   |
| C(6)-C(7)             | 1.372(3)   |
| C(6)-H(6)             | 0.9300     |
| C(7)-C(8)             | 1.408(3)   |
| C(7)-C(15)            | 1.508(3)   |
| C(8)-C(9)             | 1.356(3)   |
| C(8)-H(8)             | 0.9300     |
| C(9)-C(10)            | 1.410(3)   |
| C(9)-H(9)             | 0.9300     |
| C(10)-N(11)           | 1.367(3)   |
| O(17)-Zn(1)-O(14)#1   | 106.11(7)  |
| O(17)-Zn(1)-O(14)#2   | 122.89(6)  |
| O(14)#1-Zn(1)-O(14)#2 | 130.95(7)  |
| O(17)-Zn(1)-O(16)#3   | 89.95(7)   |
| O(14)#1-Zn(1)-O(16)#3 | 94.94(7)   |
| O(14)#2-Zn(1)-O(16)#3 | 87.69(6)   |
| O(17)-Zn(1)-N(11)#2   | 93.79(7)   |
| O(14)#1-Zn(1)-N(11)#2 | 98.72(6)   |

 Table S3. Bond lengths [Å] and angles [°] for compound 1.

| O(14)#2-Zn(1)-N(11)#2 | 77.41(6)   |
|-----------------------|------------|
| O(16)#3-Zn(1)-N(11)#2 | 164.22(7)  |
| C(12)-O(14)-Zn(1)#4   | 114.92(13) |
| C(12)-O(14)-Zn(1)#5   | 119.50(13) |
| Zn(1)#4-O(14)-Zn(1)#5 | 125.16(7)  |
| C(15)-O(16)-Zn(1)#6   | 148.75(17) |
| C(15)-O(17)-Zn(1)     | 123.03(15) |
| N(11)-C(2)-C(3)       | 123.9(2)   |
| N(11)-C(2)-C(12)      | 116.22(18) |
| C(3)-C(2)-C(12)       | 119.9(2)   |
| C(4)-C(3)-C(2)        | 118.6(2)   |
| C(4)-C(3)-H(3)        | 120.7      |
| C(2)-C(3)-H(3)        | 120.7      |
| C(3)-C(4)-C(5)        | 119.6(2)   |
| C(3)-C(4)-H(4)        | 120.2      |
| C(5)-C(4)-H(4)        | 120.2      |
| C(4)-C(5)-C(10)       | 118.4(2)   |
| C(4)-C(5)-C(6)        | 122.2(2)   |
| C(10)-C(5)-C(6)       | 119.4(2)   |
| C(7)-C(6)-C(5)        | 120.4(2)   |
| C(7)-C(6)-H(6)        | 119.8      |
| C(5)-C(6)-H(6)        | 119.8      |
| C(6)-C(7)-C(8)        | 119.5(2)   |
| C(6)-C(7)-C(15)       | 120.4(2)   |
| C(8)-C(7)-C(15)       | 120.2(2)   |
| C(9)-C(8)-C(7)        | 121.4(2)   |
| C(9)-C(8)-H(8)        | 119.3      |
| C(7)-C(8)-H(8)        | 119.3      |
| C(8)-C(9)-C(10)       | 120.4(2)   |
| C(8)-C(9)-H(9)        | 119.8      |
| C(10)-C(9)-H(9)       | 119.8      |
| N(11)-C(10)-C(9)      | 119.9(2)   |
| N(11)-C(10)-C(5)      | 121.27(19) |
| C(9)-C(10)-C(5)       | 118.9(2)   |
| C(2)-N(11)-C(10)      | 118.28(18) |
| C(2)-N(11)-Zn(1)#5    | 111.91(14) |
| C(10)-N(11)-Zn(1)#5   | 129.80(14) |
| O(13)-C(12)-O(14)     | 124.2(2)   |

| O(13)-C(12)-C(2)  | 120.9(2)   |
|-------------------|------------|
| O(14)-C(12)-C(2)  | 114.91(19) |
| O(16)-C(15)-O(17) | 126.7(2)   |
| O(16)-C(15)-C(7)  | 117.8(2)   |
| O(17)-C(15)-C(7)  | 115.5(2)   |

