Supplementary Information

Evaluation of ferrocenyl phosphines as potent antimalarials targeting the Digestive vacuole Function of Plasmodium falciparum

Gowtham Subramanian^{#1}, Abdul Sadeer^{#2}, Kalyani Mukherjee¹, Tadayuki Kojima², Pallavi Tripathi¹, Renugah Naidu¹, Shan Wen Tay², Jia Hao Pang², Sumod A. Pullarkat² * and Rajesh Chandramohanadas ^{1*}

Table of Contents

I.	Characterization data of Ferrocenyl-phosphine derivatives O1-7, DS1-4 & S1-8, G1-3	S2
11.	¹ H, ³¹ P{ ¹ H}, ¹⁹ F{ ¹ H} & ¹³ C Spectra of O1-7, DS1-4 & S1-8, G1-3.	S7

IIIXray Diffraction Crystallography Report for G3 (CCDC 1874977)S37

I. Characterization data of Ferrocenyl-phosphine derivatives

O1: HP procedure of the respective enone produced orange-yellow precipitates. The reaction solvent was removed *via* cannula and solids washed with cold hexanes. Subsequently, the solids were dissolved in 5 mL non-degassed dichloromethane (DCM) and left to stir at ambient atmosphere for 24 h. Thereafter, the solvent was removed under reduced pressure and crude purified on SiO₂; silica gel column chromatography (DCM/E.A) to give FD1 as dull orange powder; yield: 98%. m.p. 191°C(decomp.); ¹H NMR (CDCl₃, 400 MHz): δ 2.39 (s, 3H, -*Me*), 3.54 (s, 1H, Cp), 3.61 - 3.85 (m, 2H, - *CH2*), 3.89 (s, 1H, Cp), 3.92 (s, 5H, Cp), 4.11 (s, 1H, Cp), 4.23 (s, 1H, Cp), 4.42 (m, 1H, - CHPPh₂), 7.22 - 7.26 (m, 2H, - Ar), 7.28 - 7.34 (m, 2H, - Ar), 7.35 - 7.44 (m, 4H, - Ar), 7.47 - 7.55 (m, 2H, - Ar), 7.83 - 7.90 (m, 4H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 34.0 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 21.8 (-*Me*), 34.2 (d, - CHPPh₂, ¹*J_{CP}* = 67.0 Hz), 38.7(-CH₂), 67.2 (*m*-Cp), 67.7 (d, *o*-Cp, ³*J_{CP}* = 1.6 Hz), 68.4 (*m*-Cp), 68.6 (5Cp), 70.3 (d, *o*-Cp, ³*J_{CP}* = 2.0 Hz), 85.7 (*i*-Cp), 128.1 (d, 2 -*m* Ar, ³*J_{CP}* = 11.5 Hz), 128.4(2 *m*-Ar), 128.6 (d, 2 *m*-Ar, ³*J_{CP}* = 11.2 Hz), 129.5 (2 *o*-Ar), 131.5 (d, 2 *o*-Ar, ²*J_{CP}* = 8.7 Hz), 131.5 (*p*-Ar), 131.6 (d, 2 *o*-Ar, ²*J_{CP}* = 8.7 Hz), 131.6 (d, *i*-Ar, ¹*J_{CP}* = 95.0 Hz), 131.7 (d, *i*-Ar, ¹*J_{CP}* = 96.0 Hz), 131.9 (d, *p*-Ar, ⁴*J_{CP}* = 3.1 Hz), 134.1 (*p*-Ar), 144.4 (*i*-Ar), 196.9 (d, *C*=O, ³*J_{CP}* = 7.2 Hz). HRMS m/z (+ESI) (M + H)⁺ calcd for C32H3002P1Fe1: 533.1333, found: 533.1334.

O2: Similar procedure to O1; dull-orange powder; yield: 90%. m.p. 180°C(decomp.); ¹H NMR (CDCl₃, 400 MHz): δ 3.50 – 3.58 (m, 1H, - *CH*), 3.62 (m, 1H, Cp), 3.73 - 3.86 (m, 1H, - *CH*), 3.90 (s, 1H, Cp), 3.98 (m, 1H, Cp), 4.06 – 4.12 (m, 6H, Cp), 4.52 (m, 1H, - *CHPPh*₂), 7.31 - 7.39 (m, 3H, - Ar), 7.43 – 7.58 (m, 6H, - Ar), 7.75 – 7.84 (m, 2H, - Ar), 7.86 – 7.94 (m, 2H, - Ar). ¹⁹F¹H} NMR (CDCl₃, 282.2 MHz): δ -62.99 (s), -58.41 (s). ³¹P¹H} NMR (CDCl₃, 161.6 MHz): δ 32.5 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 35.7 (d, - *CHPPh*₂), *1_{J_{CP}* = 64.6 Hz), 43.9(-*C*H₂), 67.7 (*m*-Cp), 67.9 (*o*-Cp), 68.4 (*m*-Cp), 68.8 (5Cp), 69.9 (d, *o*-Cp, ³*J_{CP}* = 1.7 Hz), 85.1 (*i*-Cp), 122.9 (q, *C*F₃, ¹*J_{CF}* = 273.2 Hz), 123.1 (q, *C*F₃, ¹*J_{CF}* = 273.9 Hz), 125.2 (m, p-Ar), 127.0 (q, *m*-Ar, ³*J_{CF}* = 3.9 Hz), 127.3 (q, *m*-Ar, ³*J_{CF}* = 5.1 Hz), 128.1 (d, 2 -*m* Ar, ³*J_{CP}* = 11.5 Hz), 128.8 (d, 2 -*m* Ar, ³*J_{CP}* = 11.3 Hz), 129.7 (d, *i*-Ar, ¹*J_{CP}* = 97.7 Hz), 130.4 (d, *i*-Ar, ¹*J_{CP}* = 100.3 Hz), 131.5 (d, 2 *o*-Ar, ²*J_{CP}* = 9.0 Hz), 132.0 (m, *p*-Ar), 132.3 (d, 2 *o*-Ar, ²*J_{CP}* = 8.8 Hz), 132.4 (d, *p*-Ar, ⁴*J_{CP}* = 2.2 Hz), 134.3 (q, 2 *m*-Ar, ²*J_{CF}* = 33.0 Hz), 141.2 (*i*-Ar), 200.1 (s, *C*=O). HRMS m/z (+ESI) (M + H)⁺ calcd for C33H26O2F6P1Fe1: 655.0924, found: 655.0927.}

O3: Similar procedure to O1; dull-orange powder; yield: 90%. ¹H NMR (CDCl₃, 300 MHz): δ 3.54 (s, 1H, Cp), 3.57 - 3.62 (dd, 2H, - *CH2*), 3.90 (s, 1H, Cp), 3.97 (s, 4H, Cp), 4.11 (s, 1H, Cp), 4.20 (s, 1H, Cp), 4.29 - 4.33 (m, 1H, - *CH*PPh₂), 6.50 - 6.52 (m, 1H, - furyl *CH*), 7.20 (d, 1H, - furyl *CH*), 7.29 - 7.46 (m, 5H, - Ar), 7.47 - 7.62 (m, 3H, - Ar), 7.79 - 7.92 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 33.9 (s).

O4: Similar procedure to O1; dull-orange powder; yield: 98%. m.p. 198°C(decomp.); ¹H NMR (CDCl₃, 400 MHz): δ 3.52 (s, 1H, Cp), 3.62 - 3.71 (m, 2H, - CH2), 3.90 (s, 1H, Cp), 3.97 (s, 5H, Cp), 4.12 (s, 1H, Cp), 4.22 (s, 1H, Cp), 4.30 - 4.37 (m, 1H, - CHPPh₂), 7.07 - 7.14 (m, 1H, - thienyl CH), 7.28 - 7.46 (m, 6H, - Ar), 7.46 - 7.56 (m, 2H, - Ar), 7.62 (dd, 1H, ³_{J_{HH}} = 4.9 Hz, ⁴_{J_{HH}} = 0.7 Hz, - thienyl CH), 7.76 (dd, 1H, ³_{J_{HH}} = 3.7 Hz, ⁴_{J_{HH}} = 0.7 Hz, - thienyl CH), 7.76 (dd, 1H, ³_{J_{HH}} = 3.7 Hz, ⁴_{J_{HH}} = 0.7 Hz, - thienyl CH), 7.82 - 7.91 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 33.5 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 34.9 (d, - CHPPh₂, ¹_{J_{CP}} = 67.3 Hz), 39.3(-CH₂), 67.3 (m-Cp), 67.6 (d, o-Cp, ³_{J_{CP}} = 2.3 Hz), 68.4 (m-Cp), 68.7 (5Cp), 70.2 (d, o-Cp, ³_{J_{CP}} = 2.1 Hz), 85.4 (*i*-Cp), 128.1 (d, 2 -*m* Ar, ³_{J_{CP}} = 11.7 Hz), 128.3 (thienyl Ar), 128.7 (d, 2 *m*-Ar, ³_{J_{CP}} = 11.4 Hz), 131.5 (d, 2 *i*-Ar, ¹_{J_{CP}} = 96.9 Hz), 131.5 (d, 2 *o*-Ar, ²_{J_{CP}} = 8.9 Hz), 131.6 (d, *p*-Ar, ⁴_{J_{CP}} = 3.1 Hz), 131.7 (d, 2 *o*-Ar, ²_{J_{CP}} = 9.1 Hz), 131.9 (d, *p*-Ar, ⁴_{J_{CP}} = 2.6 Hz), 132.4 (thienyl Ar), 134.2 (thienyl Ar), 143.7 (thienyl Ar), 190.4 (d, *C*=O, ³_{J_{CP}} = 7.3 Hz).

