Electronic Supplementary Information

Solvent-induced formation of two gadolinium clusters demonstrated

for strong magnetocaloric effects and ferroelectric properties

Yu-Xia Wang, Qiutong Xu, Peng Ren, Wei Shi* and Peng Cheng*

a College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300071, China. E-mail: <u>shiwei@nankai.edu.cn</u>, <u>pcheng@nankai.edu.cn</u>

b School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

c Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.

*Corresponding author, E-mail: shiwei@nankai.edu.cn, pcheng@nankai.edu.cn, pcheng@nankai.edu.cn, pcheng@nankai.edu.cn, pcheng@nankai.edu.cn, pcheng@nankai.edu.cn, pcheng@nankai.edu.cn)

Table of Contents

1. Powder X-ray diffractions	Figure S1
2. TGA curves	Figure S2
3. Single-crystal parameters	Table S1
4. Continuous-shape measures calculations resualts	Table S2
5. Selected data of bond lengths and angles	Table S3

Figure S1. Simulated and experimental powder X-ray diffractions of 1 and 2.

Figure S2. TGA curves of 1 (black) and 2 (red).

	1	2_200 K	2_293 K	2_353 K	2_383 K
formula	$\begin{array}{c} C_{20}H_{46}Gd_2N_6O_{14}{}^{2+},\\ 2(NO_3{}^{1-})\end{array}$	$C_{22}H_{49}Gd_3N_8O_{21}$	$C_{22}H_{49}Gd_3N_8O_{21}$	$C_{22}H_{49}Gd_3N_8O_{21}$	$C_{22}H_{49}Gd_3N_8O_{21}$
fw	1033.15	1233.42	1233.42	1233.42	1233.42
temp(K)	120(2)	200(2)	293(2)	353(2)	383(2)
Symmetry system	triclinic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
space group	<i>P</i> -1	$Pna2_1$	$Pna2_1$	$Pna2_1$	$Pna2_1$
a (Å)	8.8005(8)	28.2783(6)	28.3822(6)	28.4536(7)	28.4960(6)
<i>b</i> (Å)	9.3882(13)	14.9386(3)	14.9641(3)	14.9700(3)	14.9727(3)
<i>c</i> (Å)	10.6360(6)	9.0311(2)	9.0770(2)	9.1074(2)	9.1211(2)
α (deg)	101.502(8)	90	90	90	90
β (deg)	96.239(6)	90	90	90	90
γ (deg)	97.956(9)	90	90	90	90
$V(Å^3)$	844.37(15)	3815.08(15)	3855.15(16)	3879.32(17)	3891.64(15)
Ζ	1	4	4	4	4
<i>D</i> c (g·cm ⁻ ³)	2.032	2.147	2.125	2.125	2.125
μ (mm ⁻¹)	3.987	5.245	5.190	5.158	5.141
R _{int}	0.0597	0.0392	0.0409	0.0382	0.0262
GOOF	1.075	0.995	0.983	0.963	0.998
R_1	0.0593	0.0327	0.0360	0.0346	0.296
wR_2	0.1671	0.0538	0.0477	0.0487	0.0536
<i>Δρ</i> max (e Å ⁻³)	2.0	1.07	0.63	0.7	0.7
⊿ρmin (eÅ- ³)	-1.9	-0.74	-0.70	-0.5	-0.7
flack		-0.011(15)	-0.022(15)	-0.043(15)	-0.023(13)