Symmetry transformations used to generate equivalent atoms:

| #1 x | ,y-1/2,-z+1 | #2 y+1/4,-x+ | 3/4,-z+2 | 3/4   | #3 y+3/4,-x+3/4,z-1/4 |    |                    |
|------|-------------|--------------|----------|-------|-----------------------|----|--------------------|
| #4   | x,y+1/2,-z- | +1           | #5 -у    | v+3/4 | ,x-1/4,-z+3/4         | #6 | -y+3/4,x-3/4,z+1/4 |

|                    | U <sup>11</sup> | U22   | U33   | U <sup>23</sup> | U13    | U12    |
|--------------------|-----------------|-------|-------|-----------------|--------|--------|
| $\overline{Zn(1)}$ | 29(1)           | 29(1) | 26(1) | 2(1)            | 0(1)   | -1(1)  |
| O(13)              | 72(1)           | 47(1) | 31(1) | -3(1)           | 10(1)  | -2(1)  |
| O(14)              | 40(1)           | 27(1) | 29(1) | -2(1)           | 5(1)   | -2(1)  |
| O(16)              | 88(1)           | 26(1) | 43(1) | -3(1)           | -11(1) | 2(1)   |
| O(17)              | 63(1)           | 35(1) | 37(1) | -9(1)           | -2(1)  | 0(1)   |
| C(2)               | 41(1)           | 32(1) | 32(1) | 0(1)            | 5(1)   | -4(1)  |
| C(3)               | 81(2)           | 41(1) | 31(1) | 2(1)            | 11(1)  | -10(1) |
| C(4)               | 89(2)           | 33(1) | 42(1) | 6(1)            | 8(1)   | -8(1)  |
| C(5)               | 57(2)           | 31(1) | 34(1) | 2(1)            | 2(1)   | -4(1)  |
| C(6)               | 67(2)           | 29(1) | 42(1) | 0(1)            | -3(1)  | -4(1)  |
| C(7)               | 46(1)           | 31(1) | 37(1) | -3(1)           | -2(1)  | 1(1)   |
| C(8)               | 67(2)           | 35(1) | 35(1) | -5(1)           | 11(1)  | -5(1)  |
| C(9)               | 63(2)           | 28(1) | 36(1) | 1(1)            | 10(1)  | -5(1)  |
| C(10)              | 38(1)           | 29(1) | 34(1) | 0(1)            | 2(1)   | -2(1)  |
| N(11)              | 37(1)           | 27(1) | 30(1) | 0(1)            | 3(1)   | -3(1)  |
| C(12)              | 35(1)           | 36(1) | 34(1) | -2(1)           | 5(1)   | 1(1)   |
| C(15)              | 43(1)           | 32(1) | 41(1) | -7(1)           | -3(1)  | -2(1)  |

**Table S4.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for compound 1. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup>U<sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

|      | Х    | у    | Z    | U(eq) |
|------|------|------|------|-------|
| H(3) | 6531 | 2816 | 8686 | 61    |
| H(4) | 6536 | 1834 | 7680 | 66    |
| H(6) | 6748 | 1260 | 5879 | 55    |
| H(8) | 7147 | 2390 | 3237 | 55    |
| H(9) | 7124 | 3342 | 4265 | 51    |

**Table S5.** Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for compound **1**.



**Figure S4.** TG curves of **1** and **1'** recorded in an argon atmosphere in the temperature range of 25-600 °C with a heating rate of 10 °C/min.



**Figure S5.** XRPD patterns of compound **1** in different forms: (a) activated, (b) after 5 cycles of fluorescence titration experiments with  $Fe^{3+}$  solution, (c) after BET analysis, (d) after treatment with methanol, (e) after treatment with acetic acid, (f) after treatment with water, (g) after treatment with NaOH solution (pH = 10), and (h) after treatment with 1(M) HCl.



Figure S6.  $N_2$  adsorption (filled circles) and desorption (empty circles) isotherms of thermally activated 1' measured at -196 °C.



Figure S7. Fluorescence excitation and emission spectra of H<sub>2</sub>QDA ligand in the solid state.



**Figure S8.** Fluorescence emission spectra of 1, 1' and H<sub>2</sub>QDA ligand in the solid state ( $\lambda_{ex} = 310 \text{ nm}$ ).



Figure S9. Fluorescence emission spectra of 1' in common organic solvents ( $\lambda_{ex} = 310$  nm).