O6: Similar procedure to O1; dull-orange oil; yield: 60%; ¹H NMR (CDCl₃, 400 MHz): δ 2.03 (s, 3H, - CH₃), 3.00 – 3.40 (m, 2H, -CH2), 3.66 – 3.74 (m, 2H, -CH2), 3.96 (s, 5H, Cp), 4.12 – 4.15 (m, 1H, Cp), 4.32 – 4.35 (m, 1H, Cp), 4.78 – 4.84 (m, 1H, - CH₂), 3.57 (s, 1H, -CpH), 3.92 (s, 1H, -CpH), 4.00 – 4.30 (m, 8H, -CpH & - CHPPh₂), 7.28 – 7.39 (m, 2H, - Ar), 7.39 – 7.54 (m, 6H, - Ar), 7.75 – 7.90 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 33.1 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 1.0 (s, -Me), 30.1 (s, - CHPPh₂), 43.4 (s, -CH₂), 67.3 (*m*-Cp), 67.6 (*o*-Cp), 68.3 (*m*-Cp), 68.5 (5Cp), 69.9 (*o*-Cp), 85.4 (*i*-Cp), 125.2(m, p-Ar), 128.1 (m, 2 -*m* Ar), 128.6 (m, 2 -*m* Ar), 128.8, 129.0, 130.9, 129.7, 130.9, 131.6, 131.7, 131.8, 132.3, 141.2 (*i*-Ar), 205.7 (s, *C*=O).

07: HP procedure gave a light purple solution. To the reaction vessel was added non-degassed DCM and left to stir under ambient atmospheric conditions for 24 h. The solvent was then removed under reduced

pressure and crude purified on SiO₂; silica gel column chromatography (Hexane/E.A); orange-yellow; yield: 60%. m.p. 149°C; ¹H NMR (CDCl₃, 400 MHz): δ 1.18 (m, 6H, -*Me*), 1.29 (d, 6H, -*Me*), 3.73 (s, 1H, Cp), 3.97 – 4.00 (m, 2H, Cp), 4.05 (s, 5H, Cp), 4.07 (s, 1H, Cp), 4.32 (dd, 1H, ³J_{HH} = 3.7 Hz, ²J_{HP} = 20.0 Hz, - CHPPh2), 4.46 (dd, 1H, ³J_{HH} = 3.6 Hz, ³J_{HP} = 14.4 Hz, - CH), 4.95 (sep, 1H, ³J_{HH} = 6.3 Hz, - CH), 5.08 (sep, 1H, ³J_{HH} = 5.9 Hz, - CH), 7.27 - 7.35 (m, 2H, - Ar), 7.37 - 7.55 (m, 6H, - Ar), 7.71 - 7.81 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 30.5 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 21.5 (-*Me*), 21.7 (-*Me*), 21.8 (-*Me*), 21.8 (-*Me*), 41.2 (d, - CHPPh₂, ¹J_{CP} = 67.1 Hz), 56.0 (d, - CH), 67.7 (-CH), 68.3 (-CH), 68.6 (d, o-Cp, ³J_{CP} = 3.0 Hz), 67.0 (5 Cp), 69.3 (m-Cp), 70.0 (m-Cp), 69.3 (o-Cp), 85.0 (*i*-Cp), 127.7 (d, 2 -m Ar, ³J_{CP} = 11.7 Hz), 128.3 (d, 2 m-Ar, ³J_{CP} = 11.4 Hz), 131.2 (d, *p*-Ar, ⁴J_{CP} = 2.6 Hz), 131.5 (d, *p*-Ar, ⁴J_{CP} = 2.5 Hz), 131.6 (d, *i*-Ar, ¹J_{CP} = 99.7 Hz), 131.9 (d, 2 o-Ar, ²J_{CP} = 9.0 Hz), 132.7 (d, 2 o-Ar, ²J_{CP} = 8.6 Hz), 134.7 (d, *i*-Ar, ¹J_{CP} = 95.9 Hz), 167.7 (d, C=O, ³J_{CP} = 4.4 Hz), 168.2 (d, C=O, ³J_{CP} = 4.4 Hz). HRMS m/z (+ESI) (M + H)⁺ calcd for C32H36O5P1Fe1: 587.1650, found: 587.1652.

S1: HP procedure of the respective enone produced orange-yellow precipitates. The reaction solvent was removed *via* cannula and solids washed with cold hexanes. Thereafter, 1.2 equivalent of Sulphur was added and solids dissolved in 5 mL degassed DCM. The solution was left for 24 h. Thereafter, the solvent was removed under reduced pressure and crude purified on SiO₂; silica gel column chromatography (Hexane/E.A); orange powder; yield: 90%. m.p. 190°C(decomp.); ¹H NMR (CDCl₃, 400 MHz): δ 2.40 (s, 3H, -*Me*), 3.38 (s, 1H, Cp), 3.61 - 3.80 (m, 2H, - *CH2*), 3.85 (s, 1H, Cp), 3.92 (s, 5H, Cp), 4.12 (s, 1H, Cp), 4.33 (s, 1H, Cp), 4.82 (m, 1H, - *CHPPh*₂), 7.22 - 7.24 (m, 2H, - Ar), 7.24 - 7.26 (m, 2H, - Ar), 7.28 - 7.43 (m, 6H, -Ar), 7.59 - 7.67 (m, 2H, - Ar), 7.87 - 7.92 (m, 2H, - Ar), 8.00 - 8.10 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 53.5 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 21.7 (-*Me*), 35.9 (d, - *CHPPh*₂), 70.2 (d, *o*-Cp, ³*J*_{CP} = 1.9 Hz), 85.3 (*i*-Cp), 127.9 (d, 2 - *m* Ar, ³*J*_{CP} = 12.1 Hz), 128.3(2 *m*-Ar), 128.5 (d, 2 *m*-Ar, ³*J*_{CP} = 11.5 Hz), 129.4 (2 *o*-Ar), 131.0 (d, *i*-Ar, ¹*J*_{CP} = 74.5 Hz), 131.2 (d, *i*-Ar, ¹*J*_{CP} = 79.4 Hz), 131.3 (d, *p*-Ar, ⁴*J*_{CP} = 2.9 Hz), 131.6 (d, *p*-Ar, ⁴*J*_{CP} = 2.9 Hz), 132.0(d, 2 *o*-Ar, ²*J*_{CP} = 9.4 Hz), 132.2 (d, 2 *o*-Ar, ²*J*_{CP} = 9.6 Hz), 134.0 (*p*-Ar), 144.4 (*i*-Ar), 196.8 (d, *C*=O, ³*J*_{CP} = 7.9 Hz). HRMS m/z (+ESI) (M + H)⁺ calcd for C32H3001P1S1Fe1: 549.1104, found: 533.1107.