Table S1. Single-crystal parameters of 1 and 2_200 K

1							
Structure	CSAPR-9	MFF-9	JCSAPR-9				
[ML ₉]	$(C_{4\mathrm{v}})$	$(C_{\rm s})$	$(C_{4\mathrm{v}})$				
Gd ³⁺ in 1	2.338	2.704	2.745				
2 _200K							
Structure	CSAPR-9	TCTPR-9	MFF-9				
[ML ₉]	$(C_{4\mathrm{v}})$	(D_{3h})	$(C_{\rm s})$				
Gd(1) ³⁺ in 2 _200K	2.495	2.759	2.793				
Structure	SAPR-8	TDD-8	BTPR-8				
[ML ₈]	(D_{4d})	(D_{2d})	(C_{2v})				
Gd(2) ³⁺ in 2 _200K	3.614	2.759	4.137				
Structure	CSAPR-9	MFF-9	JCSAPR-9				
[ML ₉]	$(C_{4\mathrm{v}})$	$(C_{\rm s})$	$(C_{4\mathrm{v}})$				
Gd(3) ³⁺ in 2 _200K	2.551	2.798	3.222				

Table S2. Continuous-shape measures calculations for the Gd^{3+} ion in 1 and 2_200K.

CSAPR-9 = Spherical capped square antiprism, SAPR-8 = Square antiprism, MFF-9 = Muffin, JCSAPR-9 = Capped square antiprism J10, TCTPR-9 = Spherical tricapped trigonal prism, BTPR-8 = Biaugmented trigonal prism, TDD-8 = Triangular dodecahedron

			1						
Gd(1)-O(2)#1	2.3	311(8)	Gd(1)-O(1)	2.382((9)	Gd(1)-N(2)		2.697(11)	
Gd(1)-O(2)	2.3	345(9)	Gd(1)-O(4)	2.574(10)	Gd(1)-N(3)		2.921(12)	
Gd(1)-O(3)	2.4	470(9)	Gd(1)-O(6)	2.499((9)	Gd(1))-Gd(1)#1	3.857	2(12)
Gd(1)-O(5)	2.4	439(9)	Gd(1)-N(1)	2.641(10)				
				I		I	I		
O(2)#1-Gd(1)-O(2	2)	68.1(3)	O(2)-Gd(1)-	O(3)	73	.3(3)	O(3)-Gd(1)-O(6)	117.7(3)
O(2)#1-Gd(1)-O(1	l)	95.2(3)	O(1)-Gd(1)-	O(3)	166	5.6(3)	O(2)#1-Gd	(1)-O(4)	75.8(3)
O(2)-Gd(1)-O(1))	93.5(3)	O(5)-Gd(1)-	O(3)	72	.8(3)	O(2)-Gd(1)-O(4)	139.3(3)
O(2)#1-Gd(1)-O(5	5)	84.5(3)	O(2)#1-Gd(1)	-O(6)	140	0.4(3)	O(1)-Gd(1)-O(4)	71.2(3)
O(2)-Gd(1)-O(5))]	138.8(3)	O(2)-Gd(1)-	O(6)	147	7.7(3)	O(5)-Gd(1)-O(4)	50.6(3)
O(1)-Gd(1)-O(5))]	120.0(3)	O(1)-Gd(1)-	O(6)	72	.8(3)	O(3)-Gd(1)-O(4)	120.0(3)
O(2)#1-Gd(1)-O(3	3)	81.5(3)	O(5)-Gd(1)-	O(6)	70	.8(3)	O(6)-Gd(1)-O(4)	64.6(3)
O(2)#1-Gd(1)-N(1	l) 1	130.4(3)	O(6)-Gd(1)-	N(3)	63	.0(3)	O(1)-Gd(1)-N(2)	117.7(3)
O(2)-Gd(1)-N(1))	68.3(3)	O(4)-Gd(1)-	N(3)	25	.4(4)	O(5)-Gd(1)-N(2)	82.0(3)
O(1)-Gd(1)-N(1)		65.0(3)	N(1)-Gd(1)-	N(3)	141	.6(3)	O(3)-Gd(1)-N(2)	65.7(3)
O(5)-Gd(1)-N(1))]	145.2(3)	N(2)-Gd(1)-	N(3)	98	.1(3)	O(6)-Gd(1)-N(2)	60.7(3)
O(3)-Gd(1)-N(1))]	107.3(3)	O(2)#1-Gd(1)	-N(3)	81	.3(3)	O(4)-Gd(1)-N(2)	116.3(3)
O(6)-Gd(1)-N(1))	79.4(3)	O(2)-Gd(1)-	N(3)	148	8.9(3)	N(1)-Gd(1)-N(2)	67.6(3)
O(4)-Gd(1)-N(1))]	129.6(3)	O(1)-Gd(1)-1	N(3)	95	.1(4)	O(3)-Gd(1)-N(3)	97.3(4)
O(2)#1-Gd(1)-N(2	2)	146.9(3)	O(5)-Gd(1)-1	N(3)	25	.4(4)	O(2)-Gd(1)-N(2)	104.2(3)
2									
Gd(1)-Gd(2)	3.5	290(7)	Gd(1)-O(16)	2.470(8)	Gd(2	2)-O(13)	2.5	31(8)
Gd(1)-Gd(3)	3.9	255(7)	Gd(2)-Gd(3)	3.5600	(7)	Gd(3)-N(3)	2.6	80(7)
Gd(1)-N(1)	2.5	584(9)	Gd(2)-N(5)	2.879(1	1)	Gd(3)-N(4)	2.6	01(9)
Gd(1)-N(2)	2.6	667(8)	Gd(2)-N(6)	2.934(1	1)	Gd(3)-N(8)	2.96	9(11)
Gd(1)-N(7)	2.9	21(11)	Gd(2)-O(1)	2.377(7)	Gd(3) - O(1)	2.5	03(7)
Gd(1)-O(1)	2.4	486(6)	Gd(2)-O(2)	2.455(7)	Gd(3)-O(2)	2.42	20(6)
Gd(1)-O(2)	2.4	417(7)	Gd(2)-O(3)	2.231(6)	Gd(3) - O(4)	2.3	07(7)