Figure S10. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Cd^{2+}$  solution.



Figure S11. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Co^{2+}$  solution.



**Figure S12.** Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Cr^{3+}$  solution.



**Figure S13.** Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Cu^{2+}$  solution.



**Figure S14.** Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Fe^{2+}$  solution.



**Figure S15.** Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $K^+$  solution.



Figure S16. Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Mn^{2+}$  solution.



**Figure S17.** Change in the fluorescence intensity of **1'** upon incremental addition of 10 mM Na<sup>+</sup> solution.



**Figure S18.** Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Pb^{2+}$  solution.



**Figure S19.** Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Ni^{2+}$  solution.



**Figure S20.** Change in the fluorescence intensity of 1' upon incremental addition of 10 mM  $Zn^{2+}$  solution.



**Figure S21.** Change in the fluorescence intensity of 1' upon addition of 10 mM Cd<sup>2+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S22.** Change in the fluorescence intensity of 1' upon addition of 10 mM Co<sup>2+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S23.** Change in the fluorescence intensity of **1'** upon addition of 10 mM  $Cr^{3+}$  solution (400 µL) in presence of 10 mM Fe<sup>3+</sup> (400 µL) solution.



**Figure S24.** Change in the fluorescence intensity of **1'** upon addition of 10 mM Fe<sup>2+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S25.** Change in the fluorescence intensity of 1' upon addition of 10 mM Cu<sup>2+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S26.** Change in the fluorescence intensity of **1'** upon addition of 10 mM K<sup>+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S27.** Change in the fluorescence intensity of 1' upon addition of 10 mM  $Mn^{2+}$  solution (400 µL) in presence of 10 mM Fe<sup>3+</sup> (400 µL) solution.



**Figure S28.** Change in the fluorescence intensity of 1' upon addition of 10 mM Na<sup>+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S29.** Change in the fluorescence intensity of **1'** upon addition of 10 mM Ni<sup>2+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S30.** Change in the fluorescence intensity of 1' upon addition of 10 mM Pb<sup>2+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S31.** Change in the fluorescence intensity of 1' upon addition of 10 mM Zn<sup>2+</sup> solution (400  $\mu$ L) in presence of 10 mM Fe<sup>3+</sup> (400  $\mu$ L) solution.



**Figure S32.** Change of fluorescence quenching efficiencies upon gradual addition of 10 mM solution of various metal cations to a 3 mL well-dispersed suspension of 1' in methanol.



Figure S33. Change in the fluorescence intensity of  $H_2QDA$  ligand upon the addition of 400  $\mu$ L of 10 mM Fe<sup>3+</sup> solution.



**Figure S34.** Stern-Volmer plot for the quenching of **1'** at lower concentration of  $Fe^{3+}$  solution. Inset: non-linearity of the Stern-Volmer plot at higher concentration of  $Fe^{3+}$  solution.