S2: Similar procedure to S1; orange powder; yield: 90%. ¹H NMR (CDCl₃, 300 MHz): δ 3.45 – 3.49 (m, 1H, Cp), 3.86 - 3.98 (m, 2H, - CH2), 3.99 – 4.09 (m, 2H, Cp), 4.11(s, 5H, Cp), 4.79 – 4.87 (m, 1H, - CHPPh₂), 7.03 (s, 1H, - Ar), 7.30 – 7.55 (m, 6H, - Ar), 7.66 – 7.85 (m, 4H, -Ar), 8.08 – 8.19 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 53.4 (s). ¹⁹F{¹H} NMR (CDCl₃, 282.2 MHz): δ -62.96 (s), -58.29 (s). ³¹P{¹H} NMR (CDCl₃, 121.2 MHz): δ 53.4 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 36.7 (d, - CHPPh₂, ¹J_{CP} = 49.5 Hz), 44.8 (d, - CH₂, ²J_{CP} = 4.1 Hz), 67.5 (m-Cp), 68.3 (o-Cp), 68.4 (m-Cp), 68.7 (5Cp), 69.9 (o-Cp), 85.3 (*i*-Cp), 122.7 (q, CF₃, ¹J_{CF} = 273.4 Hz), 122.9 (q, CF₃, ¹J_{CF} = 273.9 Hz), 124.7 (m, p-Ar), 127.1 (q, m-Ar, ³J_{CF} = 3.47 Hz), 127.3 (q, m-Ar, ³J_{CF} = 4.9 Hz), 128.0 (d, 2 -m Ar, ³J_{CP} = 12.0 Hz), 128.6 (d, 2 -m Ar, ³J_{CP} = 11.5 Hz), 129.8 (d, *i*-Ar, ¹J_{CP} = 79.6 Hz), 130.1 (q, m-Ar, ²J_{CF} = 33.4 Hz), 130.4 (d, *i*-Ar, ¹J_{CP} = 74.4 Hz), 131.6 (d, *p*-Ar, ⁴J_{CP} = 2.7 Hz), 132.1 (d, *p*-Ar, ⁴J_{CP} = 2.6 Hz), 132.6 (d, 2 o-Ar, ²J_{CP} = 9.5 Hz), 134.0 (q, m-Ar, ²J_{CF} = 33.6 Hz), 140.7 (*i*-Ar), 200.1 (d, C=O, ³J_{CP} = 2.7 Hz).

S3: Similar procedure to S1; orange powder; yield: 90%. ¹H NMR (CDCl₃, 400 MHz): δ 3.34 – 3.37 (m, 1H, Cp), 3.58 (dd, 2H, - CH2, ³J_{CP} = 4.98 Hz, ²J_{HH} = 1.98 Hz), 3.62 (d, 1H, -CH2, ³J_{CP} = 5.00 Hz), 3.84 - 3.88 (m, 1H, Cp), 3.96 (s, 5H, Cp), 4.12 – 4.15 (m, 1H, Cp), 4.29 - 4.32 (m, 1H, Cp), 4.66 – 4.73 (m, 1H, - CHPPh₂), 6.51 (dd, - furyl CH, ²J_{HH} = 1.52 Hz, ²J_{HH} = 3.52 Hz), 7.23 (d, - furyl CH, ²J_{HH} = 3.60 Hz), 7.28 - 7.35 (m, 2H, - Ar), 7.36 – 7.45 (m, 4H, - Ar), 7.58 (s, 1H, - thienyl CH), 7.61 – 7.69 (m, 2H, -Ar), 8.00 – 8.09 (m, 2H, -Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 52.8 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 36.3 (d, - CHPPh₂, ¹J_{CP} = 51.4 Hz), 39.3 (d, -CH₂, ²J_{CP} = 4.6 Hz), 67.3 (m-Cp), 68.3 (m-Cp, o-Cp), 68.8 (5Cp), 70.1 (d, o-Cp, ³J_{CP} = 1.6 Hz), 85.2 (*i*-Cp), 112.6 (furyl Ar), 118.1 (furyl Ar), 128.1 (d, 2 -m Ar, ³J_{CP} = 11.8 Hz), 128.6 (d, 2 -m Ar, ³J_{CP} = 11.6 Hz), 131.0 (d, *i*-Ar, ¹J_{CP} = 74.5 Hz), 131.1 (d, *i*-Ar, ¹J_{CP} = 79.2 Hz), 131.5 (d, 2 p-Ar, ²J_{CP} = 2.8 Hz, overlap with i-Ar doublet), 131.8 (d, *p*-Ar, ⁴J_{CP} = 2.8 Hz), 132.2 (d, o-Ar, ²J_{CP} = 9.5 Hz), 132.4 (d, o-Ar, ²J_{CP} = 9.8 Hz), 146.9 (furyl Ar), 152.4 (furyl Ar), 186.6 (d, C=O, ³J_{CP} = 7.9 Hz).

S4: Similar procedure to S1; orange powder; yield: 90%. ¹H NMR (CDCl₃, 400 MHz): δ 3.35 (s, 1H, Cp), 3.58 - 3.76 (m, 2H, - CH2), 3.87 (s, 1H, Cp), 3.97 (s, 5H, Cp), 4.14 (s, 1H, Cp), 4.31 (s, 1H, Cp), 4.68 - 4.76 (m, 1H, - CHPPh₂), 7.08 - 7.13 (m, 1H, - thienyl CH), 7.28 - 7.45 (m, 6H, - Ar), 7.60 - 7.69 (m, 3H, - 2Ar & - thienyl CH), 7.80 (m, 1H, - thienyl CH), 8.00 - 8.10 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 53.7 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 36.7 (d, - CHPPh₂, ¹J_{CP} = 51.3 Hz), 40.1 (d, - CH2, ²J_{CP} = 4.1 Hz), 67.2 (m-Cp), 68.1 (d, o-Cp, ³J_{CP} = 1.4 Hz), 68.2 (m-Cp), 68.7 (5Cp), 70.1 (d, o-Cp, ³J_{CP} = 1.7 Hz), 85.1 (*i*-Cp), 128.0 (d, 2 -m Ar, ³J_{CP} = 12.1 Hz), 128.3 (thienyl Ar), 128.5 (d, 2 m-Ar, ³J_{CP} = 11.5 Hz), 130.8 (d, 2 *i*-Ar, ¹J_{CP} = 74.4 Hz), 131.5 (d, 2 *i*-Ar, ¹J_{CP} = 80.0 Hz), 131.4 (d, *p*-Ar, ⁴J_{CP} = 3.2 Hz), 131.7 (d, *p*-Ar, ⁴J_{CP} = 2.8 Hz), 131.2 (d, 2 o-Ar, ²J_{CP} = 8.9 Hz), 131.3 (d, 2 o-Ar, ²J_{CP} = 10.0 Hz), 132.6 (thienyl Ar), 134.4 (thienyl Ar), 143.7 (thienyl Ar), 190.4 (d, *C*=Q, ³J_{CP} = 7.8 Hz).

S5: Similar procedure to S1; orange powder; yield: 90%. ¹H NMR (CDCl₃, 400 MHz): δ 3.39 – 3.42 (m, 1H, Cp), 3.70 - 3.81 (m, 2H, - CH2), 3.87 – 3.90 (m, 1H, Cp), 3.98 (s, 5H, Cp), 4.14 -4.17 (m, 1H, Cp), 4.33 – 4.36 (m, 1H, Cp), 4.71 – 4.78 (m, 1H, - CHPPh₂), 7.28 – 7.38 (m, 6H, - Ar), 7.39 – 7.45 (m, 1H, - Ar), 7.46 – 7.52 (m, 1H, - Ar), 7.56 – 7.62 (m, 2H, - Ar), 7.63 – 7.72 (m, 3H, - 2Ar & - thienyl CH), 8.00 – 8.09 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 52.9 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 36.3 (d, - CHPPh₂, $^{1}J_{CP}$ = 51.0 Hz), 39.3 (d, $^{-}CH_{2}$, $^{2}J_{CP}$ = 4.4 Hz), 69.2 (m-Cp), 70.1 (m-Cp, o-Cp), 71.0(5Cp), 72.1 (o-Cp), 87.1 (*i*-Cp), 112.6 (furyl Ar), 113.9 (furyl Ar), 123.5 (Ar), 124.1 (Ar), 126.9 (Ar), 128.2 (d, 2 -m Ar, $^{3}J_{CP}$ = 12.0 Hz), 128.6 (d, 2 -m Ar, $^{3}J_{CP}$ = 11.3 Hz), 128.7 (Ar), 130.9 (d, *i*-Ar, $^{1}J_{CP}$ = 74.5 Hz), 131.0 (d, *i*-Ar, $^{1}J_{CP}$ = 79.9 Hz), 131.6 (d, p-Ar, $^{2}J_{CP}$ = 1.5 Hz), 131.7 (d, p-Ar, $^{2}J_{CP}$ = 1.6 Hz), 132.1 (d, o-Ar, $^{2}J_{CP}$ = 9.3 Hz), 132.5 (d, o-Ar, $^{2}J_{CP}$ = 9.7 Hz), 152.0 (furyl Ar), 155.8 (furyl Ar), 188.1 (d, *C*=O, $^{3}J_{CP}$ = 7.2 Hz).

