Supporting Information on

Two-Dimensional MAX-Derived Titanate Nanostructures for Efficient Removal of Pb(II)

Pengcheng Gu,^{a,b} Sai Zhang,^a Chenlu Zhang,^a Xiangxue Wang,^a Ayub Khan,^a Tao Wen,^{a*} Baowei Hu,^{b*} Ahmed Alsaedi,^c Tasawar Hayat,^c and Xiangke Wang^{a,b*}

^a MOE Key Lab of Resources and Environmental System optimization, College of Environment Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China

^b School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China

^c NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

*: Corresponding author. Fax (Tel): +86-10-61772890; Email: <u>twen@ncepu.edu.cn</u> (T. Wen); hbw@usx.edu.cn (B. Hu); <u>xkwang@ncepu.edu.cn</u> (X. Wang).

1. Material Characterization Section

The scanning electron microscope (SEM, Hitachi S-4800) was operated at the beam energy of 5 kV. The TEM images was performed on FEI Tecnai G2 F30 microscope with an accelerating voltage of 200 kV. The phase transformation was examined by X-ray diffraction (XRD), which was measured on a Rigaku/Max-3A X-ray diffractometer with Cu-Ka radiation (the operation voltage and current were maintained at 40 kV and 200 mA), measured in the range of $5^{\circ} \le 2\theta \le 80^{\circ}$ and with a wavelength of 0.1542 nm and a scanning speed of 100 min-1). X-ray photoelectron spectroscopy (XPS) spectra were recorded on a VG Scientific ESCALAB Mark II spectrometer. The products of pore size distribution and Brunauer-Emmett-Teller (BET) surface area were obtained by using a Micromeritics ASAP 2010 system at 77 K. A ZETASIZER 3000 HSA system was used to measure the Zeta potential values. Fourier transform infrared (FTIR) spectra were performed on a Bruker Equinox 55 spectrometer with KBr pellets. Raman spectroscopy analysis was carried out by an In Via microscopic confocal at a 532 nm laser beam. The amount of metal element was detected by inductively coupled plasma (ICP-Optima 5300DV, PerkinElmer Inc., USA).

2. The kinetic equations used in this study were given as follows:

Pseudo-first-order model: $\ln(q_e - q_t) = \ln q_e - k_1 t$ (1)

Pseudo-second-order model: $\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$ (2)

where k_1 (min⁻¹) and k_2 (g·mg⁻¹·min⁻¹) are the rate constant of two models, and q_t (mg·g⁻¹) and q_e (mg·g⁻¹) represent the amount of adsorbed U(VI) at t (min) and equilibrium, respectively.

3. The thermodynamic formulas were given as follows:

The thermodynamic data of Gibbs free energy change (ΔG^0) was determined by the following formula:

$$\Delta G^0 = -RT \ln K^0$$

The standard enthalpy change (ΔH^0) and entropy change (ΔS^0) were calculated by plotting ΔG^0 as a function of *T*, which was described as:

$$\Delta G^0 = \Delta H^0 - \Delta S^0 T$$

where R (8.3145 J mol⁻¹·K⁻¹) and T (K) are the ideal gas constant and Kelvin temperature.

Samples	Eleme	ntal composition	NTO/KTO	
	Ti	Al	Na/K	concentration (wt.%)
TAC	73.82	13.91	-	-
T-NTO	68.41	7.94	7.88	49.15
Т-КТО	63.88	8.02	7.29	44.38

Table S1 Chemical compositions of three samples based on ICP Analysis.

Table S2 Parameters for the kinetic adsorption data simulated by pseudo-first-order and pseudo-second-order model.

	Pseudo-first-order		Pseudo-second-order		
Adsorbent	$k_1(h^{-1})$	$R^{2} \qquad k_{2} \left(g^{-1} \cdot m g^{-1} \cdot h^{-1}\right)$		R^2	
T-NTO	0.382	0.991	0.059	0.999	
Т-КТО	0.314	0.965	0.039	0.999	

Table S3 Thermodynamic parameters for Pb (II) adsorption on T-NTO and T-KTO.

Parameters	ΔH^0 (kJ·mol ⁻¹)	$\frac{\Delta S^{\theta}}{(\text{J/mol} \cdot \text{K})}$	$\Delta G^{0} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$		
Adsorbents			298 K	313 K	328 K
T-NTO	32.5	82.7	-8.04	-9.85	-10.51
Т-КТО	30.8	75.4	-6.28	-7.38	-8.08

Fig. S1 The SEM images of T-NTO (a b) and T-KTO (c), respectively. (d) The TEM

of pristine TAC.

Fig. S2 XRD patterns of $\rm H_2O_2\text{-}TAC$ (a) and NaOH-TAC (b).

Fig. S3 The relative distribution of Pb(II) species under different pH values.

Conditions: $C_{(Pb) initial} = 20 \text{ mg/L}$, $C(NaNO_3) = 0.01 \text{ M}$.

Fig. S4 XRD patterns of T-TNO (a) and T-KTO (b) before and after Pb(II) removal.

Fig. S5 XPS spectra of C 1s before (a) and after (b) Pb(II) removal.