| Sl. | MOF                                                                                                                                                   | $K_{\rm sv}({\rm M}^{-1})$ | Detection                     | Medium   | Ref. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|----------|------|
| No. |                                                                                                                                                       |                            | Limit                         | Used     |      |
| 1.  | [Zn(QDA)]·0.3DMF                                                                                                                                      | $1.12 \times 10^{6}$       | 2.30×10 <sup>-8</sup> M       | methanol | This |
|     |                                                                                                                                                       |                            |                               |          | work |
| 2.  | $[La(TPT)(DMSO)_2] \cdot H_2O$                                                                                                                        | 1.36×10 <sup>4</sup>       | -                             | ethanol  | 1    |
| 3.  | $[H(H_2O)_8][DyZn_4(imdc)_4(im)_4]$                                                                                                                   | 2.88×10 <sup>4</sup>       | -                             | DMSO     | 2    |
| 4.  | EuL <sub>3</sub>                                                                                                                                      | 4.1×10 <sup>3</sup>        | 10 <sup>-4</sup> M            | ethanol  | 3    |
| 5.  | $[Eu_2(MFDA)_2(HCOO)_2(H_2O)_6] \cdot H_2O$                                                                                                           | -                          | 3.3×10 <sup>-7</sup> M        | DMF      | 4    |
| 6.  | $[Cd(H_2L_a)_{0.5}(H_2L_b)_{0.5}(H_2O)]$                                                                                                              | -                          | 10 <sup>-5</sup> M            | water    | 5    |
| 7.  | $[(CH_3)_2NH_2] \cdot [Tb(bptc)] \cdot x$ solvents                                                                                                    | -                          | 72.76 ppm                     | ethanol  | 6    |
| 8.  | $[Ln_2(Ccbp)_3 \cdot 6H_2O] \cdot 3Cl^{-} \cdot 4H_2O$                                                                                                | 1.143×10 <sup>5</sup>      | -                             | ethanol  | 7    |
| 9.  | Eu <sup>3+</sup> @MIL-124                                                                                                                             | 3.87×10 <sup>4</sup>       | 0.28×10 <sup>-6</sup> M       | water    | 8    |
| 10. | MIL-53(Al)                                                                                                                                            | -                          | 0.9×10 <sup>-6</sup> M        | PBS      | 9    |
|     |                                                                                                                                                       |                            |                               | buffer   |      |
| 11. | $[Ln(Hpzbc)_2(NO_3)] \cdot H_2O$                                                                                                                      | -                          | 2.6×10 <sup>-5</sup> M        | ethanol  | 10   |
| 12. | $[Tb(BTB)(DMF)] \cdot 1.5DMF \cdot 2.5H_2O$                                                                                                           | -                          | 10 <sup>-5</sup> M            | ethanol  | 11   |
| 13. | $[Tb_4(OH)_4(DSOA)_2(H_2O)_8] \cdot (H_2O)_8$                                                                                                         | 3.5×10 <sup>4</sup>        | -                             | water    | 12   |
| 14. | Tb <sup>3+</sup> @Cd-MOF                                                                                                                              | 1.108×10 <sup>5</sup>      | 0.010 mM                      | DMF      | 13   |
| 15. | $[Zr_6O_4(OH)_4(2,7-CDC)_6]$                                                                                                                          | 5.5×10 <sup>3</sup>        | 9.10×10 <sup>-7</sup> M       | water    | 14   |
|     | $19H_2O \cdot 2DMF$                                                                                                                                   |                            |                               |          |      |
| 16. | $[Cd(p-CNPhHIDC)(4,4'-bipy)_{0.5}]$                                                                                                                   | $1.99 \times 10^{3}$       | $5 \times 10^{-3} \mathrm{M}$ | water    | 15   |
| 17. | [Zn( <i>p</i> -CNPhHIDC)(4,4'-bipy)]                                                                                                                  | $1.37 \times 10^{3}$       | $5 \times 10^{-3} \mathrm{M}$ | water    | 15   |
| 18. | $[Zr_6O_6(OH)_2(CF_3COO)_2(C_{11}H_5NO_4)_4($                                                                                                         | 2.25×10 <sup>7</sup>       | 1.7×10-9 M                    | water    | 16   |
|     | H <sub>2</sub> O) <sub>4</sub> ]                                                                                                                      |                            |                               |          |      |
| 19. | [Zr <sub>6</sub> O <sub>6</sub> (OH) <sub>2</sub> (CF <sub>3</sub> COO) <sub>2</sub> (C <sub>11</sub> H <sub>5</sub> NO <sub>4</sub> ) <sub>4</sub> ( | 1.91×10 <sup>7</sup>       | 2.7×10-9 M                    | HEPES    | 16   |
|     | H <sub>2</sub> O) <sub>4</sub> ]                                                                                                                      |                            |                               | buffer   |      |
| 20. | $[Al(OH)(BDC-N_3)] \cdot 1.2H_2O \cdot 0.3DMF$                                                                                                        | 6.13×10 <sup>3</sup>       | 3×10 <sup>-8</sup> M          | water    | 17   |

**Table S6.** A comparison of the Stern-Volmer constant ( $K_{sv}$ ), detection limit and medium used for the sensing of Fe<sup>3+</sup> ion for the MOFs reported till date.



Figure S35. Lifetime decay profile of 1' before and after addition of 50  $\mu$ L of 10 mM Fe<sup>3+</sup> solution.