S7: HP procedure gave a light purple solution. 1.2 equivalent of Sulphur was added to the crude and washed with degassed DCM. Thereafter, the solution was left to stir for 24 h. The solvent was then removed under reduced pressure and crude purified on SiO₂; silica gel column chromatography (Hexane/E.A); orange powder; yield: 60%. m.p. 145°C; ¹H NMR (CDCl₃, 400 MHz): δ 1.11 (d, 3H, ³J_{HH} = 6.2 Hz, *-Me*), 1.20 (d, 3H, ³J_{HH} = 6.3 Hz, *-Me*), 1.27 (d, 3H, ³J_{HH} = 6.2 Hz, *-Me*), 1.31 (d, 3H, ³J_{HH} = 6.3 Hz, *-Me*), 3.42 (s, 1H, Cp), 3.90 (s, 1H, Cp), 4.04 (s, 5H, Cp), 4.11 (s, 1H, Cp), 4.19 (s, 1H, Cp), 4.50 (dd, 1H, ³J_{HH} = 3.6 Hz, ²J_{HP} = 18.8 Hz, *- CH*PPh₂), 4.79 (dd, 1H, ³J_{HH} = 3.6 Hz, ³J_{HP} = 12.8 Hz, *- CH*), 4.87 (sep, 1H, ³J_{HH} = 6.3 Hz, *- CH*), 5.10 (sep, 1H, ³J_{HH} = 6.3 Hz, *- CH*), 7.27 *-* 7.32 (m, 2H, *-* Ar), 7.35 *-* 7.49 (m, 4H, *-* Ar), 7.55 *-* 7.64 (m, 2H, *-* Ar), 7.88 *-* 7.97 (m, 2H, *-* Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 47.9 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 21.5 (*-Me*), 21.7 (2 *-Me*), 21.8 (*-Me*), 42.3 (d, *- CH*PPh₂, ¹J_{CP} = 50.0 Hz), 56.4 (d, *- CH*, ²J_{CP} = 2.2 Hz), 67.3 (-CH), 67.4 (-CH), 67.0 (o-Cp & 5 Cp), 69.5 (m-Cp), 70.1 (m-Cp), 70.7 (d, o-Cp, ³J_{CP} = 1.7 Hz), 86.2 (*i*-Cp), 127.6 (d, 2 *-m* Ar, ³J_{CP} = 12.0 Hz), 128.3 (d, 2 *m*-Ar, ³J_{CP} = 12.0 Hz), 131.0 (d, *p*-Ar, ⁴J_{CP} = 2.9 Hz), 131.1 (d, *i*-Ar, ¹J_{CP} = 80.9 Hz), 132.0 (d, 2 *o*-Ar, ²J_{CP} = 9.8 Hz), 133.2 (d, 2 *o*-Ar, ²J_{CP} = 9.5 Hz), 134.6 (d, *i*-Ar, ¹J_{CP} = 78.5 Hz), 167.1 (d, *C*=O, ³J_{CP} = 5.6 Hz), 168.5 (d, *C*=O, ³J_{CP} = 4.9 Hz). HRMS m/z (+ESI) (M + H)⁺ calcd for C32H3604P1S1Fe1: 603.1421, found: 603.1423.

S8: Similar procedure to S7; orange powder; yield: 80%. ¹H NMR (CDCl₃, 300 MHz): δ 3.36 – 3.42 (m, 1H, Cp), 3.45 (s, 3H, - CH3), 3.81 (s, 3H, -CH3), 3.91 – 3.96 (m, 1H, Cp), 4.06 (s, 5H, Cp), 4.09 – 4.15 (m, 1H, Cp), 4.64 (dd, 1H, - CHPPh₂, ${}^{2}J_{CP}$ = 19.8 Hz, ${}^{3}J_{HH}$ = 3.54 Hz), 4.79 (dd, 1h, -CH<, ${}^{2}J_{CP}$ = 13.5 Hz, ${}^{3}J_{HH}$ = 3.5 Hz), 7.27 – 7.34 (m, 2H, - Ar), 7.35 – 7.51 (m, 4H), 7.52 – 7.63 (m, 2H, Ar), 7.81 – 7.95 (m, 2H, Ar). ${}^{31}P{}^{1}H$ NMR (CDCl₃, 161.6 MHz): δ 47.3 (s). ${}^{13}C$ NMR (CDCl₃, 100 MHz): δ 43.6 (d, - CHPPh₂, ${}^{1}J_{CP}$ = 49.0 Hz), 52.4 (s, - OMe), 53.2 (s, -OMe), 55.4 (s, -CH), 68.4 (s, o-Cp), 68.4 (s, m-Cp), 68.5 (s, 5 Cp), 70.0 (m-Cp), 70.5 (s, o-Cp), 85.6 (*i*-Cp), 127.6 (d, 2 -m Ar, ${}^{3}J_{CP}$ = 12.0 Hz), 128.3 (d, 2 m-Ar, ${}^{3}J_{CP}$ = 12.0 Hz), 131.1 (d, o-Ar, ${}^{3}J_{CP}$ = 8.0 Hz), 131.7 (d, o-Ar, ${}^{3}J_{CP}$ = 10 Hz), 133.2 (d, o-Ar, ${}^{3}J_{CP}$ = 10 Hz), 134.7 (s, Ar), 167.9 (s, *C*=O), 169.1 (s, *C*=O).

G1: HP procedure of the respective enone produced orange-yellow precipitates. The reaction solvent was removed *via* cannula and solids washed with cold hexanes. Thereafter, 1 equivalent of ClAu.SMe₂ was added and solids dissolved in 5 mL degassed DCM. The solution was left for 24 h in absence of light. Thereafter, the solvent was removed under reduced pressure and crude purified on SiO₂; silica gel column chromatography (Hexane/E.A); brownish-orange powder; yield: 90%. m.p. 180°C(decomp.); ¹H NMR (CDCl₃, 400 MHz): δ 2.42 (s, 3H, - *Me*), 3.39 (s, 1H, Cp), 3.36 - 3.49 (m, 1H, - CH), 3.88 - 4.00 (m, 7H, - CH & 6 Cp), 4.19 (s, 1H, Cp), 4.36 (s, Cp), 4.65 - 4.74 (m, 1H, - CHPPh₂), 7.27 - 7.35 (m, 4H, - Ar), 7.35 - 7.50 (m, 6H, - Ar), 7.80 - 7.92 (m, 4H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 48.9 (s). ¹³C NMR (CDCl₃,

100 MHz): δ 21.9 (-*Me*), 34.6 (d, - CHPPh₂, ¹J_{CP} = 36.2 Hz), 41.7(d, - CH2, ²J_{CP} = 12.0 Hz), 67.7 (d, o-Cp, ³J_{CP} = 3.0 Hz), 67.8 (*m*-Cp), 68.8 (5 Cp), 69.2 (*m*-Cp), 70.4 (d, o-Cp), 86.9 (*i*-Cp), 128.1 (d, *i*-Ar, ¹J_{CP} = 80.1 Hz), 128.4 (2 *m*-Ar), 128.6 (d, *i*-Ar, ¹J_{CP} = 86.1 Hz), 128.7 (d, 2 o-Ar, ²J_{CP} = 11.6 Hz), 129.3 (d, 2 o-Ar, ²J_{CP} = 11.2 Hz), 129.7 (2 o-Ar), 132.0 (d, *p*-Ar, ⁴J_{CP} = 2.5 Hz), 132.3 (d, *p*-Ar, ⁴J_{CP} = 2.4 Hz), 132.3 (d, 2 -*m* Ar, ³J_{CP} = 11.5 Hz), 133.7 (*p*-Ar), 134.3 (d, 2 *m*-Ar, ³J_{CP} = 13.0 Hz), 134.6 (d, 2 *m*-Ar, ³J_{CP} = 13.0 Hz), 145.0 (*i*-Ar), 196.0 (d, *C*=O, ³J_{CP} = 9.1 Hz). HRMS m/z (+ESI) (M + H)⁺ calcd for C32H30O1P1Cl1Fe1Au1: 749.0738, found: 749.0739.