Table S3. Selected bond lengths [Å] and angles [deg.] for 1 and $2_200~K$

Gd(1)-O(3)	2.312(7)	Gd(2)-O(4)	2.245(6)	Gd(3)-O(7)	2.325(7)
Gd(1)-O(5)	2.530(7)	Gd(2)-O(9)	2.466(8)	Gd(3)-O(8)	2.476(7)
Gd(1)-O(6)	2.322(7)	Gd(2)-O(10)	2.471(8)	Gd(3)-O(18)	2.538(8)
Gd(1)-O(15)	2.550(8)	Gd(2)-O(12)	2.451(9)	Gd(3)-O(19)	2.596(8)
Gd(2)-Gd(1)-Gd(3)	56.754(13)	O(1)-Gd(2)-Gd(1)	44.72(15)	O(3)-Gd(2)-Gd(1)	39.87(17)
O(1)-Gd(1)-Gd(2)	42.27(17)	O(1)-Gd(2)-Gd(3)	44.56(17)	O(3)-Gd(2)-Gd(3)	106.35(17)
O(1)-Gd(1)-Gd(3)	38.27(17)	O(1)-Gd(2)-O(2)	59.8(2)	O(3)-Gd(2)-O(1)	79.7(2)
O(2)-Gd(1)-Gd(2)	44.01(16)	O(2)-Gd(2)-Gd(1)	43.17(15)	O(3)-Gd(2)-O(2)	71.6(2)
O(2)-Gd(1)-Gd(3)	35.78(16)	O(2)-Gd(2)-Gd(3)	42.71(15)	Gd(2)-Gd(3)-Gd(1)	55.999(13)
O(2)-Gd(1)-O(1)	58.8(2)	O(2)-Gd(3)-Gd(2)	43.47(16)	O(1)-Gd(3)-Gd(1)	37.97(14)
Gd(2)-O(3)-Gd(1)	101.9(2)	O(2)-Gd(3)-O(1)	58.5(2)	O(1)-Gd(3)-Gd(2)	41.78(17)
O(2)-Gd(3)-Gd(1)	35.74(17)				

^aSymmetry transformations used to generate equivalent atoms: #1 - x + 1, -y, -z + 1