**Table S7.** Average excited-state lifetime ( $\langle \tau \rangle$ ) values of **1'** before and after the addition of 50  $\mu$ L of 10 mM Fe<sup>3+</sup> solution ( $\lambda_{ex} = 310$  nm).

| Volume of<br>10 mM Fe <sup>3+</sup> | B <sub>1</sub> | B <sub>2</sub> | a <sub>1</sub> | a <sub>2</sub> | $\tau_1$ (ns) | $\tau_2$ (ns) | <\cdash >*<br>(ns) | $\chi^2$ |
|-------------------------------------|----------------|----------------|----------------|----------------|---------------|---------------|--------------------|----------|
| solution<br>added (µL)              |                |                |                |                |               |               |                    |          |
| 0                                   | 0.038          | 0.001          | 0.812          | 0.188          | 0.533         | 3.092         | 1.014              | 1.01     |
| 50                                  | 0.038          | 0.002          | 0.793          | 0.207          | 0.564         | 3.040         | 1.076              | 1.08     |

 $* < \!\! \tau \!\! > \, = a_1 \tau_1 + a_2 \tau_2$ 



Figure S36. EDX spectrum of 1' after treatment with 10 mM Fe<sup>3+</sup> solution.



Figure S37. Quenching of the fluorescence intensity of 1' by incremental addition of 10 mM  $MV^{2+}$  solution to a 3 mL stable suspension of 1' in methanol.



**Figure S38.** UV-Vis absorption spectra of the different metal ions  $(10 \times 10^{-3} \text{ M})$  solution in methanol. The emission spectra of 1' (black color) (3 mg) dispersed in methanol (3 mL).

## REFERENCES

- 1. C. Zhang, Y. Yan, Q. Pan, L. Sun, H. He, Y. Liu, Z. Liang and J. Li, *Dalton Trans.*, 2015, **44**, 13340-13346.
- 2. Y.-F. Li, D. Wang, Z. Liao, Y. Kang, W.-H. Ding, X.-J. Zheng and L.-P. Jin, J. *Mater. Chem. C*, 2016, 4, 4211-4217.
- 3. M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing and Z. Sun, *ACS Appl. Mater. Interfaces*, 2013, **5**, 1078-1083.
- 4. X.-H. Zhou, L. Li, H.-H. Li, A. Li, T. Yanga and W. Huang, *Dalton Trans.*, 2013, **42**, 12403–12409.
- 5. Y. Wu, G.-P. Yang, Y. Zhang, N. Shi, J. Han and Y.-Y. Wang, *RSC Adv.*, 2015, 5, 90772-90777.
- X.-L. Zhao, D. Tian, Q. Gao, H.-W. Sun, J. Xu and X.-H. Bu, *Dalton Trans.*, 2016, 45, 1040-1046.
- 7. K.-M. Wang, L. Du, Y.-L. Ma, J.-S. Zhao, Q. Wang, T. Yan and Q.-H. Zhao, *CrystEngComm.*, 2016, **18**, 2690-2700.
- 8. X.-Y. Xu and B. Yan, ACS Appl. Mater. Interfaces, 2015, 7, 721-729.
- 9. C.-X. Yang, H.-B. Ren and X.-P. Yan, Anal. Chem., 2013, 85, 7441–7446.
- 10. G.-P. Li, G. Liu, Y.-Z. Li, L. Hou, Y.-Y. Wang and Z. Zhu, *Inorg. Chem.*, 2016, 55, 3952–3959.
- 11. H. Xu, H.-C. Hu, C.-S. Cao and B. Zhao, *Inorg. Chem.*, 2015, 54, 4585–4587.
- 12. X.-Y. Dong, R. Wang, J.-Z. Wang, S.-Q. Wang and T. C. W. Mak, *J. Mater. Chem. A*, 2015, **3**, 641–647.
- 13. H. Weng and B. Yan, Sens. Actuator B-Chem., 2016, 228, 702–708.
- 14. A. Das and S. Biswas, Sens. Actuator B-Chem., 2017, 250, 121-131.

- 15. J. Zhang, L. Zhao, Y. Liu, M. Li, G. Li and X. Meng, New J. Chem., 2018, 42, 6839-6847.
- 16.
- C. Gogoi and S. Biswas, *Dalton Trans.*, 2018, *doi: 10.1039/C1038DT03058H*. A. Das, S. Banesh, V. Trivedi and S. Biswas, *Dalton Trans.*, 2018, **47**, 2690-2700. 17.