G2: Similar procedure to G1; brownish-orange powder; yield: 89%. m.p. 178°C(decomp.); ¹H NMR (CDCl₃, 300 MHz): 3.45 (m, 1H, Cp), 3.53 - 3.92 (m, 2H, - CH_2), 4.01 (m, 1H, Cp), 4.12 (m, 5H, Cp), 4.21 (m, 2H, Cp), 4.70 (m, 1H, - $CHPPh_2$), 6.49 (s, 1H, - Ar), 7.34 - 7.69 (m, 8H, - Ar), 7.74 - 7.90 (m, 2H, - Ar), 7.92 - 8.06 (m, 2H, - Ar). ¹⁹F{¹H} NMR (CDCl₃, 282.2 MHz): δ -62.83 (s), -58.25 (s). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 52.5 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 32.7 (d, - $CHPPh_2$, ¹ $_{CP}$ = 34.6 Hz), 47.2(d, - CH_2 , ² $_{J_{CP}}$ = 12.7 Hz), 67.6 (d, *o*-Cp, ³ $_{J_{CP}}$ = 4.4 Hz), 68.1 (*m*-Cp), 68.8 (5Cp), 69.4 (*m*-Cp), 69.8 (d, *o*-Cp, ³ $_{J_{CP}}$ = 1.9 Hz), 86.8 (d, *i*-Cp, ² $_{J_{CP}}$ = 7.3 Hz), 122.7 (q, CF_3 , ¹ $_{J_{CF}}$ = 274.2 Hz), 123.9(m, p-Ar), 127.5 (d, *i*-Ar, ¹ $_{J_{CP}}$ = 74.3 Hz), 127.6 (m, *m*-Ar), 127.8 (m, *m*-Ar), 128.1 (d, *i*-Ar, ¹ $_{J_{CP}}$ = 81.4 Hz), 128.9 (d, 2 *o*-Ar, ² $_{J_{CP}}$ = 11.8Hz), 129.6 (d, 2 *o*-Ar, ² $_{J_{CP}}$ = 33.0 Hz), 134.6 (d, 2 *- m* Ar, ³ $_{J_{CP}}$ = 13.8 Hz), 140.3 (s, *i*-Ar), 141.2 (*i*-Ar), 199.2 (d, *C*=O, ³ $_{J_{CP}}$ = 4.6 Hz). HRMS m/z (+ESI) (M + H)⁺ calcd for C33H2601P1Cl1Fe1Au1F6: 871.0329, found: 871.0333.

G3: Similar procedure to G1; brownish-orange powder; yield: 95%. m.p. 119°C(decomp.); ¹H NMR (CDCl₃, 400 MHz): δ 3.30 - 3.48 (m, 2H, Cp & CH), 3.74 - 3.88 (m, 1H, - CH), 3.95 (m, 1H, Cp), 3.98 (s, 5H, Cp), 4.21 (s, 1H, Cp), 4.36 (s, 1H, Cp), 4.53 - 4.64 (m, 1H, - CHPPh₂), 6.56 (m, 1H, - thienyl CH), 7.25 (m, 1H, - thienyl CH), 7.30 - 7.54 (m, 8H, - Ar), 7.46 - 7.56 (m, 2H, - Ar), 7.63 (m, 1H, - thienyl CH), 7.83 - 7.92 (m, 2H, - Ar). ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 49.0 (s). ¹³C NMR (CDCl₃, 100 MHz): δ 32.9 (d, - CHPPh₂, ¹J_{CP} = 35.6 Hz), 41.3 (d, -CH₂, ²J_{CP} = 11.9 Hz), 67.6 (d, o-Cp, ³J_{CP} = 4.4 Hz), 67.8 (m-Cp), 68.3 (5Cp), 69.2 (m-Cp), 70.1 (d, o-Cp, ³J_{CP} = 1.9 Hz), 86.6 (d, *i*-Cp, ²J_{CP} = 6.9 Hz), 112.8 (furyl Ar), 118.1 (furyl Ar), 127.8 (d, *i*-Ar, ¹J_{CP} = 72.5 Hz), 128.4 (d, *i*-Ar, ¹J_{CP} = 78.6 Hz), 128.7 (d, 2 o-Ar, ³J_{CP} = 11.6 Hz), 129.2 (d, 2 o-Ar, ³J_{CP} = 11.2 Hz), 132.1 (d, p-Ar, ⁴J_{CP} = 2.7 Hz), 132.3 (d, p-Ar, ⁴J_{CP} = 2.6 Hz), 134.4 (d, 2 m-Ar, ²J_{CP} = 13.1 Hz), 134.6 (d, 2 m-Ar, ²J_{CP} = 13.2 Hz), 147.1 (furyl Ar), 152.1 (furyl Ar), 185.6 (d, *C*=O, ³J_{CP} = 8.9 Hz). HRMS m/z (+ESI) (M + H)⁺ calcd for C29H2602P1Cl1Fe1Au1: 725.0374, found: 725.0370.

DS1: A Schlenk tube was charged with racemic catalyst (1.95 mg, 4 x 10⁻³ mmol), diarylphosphine (0.02 mmol) and anhydrous MeOH (1 ml). The clear yellow solution was further stirred at -60 °C for 10 minutes before the racemic ferrocenyl enone (0.04 mmol) in 1 ml of anhydrous MeOH was added. The resulting dark purple solution was stirred for 10 minutes followed by dropwise addition of NEt₃ (2.03 mg, 2.79 µL, 0.02 mmol) in anhydrous MeOH (0.5 ml). The resulting solution was stirred for 24 hours. Following that, sulphur (1.92 mg, 0.06 mmol) in degassed DCM (1 ml) was administered. The reaction mixture was then warmed to RT and stirred for another hour. The crude was then concentrated and purified via silica gel column chromatography (DCM: EA; 10: 1); Yellow oil; yield: 50%. ¹H NMR (CDCl₃, 500 MHz): δ 1.31 (m, 1H, -CH₂OH), 2.39 (s, 3H, -ArCH₃), 3.55 - 3.90 (m, 4H, -CH₂OH and -CH(PPh₂)CH₂), 3.91 (s, 5H, -Cp), 4.06 (m, 1H, -Cp), 4.25 (m, 1H, -Cp), 4.71 (m, 1H, -Cp), 4.93 (m, 1H, -CHPPh₂), 7.17 - 7.50 (m, 10H, -Ar), 7.92 (d, 2H, ³J = 8.5 Hz, -Ar), 8.06 - 8.10 (m, 2H, -Ar). ¹³C NMR (CDCl₃, 400 MHz): δ 21.7, 25.4, 32.2, 32.7, 41.9, 42.0, 58.8, 67.7, 67.8, 68.4, 68.8, 85.6, 88.6, 127.9, 128.0, 128.3, 128.7, 128.8, 129.2, 129.4, 129.5, 129.9, 131.3, 131.4, 131.8, 131.9, 132.0, 132.5, 132.6, 132.7, 133.6, 144.6, 196.9. ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 54.4 (major diastereomer), 52.5(minor diastereomer). d.r (95:5). MS (m / z) = 577.05.

DS3: Similar procedure to DS1; yellow oil; yield: 50%. Bright yellow oil. ¹H NMR (CDCl₃, 500 MHz): 1.22 (m, 1H, -CH₂OH), 3.46 - 3.80 (m, 4H, -CH₂OH and -CH(PPh₂)CH₂), 3.96 (s, 5H, -Cp), 4.08 (m, 1H, -Cp), 4.26 (m, 1H, -Cp), 4.66 (m, 1H, -Cp), 4.84 (m, 1H, -CHPPh₂), 6.52 - 6.52 (m, 1H, -Ar), 7.20 - 8.10 (m, 12H, -Ar). δ ¹³C NMR (CDCl₃, 125): δ 14.2, 21.1, 32.5 (d, - CHPPh₂, ¹J_{CP} = 52.5 Hz), 41.5 (d, -CH₂, ²J_{CP} = 7.5 Hz), 58.7, 60.4 (s, 5Cp), 67.1, 67.7, 67.8, 68.5, 68.84, 69.0, 71.9, 72.8, 85.5, 88.53, 88.5, 112.4, 112.5, 117.9, 118.3, 127.9, 128.0, 128.1, 128.3, 128.4, 128.6, 128.7, 128.9, 129.5, 131.4, 131.42, 131.8, 131.9, 132.0, 132.1,

132.2, 132.5, 132.6, 132.7, 146.8, 152.1, 186.3 (d, *C*=O, ${}^{3}J_{CP}$ = 8.9 Hz). ${}^{31}P{}^{1}H$ NMR (CDCl₃, 400 MHz): δ 54.1 (major diastereomer). MS (m / z) = 554.93.

DS4: Similar procedure to DS1; yellow oil; yield: 50%. ¹H NMR (CDCl₃, 500 MHz): δ 1.19 (m, 1H, -CH₂OH), 3.50 - 3.82 (m, 4H, -CH₂OH and -CH(PPh₂)CH₂), 4.00 (s, 5H, -Cp), 4.06 (m, 1H, -Cp), 4.26 (m, 1H, -Cp), 4.68 (m, 1H, -Cp), 4.87 (m, 1H, -CHPPh₂), 7.09 - 8.09 (m, 13H, -Ar). δ ¹³C NMR (CDCl₃, 75 MHz): δ 14.2, 21.1, 32.7, 33.3, 42.3, 42.4, 58.8, 60.4, 67.7, 67.8, 68.4, 68.5, 68.9, 69.0, 85.5, 88.6, 127.8, 128.0, 128.3, 128.6, 128.7, 128.8, 129.7, 131.4, 131.6, 131.9, 132.0, 132.1, 132.5, 132.6, 132.7, 134.4, 143.3, 190.1. ³¹P{¹H} NMR (CDCl₃, 161.6 MHz): δ 54.1 (major diastereomer), δ 52.0 (minor diastereomer). (Diastereomeric ratio 96:4). MS (m / z) = 570.97.

90 80

Ψ

60

ч

70

......

50

40

·т

30

.....

20

10

0

S7

-10 -20 -30 -40 -50 -60 -70 -80

.....

.....

ppm

O2. CDCI3 1H

4 H D H P A P B H B A B D B P B P B P B P B P B P B P B P B P	0046406040404080800404860460648800	5 CV
000001100004000000000000000000000000000	***************************************	00
44440000000000000000000004444	***************************************	44
		m m
		المسلم

<mark>S</mark>11

S1. CDCI3 1H

S1. CDCI3 31P{1H}

53.489

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 ppm

S2 CDCI3 31P

S2 CDCI3 19F

S4 CDCI3 1H

S4. CDCI3 31P{1H}

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 ppm

S7. CDCI3 1H

S7. CDCI3 31P{1H}

47.888

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -60 ppm

<mark>S</mark>26

G1 1H, CDCI3

G1 31P, CDCl3

									1				1					1
90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	ppm

<mark>S</mark>34

G3 CDCI3 1H

		T							

Crystal Structure Report for G3

Figure 1. ORTEP of gold complex of G3 with thermal ellipsoids drawn at the 50% probability level

able 1. Sample and crystal data for 05.					
Identification code	G3				
Chemical formula	C ₂₉ H ₂₅ AuClFeO ₂ P				
Formula weight	724.72 g/mol				
Temperature	100(2) K				
Wavelength	0.71073 Å				
Crystal size	0.020 x 0.040 x 0.100 mm				
Crystal habit	orange block				
Crystal system	monoclinic				
Space group	P 1 21/c 1				

Table 1. Sample and crystal data for G3.

Unit cell dimensions	a = 9.0226(2) Å	$\alpha = 90^{\circ}$
	b = 11.2002(2) Å	$\beta = 96.9250(10)^{\circ}$
	c = 25.5416(6) Å	$\gamma = 90^{\circ}$
Volume	2562.27(9) Å ³	
Ζ	4	
Density (calculated)	1.879 g/cm ³	
Absorption coefficient	6.477 mm ⁻¹	
F(000)	1408	

Table 2. Data collection and structure refinement forG3.

Theta range for data collection	2.27 to 31.53°			
Index ranges	-13<=h<=13, -16<	=k<=16, -37<=l<=37		
Reflections collected	34522			
Independent reflections	8538 [R(int) = 0.0622]			
Coverage of independent reflections	99.7%			
Absorption correction	Multi-Scan			
Max. and min. transmission	0.8810 and 0.5640			
Structure solution technique	direct methods			
Structure solution program	XT, VERSION 2014/5			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2017/1 (Sheldrick, 2017)			
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$			
Data / restraints / parameters	8538 / 0 / 316			
Goodness-of-fit on F ²	1.030			
$\Delta/\sigma_{\rm max}$	0.002			
Final R indices	6521 data; I>2σ(I)	R1 = 0.0386, wR2 = 0.0621		
	all data	R1 = 0.0617, wR2 = 0.0708		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0] where P=(F_o^2 +2 F_c^2	169P) ² +3.8876P])/3		
Largest diff. peak and hole	1.396 and -1.609 e	Å-3		
R.M.S. deviation from mean	0.198 eÅ ⁻³			

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for G3.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
Au1	0.83846(2)	0.84284(2)	0.47177(2)	0.01478(4)

	x/a	y/b	z/c	U(eq)
C1	0.1629(6)	0.4717(5)	0.4439(2)	0.0406(13)
C2	0.0660(5)	0.5618(5)	0.4226(2)	0.0304(11)
C3	0.1051(5)	0.5918(4)	0.37261(19)	0.0248(10)
C4	0.2265(5)	0.5202(4)	0.3625(2)	0.0300(11)
C5	0.2616(5)	0.4450(4)	0.4070(2)	0.0389(14)
C6	0.4876(4)	0.6504(4)	0.46978(16)	0.0188(8)
C7	0.3720(5)	0.6869(4)	0.50000(18)	0.0249(10)
C8	0.2844(5)	0.7744(4)	0.47080(19)	0.0254(10)
С9	0.3436(4)	0.7927(3)	0.42250(18)	0.0189(9)
C10	0.4701(4)	0.7157(3)	0.42122(16)	0.0138(7)
C11	0.5747(4)	0.7170(3)	0.37960(16)	0.0139(8)
C12	0.6632(4)	0.6001(3)	0.37542(16)	0.0154(8)
C13	0.6053(4)	0.5244(3)	0.32832(16	0.0147(8)
C14	0.6693(4)	0.4052(3)	0.32628(15	0.0145(8)
C15	0.7727(4)	0.3434(4)	0.35862(16	0.0181(8)
C16	0.7899(5)	0.2315(3)	0.33451(18	0.0211(9)
C17	0.6961(5)	0.2310(3)	0.28980(18)	0.0227(9)
C18	0.5764(4)	0.9716(3)	0.38421(15	0.0126(7)
C19	0.5408(4)	0.0332(3)	0.42876(16	0.0178(8)
C20	0.4267(5)	0.1178(4)	0.42278(18)	0.0209(9)
C21	0.3518(5)	0.1428(4)	0.37336(17)	0.0203(9)
C22	0.3919(5)	0.0849(4)	0.32914(17)	0.0194(8)
C23	0.5030(4)	0.9986(3)	0.33483(16)	0.0159(8)
C24	0.8145(4)	0.8527(3)	0.33870(15)	0.0144(7)
C25	0.7650(5)	0.8105(4)	0.28828(17)	0.0201(9)
C26	0.8516(5)	0.8261(4)	0.24750(18	0.0250(10)
C27	0.9870(5)	0.8841(4)	0.25668(19)	0.0259(10)
C28	0.0375(5)	0.9254(4)	0.30656(19	0.0254(10)

	x/a	y/b	z/c	U(eq)
C29	0.9524(4)	0.9098(4)	0.34764(17)	0.0186(8)
Cl1	0.97890(11)	0.84359(10)	0.55232(4)	0.0250(2)
Fe1	0.28153(6)	0.61895(5)	0.42895(2)	0.01630(12
01	0.5147(3)	0.5612(2)	0.29272(11)	0.0199(6)
02	0.6202(3)	0.3364(2)	0.28290(12)	0.0211(6)
P1	0.70238(10)	0.84546(9)	0.39305(4)	0.01203(18)

Table 4. Bond lengths (Å) for G3.

Au1-P1	2.2260(10)	Au1-Cl1	2.2825(11)
C1-C2	1.402(7)	C1-C5	1.406(8)
C1-Fe1	2.028(5)	C1-H1	1.0
C2-C3	1.406(6)	C2-Fe1	2.035(4)
С2-Н2	1.0	C3-C4	1.406(6)
C3-Fe1	2.036(4)	С3-Н3	1.0
C4-C5	1.420(7)	C4-Fe1	2.037(4)
C4-H4	1.0	C5-Fe1	2.030(4)
С5-Н5	1.0	C6-C7	1.431(5)
C6-C10	1.432(5)	C6-Fe1	2.050(4)
С6-Н6	1.0	C7-C8	1.414(7)
C7-Fe1	2.045(5)	С7-Н7	1.0
C8-C9	1.417(6)	C8-Fe1	2.042(4)
C8-H8	1.0	C9-C10	1.435(5)
C9-Fe1	2.038(4)	С9-Н9	1.0
C10-C11	1.504(5)	C10-Fe1	2.047(4)
C11-C12	1.545(5)	C11-P1	1.849(4)
C11-H11	1.0	C12-C13	1.513(5)
C12-H12A	0.99	C12-H12B	0.99
C13-O1	1.219(5)	C13-C14	1.458(5)
C14-C15	1.358(5)	C14-O2	1.378(5)
C15-C16	1.413(6)	C15-H15	0.95
C16-C17	1.337(6)	C16-H16	0.95
C17-O2	1.366(5)	C17-H17	0.95
C18-C23	1.385(5)	C18-C19	1.401(5)
C18-P1	1.811(4)	C19-C20	1.394(6)
C19-H19	0.95	C20-C21	1.386(6)
C20-H20	0.95	C21-C22	1.388(6)
C21-H21	0.95	C22-C23	1.387(5)
С22-Н22	0.95	С23-Н23	0.95
C24-C29	1.392(5)	C24-C25	1.394(6)
C24-P1	1.816(4)	C25-C26	1.386(5)
С25-Н25	0.95	C26-C27	1.379(6)
C26-H26	0.95	C27-C28	1.380(6)
С27-Н27	0.95	C28-C29	1.384(5)

C28-H28	0.95	С29-Н29	0.95
---------	------	---------	------

Table 5. Dull	u aligics	() IOI OS.	
P1-Au1-Cl1	179.00(4)	C2-C1-C5	108.0(5)
C2-C1-Fe1	70.1(3)	C5-C1-Fe1	69.8(3)
С2-С1-Н1	126.0	С5-С1-Н1	126.0
Fe1-C1-H1	126.0	C1-C2-C3	108.2(4)
C1-C2-Fe1	69.6(3)	C3-C2-Fe1	69.8(2)
С1-С2-Н2	125.9	С3-С2-Н2	125.9
Fe1-C2-H2	125.9	C4-C3-C2	108.5(4)
C4-C3-Fe1	69.8(3)	C2-C3-Fe1	69.8(3)
С4-С3-Н3	125.8	С2-С3-Н3	125.8
Fe1-C3-H3	125.8	C3-C4-C5	107.2(4)
C3-C4-Fe1	69.8(3)	C5-C4-Fe1	69.3(3)
С3-С4-Н4	126.4	С5-С4-Н4	126.4
Fe1-C4-H4	126.4	C1-C5-C4	108.2(4)
C1-C5-Fe1	69.7(3)	C4-C5-Fe1	69.8(3)
С1-С5-Н5	125.9	С4-С5-Н5	125.9
Fe1-C5-H5	125.9	C7-C6-C10	108.1(4)
C7-C6-Fe1	69.4(2)	C10-C6-Fe1	69.4(2)
С7-С6-Н6	126.0	С10-С6-Н6	126.0
Fe1-C6-H6	126.0	C8-C7-C6	108.1(4)
C8-C7-Fe1	69.6(3)	C6-C7-Fe1	69.7(2)
С8-С7-Н7	125.9	С6-С7-Н7	125.9
Fe1-C7-H7	125.9	C7-C8-C9	108.3(4)
C7-C8-Fe1	69.9(3)	C9-C8-Fe1	69.5(2)
С7-С8-Н8	125.8	С9-С8-Н8	125.8
Fe1-C8-H8	125.8	C8-C9-C10	108.5(4)
C8-C9-Fe1	69.8(2)	C10-C9-Fe1	69.8(2)
С8-С9-Н9	125.8	С10-С9-Н9	125.8
Fe1-C9-H9	125.8	C6-C10-C9	107.0(3)
C6-C10-C11	127.2(3)	C9-C10-C11	125.4(4)
C6-C10-Fe1	69.7(2)	C9-C10-Fe1	69.1(2)
C11-C10-Fe1	132.3(3)	C10-C11-C12	114.5(3)
C10-C11-P1	107.8(3)	C12-C11-P1	110.9(2)
С10-С11-Н11	107.8	C12-C11-H11	107.8
Р1-С11-Н11	107.8	C13-C12-C11	113.5(3)
C13-C12-H12A	108.9	C11-C12-H12A	108.9
С13-С12-Н12В	108.9	C11-C12-H12B	108.9
H12A-C12-H12B	107.7	O1-C13-C14	121.1(4)
O1-C13-C12	122.7(3)	C14-C13-C12	116.2(3)
C15-C14-O2	109.6(3)	C15-C14-C13	133.7(4)
O2-C14-C13	116.7(3)	C14-C15-C16	106.8(4)
C14-C15-H15	126.6	С16-С15-Н15	126.6
C17-C16-C15	106.6(4)	С17-С16-Н16	126.7
C15-C16-H16	126.7	C16-C17-O2	111.2(4)

Table 5. Bond angles (°) for G3.

C16-C17-H17			
C_{23} C_{18} C_{10}	124.4	O2-C17-H17	124.4
C23-C18-C19	120.1(4)	C23-C18-P1	120.5(3)
C19-C18-P1	119.0(3)	C20-C19-C18	119.0(4)
С20-С19-Н19	120.5	С18-С19-Н19	120.5
C21-C20-C19	120.6(4)	С21-С20-Н20	119.7
С19-С20-Н20	119.7	C22-C21-C20	120.0(4)
С22-С21-Н21	120.0	C20-C21-H21	120.0
C21-C22-C23	119.7(4)	С21-С22-Н22	120.1
С23-С22-Н22	120.1	C18-C23-C22	120.5(4)
С18-С23-Н23	119.8	С22-С23-Н23	119.8
C29-C24-C25	119.2(3)	C29-C24-P1	117.7(3)
C25-C24-P1	123.0(3)	C26-C25-C24	120.3(4)
С26-С25-Н25	119.8	С24-С25-Н25	119.8
C27-C26-C25	120.0(4)	С27-С26-Н26	120.0
С25-С26-Н26	120.0	C26-C27-C28	120.1(4)
С26-С27-Н27	119.9	С28-С27-Н27	119.9
C29-C28-C27	120.4(4)	С29-С28-Н28	119.8
С27-С28-Н28	119.8	C28-C29-C24	120.0(4)
С28-С29-Н29	120.0	С24-С29-Н29	120.0
C1-Fe1-C5	40.5(2)	C1-Fe1-C2	40.4(2)
C5-Fe1-C2	67.9(2)	C1-Fe1-C3	68.1(2)
C5-Fe1-C3	68.0(2)	C2-Fe1-C3	40.40(18)
C1-Fe1-C4	68.6(2)	C5-Fe1-C4	40.9(2)
C2-Fe1-C4	68.17(18)	C3-Fe1-C4	40.41(17)
C1-Fe1-C9	161.6(2)	C5-Fe1-C9	155.7(2)
C2-Fe1-C9	124.26(19)	C3-Fe1-C9	106.53(18)
C4-Fe1-C9	119.6(2)	C1-Fe1-C8	124.6(2)
C5-Fe1-C8	163.4(2)	C2-Fe1-C8	105.16(18)
C3-Fe1-C8	117.18(19)	C4-Fe1-C8	152.4(2)
C9-Fe1-C8	40.64(16)	C1-Fe1-C7	107.4(2)
C5-Fe1-C7	127.9(2)	C2-Fe1-C7	117.57(18)
C3-Fe1-C7	151.30(17)	C4-Fe1-C7	166.6(2)
C9-Fe1-C7	68.41(18)	C8-Fe1-C7	40.48(19)
C1-Fe1-C10	155.89(19)	C5-Fe1-C10	121.91(18)
C2-Fe1-C10	163.00(19)	C3-Fe1-C10	126.81(17)
C4 Fe1 $C10$	109.23(17)	C9-Fe1-C10	41.13(15)
C4-1C1-C10	60 0 4 (4 -)		
C8-Fe1-C10	68.94(15)	C7-Fe1-C10	68.97(16)
C8-Fe1-C10 C1-Fe1-C6	68.94(15) 120.7(2)	C7-Fe1-C10 C5-Fe1-C6	68.97(16) 110.49(19)
C8-Fe1-C10 C1-Fe1-C6 C2-Fe1-C6	68.94(15) 120.7(2) 153.39(18)	C7-Fe1-C10 C5-Fe1-C6 C3-Fe1-C6	68.97(16) 110.49(19) 165.77(17)
C8-Fe1-C10 C1-Fe1-C6 C2-Fe1-C6 C4-Fe1-C6	68.94(15) 120.7(2) 153.39(18) 129.24(17)	C7-Fe1-C10 C5-Fe1-C6 C3-Fe1-C6 C9-Fe1-C6	68.97(16) 110.49(19) 165.77(17) 68.64(17)
C8-Fe1-C10 C1-Fe1-C6 C2-Fe1-C6 C4-Fe1-C6 C8-Fe1-C6	68.94(15) 120.7(2) 153.39(18) 129.24(17) 68.50(18)	C7-Fe1-C10 C5-Fe1-C6 C3-Fe1-C6 C9-Fe1-C6 C7-Fe1-C6	68.97(16) 110.49(19) 165.77(17) 68.64(17) 40.90(15)
C8-Fe1-C10 C1-Fe1-C6 C2-Fe1-C6 C4-Fe1-C6 C8-Fe1-C6 C10-Fe1-C6	68.94(15) 120.7(2) 153.39(18) 129.24(17) 68.50(18) 40.92(15)	C7-Fe1-C10 C5-Fe1-C6 C3-Fe1-C6 C9-Fe1-C6 C7-Fe1-C6 C17-O2-C14	68.97(16) 110.49(19) 165.77(17) 68.64(17) 40.90(15) 105.8(3)
C8-Fe1-C10 C1-Fe1-C6 C2-Fe1-C6 C4-Fe1-C6 C8-Fe1-C6 C10-Fe1-C6 C10-Fe1-C6 C18-P1-C24	68.94(15) 120.7(2) 153.39(18) 129.24(17) 68.50(18) 40.92(15) 105.60(17)	C7-Fe1-C10 C5-Fe1-C6 C3-Fe1-C6 C9-Fe1-C6 C7-Fe1-C6 C17-O2-C14 C18-P1-C11	68.97(16) 110.49(19) 165.77(17) 68.64(17) 40.90(15) 105.8(3) 102.48(16)
C8-Fe1-C10 C1-Fe1-C6 C2-Fe1-C6 C4-Fe1-C6 C8-Fe1-C6 C10-Fe1-C6 C18-P1-C24 C24-P1-C11	68.94(15) 120.7(2) 153.39(18) 129.24(17) 68.50(18) 40.92(15) 105.60(17) 106.56(18)	C7-Fe1-C10 C5-Fe1-C6 C3-Fe1-C6 C9-Fe1-C6 C7-Fe1-C6 C17-O2-C14 C18-P1-C11 C18-P1-Au1	68.97(16) 110.49(19) 165.77(17) 68.64(17) 40.90(15) 105.8(3) 102.48(16) 113.12(13)

Table 6. Anisotropic atomic displacementparameters (Ų) for G3.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2

 $h k a^* b^* U_{12}]$

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Aul	0.01354(7)	0.01924(7)	0.01092(7)	- 0.00148(6)	- 0.00114(5)	0.00056(6)
C1	0.036(3)	0.041(3)	0.042(3)	0.014(3)	-0.006(2)	-0.023(2)
C2	0.014(2)	0.045(3)	0.032(3)	-0.006(2)	- 0.0001(19)	-0.010(2)
C3	0.019(2)	0.027(2)	0.025(3)	- 0.0026(19)	- 0.0080(18)	- 0.0027(18)
C4	0.024(2)	0.035(3)	0.031(3)	-0.020(2)	0.002(2)	-0.011(2)
C5	0.025(2)	0.014(2)	0.072(4)	-0.010(2)	-0.020(3)	- 0.0026(19)
C6	0.0173(19)	0.024(2)	0.0140(19)	- 0.0007(17)	- 0.0017(15)	- 0.0070(17)
C7	0.023(2)	0.034(3)	0.019(2)	- 0.0045(18)	0.0058(18)	- 0.0081(19)
C8	0.022(2)	0.024(2)	0.032(3)	- 0.0118(19)	0.011(2)	- 0.0077(18)
С9	0.0130(18)	0.0133(18)	0.030(2)	- 0.0046(17)	0.0010(17)	0.0003(16)
C10	0.0145(18)	0.0121(17)	0.0148(19)	- 0.0028(14)	0.0015(15)	- 0.0037(15)
C11	0.0097(17)	0.0169(19)	0.0145(19)	0.0021(15)	- 0.0011(15)	- 0.0002(15)
C12	0.0121(18)	0.0172(19)	0.016(2)	- 0.0001(15)	- 0.0033(15)	- 0.0002(15)
C13	0.0139(18)	0.0161(18)	0.0145(19)	0.0021(15)	0.0032(15)	0.0007(15)
C14	0.0189(19)	0.0126(18)	0.0116(19)	0.0007(14)	- 0.0001(15)	0.0000(15)
C15	0.0203(19)	0.0161(18)	0.0167(19)	0.0015(16)	- 0.0032(16)	- 0.0021(17)
C16	0.024(2)	0.0120(18)	0.026(2)	0.0038(16)	- 0.0034(18)	0.0038(17)
C17	0.028(2)	0.0111(18)	0.027(2)	- 0.0044(17)	- 0.0015(19)	0.0014(17)
C18	0.0138(17)	0.0109(17)	0.0128(18)	- 0.0014(14)	0.0007(15)	- 0.0021(14)
C19	0.0187(19)	0.020(2)	0.014(2)	- 0.0028(15)	0.0007(16)	- 0.0009(16)
C20	0.021(2)	0.021(2)	0.021(2)	- 0.0056(17)	0.0026(18)	- 0.0007(17)
C21	0.020(2)	0.017(2)	0.023(2)	0.0014(16)	- 0.0021(17)	0.0061(16)
C22	0.022(2)	0.019(2)	0.017(2)	0.0014(16)	- 0.0006(17)	0.0000(17)
C23	0.0157(18)	0.0189(19)	0.0131(19)	0.0027(15)	0.0026(15)	- 0.0002(16)
C24	0.0122(17)	0.0165(18)	0.0144(18)	- 0.0003(15)	0.0016(14)	0.0017(15)
C25	0.0169(19)	0.024(2)	0.019(2)	- 0.0028(16)	0.0006(17)	- 0.0054(17)
C26	0.031(2)	0.029(2)	0.016(2)	- 0.0026(18)	0.0070(19)	- 0.0002(19)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C27	0.026(2)	0.025(2)	0.029(3)	0.0033(19)	0.010(2)	- 0.0022(19)
C28	0.018(2)	0.033(2)	0.026(2)	0.0027(19)	0.0044(19)	- 0.0037(19)
C29	0.0143(19)	0.025(2)	0.016(2)	- 0.0035(16)	0.0016(16)	0.0003(16)
C11	0.0227(5)	0.0382(6)	0.0127(5)	-0.0030(4)	-0.0029(4)	0.0017(5)
Fe1	0.0130(3)	0.0157(3)	0.0201(3)	-0.0008(2)	0.0013(2)	-0.0027(2)
01	0.0224(15)	0.0216(15)	0.0138(15)	- 0.0026(11)	- 0.0057(12)	0.0057(12)
02	0.0243(15)	0.0181(14)	0.0184(15)	- 0.0029(12)	- 0.0073(12)	0.0015(13)
P1	0.0117(4)	0.0144(4)	0.0098(4)	-0.0003(4)	0.0004(4)	-0.0003(4)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for G3.

	x/a	y/b	z/c	U(eq)
H1	0.1615	0.4328	0.4791	0.049
H2	-0.0161	0.5989	0.4401	0.037
H3	0.0556	0.6541	0.3485	0.03
H4	0.2779	0.5215	0.3299	0.036
Н5	0.3430	0.3839	0.4114	0.047
H6	0.5659	0.5889	0.4804	0.023
H7	0.3555	0.6556	0.5355	0.03
H8	0.1953	0.8157	0.4821	0.03
H9	0.3033	0.8493	0.3940	0.023
H11	0.5138	0.7311	0.3448	0.017
H12A	0.7692	0.6201	0.3731	0.018
H12B	0.6591	0.5528	0.4080	0.018
H15	0.8237	0.3703	0.3912	0.022
H16	0.8552	0.1689	0.3475	0.025
H17	0.6838	0.1657	0.2659	0.027
H19	0.5936	1.0176	0.4625	0.021
H20	0.4000	1.1588	0.4528	0.025
H21	0.2730	1.1995	0.3698	0.024
H22	0.3435	1.1043	0.2951	0.023
H23	0.5290	0.9577	0.3046	0.019
H25	0.6715	0.7709	0.2818	0.024
H26	0.8176	0.7967	0.2133	0.03
H27	1.0457	0.8958	0.2286	0.031
H28	1.1313	0.9647	0.3127	0.031
H29	0.9879	0.9381	0.3819	0.022