Electronic Supplementary Information

The Deposition of Cadmium Selenide and Cadmium Phosphide Thin Films from Cadmium Thioselenoimidodiphosphinate by AACVD and the Formation of Aromatic Species

Temidayo Oyetunde, ${ }^{a, b}$ Mohammad Afzaal,*c Mark A. Vincent, ${ }^{\text {d }}$ and Paul O^{\prime} Brien $^{\dagger b}$
${ }^{a}$ Centre for Chemical and Biochemical Research (CCBR), Redeemer's University, Ede, P.M.B. 230, Osun State. 232102. Nigeria.
${ }^{\mathrm{b}}$ School of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
${ }^{c}$ Maths and Natural Sciences Division, Higher Colleges of Technology, P.O.Box: 7947, Sharjah, United Arab Emirates. Email: mafzaal@hct.ac.ae
${ }^{\mathrm{d}}$ School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
${ }^{\dagger}$ Deceased

Figure S1. Thermogravimetry analysis of $\mathrm{Cd}\left[\left(\mathrm{SPiPr}_{2}\right)\left(\mathrm{SePiPr}_{2}\right)_{2} \mathrm{~N}_{2}\right.$. Inset shows the structure of precursor.

Compound	$\begin{aligned} & \text { Dep. Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Flow Rate (sccm)	Phase	Lattice Constant (Å)	
				Experimental	Literature ${ }^{1,2}$
CdSe	525/500	240	Hexagonal	$a=4.290$ (3)	$a=4.299$
				$c=7.013(3)$	$c=7.010$
$\mathrm{CdSe} / \mathrm{Cd}_{2} \mathrm{P}_{3}$	500/475	160	Monoclinic	$a=18.035(1)$	$a=18.030$
				$b=4.610(3)$	$b=4.610$
				$c=17.854(2)$	$c=17.850$

Table S1. Lattice parameters of the deposited thin films .

Compound	Dep. Temp $\left({ }^{\circ} \mathbf{C}\right)$	Flow Rate (sccm)	Cd (\%)	Se (\%)	P (\%)
$\mathbf{C d S e}$	525	240	39.3	30.6	29.8
	500	240	42.4	34.2	22.7
$\mathbf{C d S e} / \mathrm{Cd}_{2} \mathbf{P}_{\mathbf{3}}$	500	160	43.4	33.9	22.5
	475	160	37.2	34.9	27.1

Table S2. Compositional analysis of films determined by EDAX.

Figure S2. XPS of Cd 3d peaks of (a) $\operatorname{Cd}\left[\left(\mathrm{SPPr}_{2}\right)\left(\mathrm{SePPPr}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ and (b) $\operatorname{Cd}\left[\left(\mathrm{SePiPr}_{2}\right)_{2} \mathrm{~N}_{2}{ }^{3}\right.$.

Figure S3. XPS of Se 3d peaks of (a) $\mathrm{Cd}\left[\left(\mathrm{SPPPr}_{2}\right)\left(\mathrm{SePiPr}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ and (b) $\mathrm{Cd}\left[\left(\mathrm{SePP}^{\mathrm{P}} \mathrm{Pr}_{2}\right)_{2} \mathrm{~N}\right]_{2}{ }^{3}$.

Figure S4. XPS of $P 2$ p peaks of (a) $\mathrm{Cd}\left[\left(\mathrm{SPPr}_{2}\right)\left(\mathrm{SePPPr}_{2}\right)_{2} \mathrm{~N}\right]_{2}$ and (b) $\mathrm{Cd}\left[\left(\mathrm{SePiPr}_{2}\right)_{2} \mathrm{~N}\right]_{2}{ }^{3}$.

Figure. S5. The aromatic ion found in our previous study, at a charge to mass ratio of 207 in the MS. We assigned it this structure due to its stability. For clarity the hydrogens are omitted ${ }^{4}$.

Figure. S6. The $\operatorname{Cd}\left[\left(S P^{i} P r_{2}\right)\left(S e P^{i P r}\right) N\right]\left[\left(S P^{i} P r_{2}\right)\left(S e P^{i P r} r_{2}\right) N\right]^{+}$ion, which is the parent ion with the loss of an isopropyl group from P bound to Se (shown in Red). The Se from the other complete ligand attacks the trivalent P as indicated by the arrow in the left image, to yield the structure shown on the right. For clarity the hydrogens have been omitted ${ }^{4}$.

Figure S7. The stable ion $\left(S P^{i} P r_{2}\right)\left(S e P^{i} P r_{2}\right)_{2} \mathrm{~N}^{+}$formed by the loss of an entire ligand from the ionized complex $\mathrm{Cd}\left[\left(S P^{i} \mathrm{Pr}_{2}\right)\left(\mathrm{SePiPr}_{2}\right)_{2} \mathrm{~N}\right]_{2}{ }^{+}$(formed during MS analysis). Once this ligand has been lost from the complex, it spontaneously cyclized as this results in each element being in a stable valence state. Thus with the positive charge on N, this forms two double bonds to each P and these in turn form two bonds to the iso-propyl groups and one bond to either S or Se, giving two five valent P atoms. The Se and S form a bond to each other to complete the cyclization of the ion and to give them two single bonds each. For clarity the hydrogens have been omitted ${ }^{4}$.

References:

1. (a) T. Logu, K. Sankarasubramanian, P. Soundarrajan and K. Sethuraman, Elect. Mater. Lett., 2015, Vol 11, No 2, 206-212. (b) H. Chauhan, Y. Kumar and S. Deka, Nanoscale., 2014, 6, 10347-10354.
2. D. Oyetunde, M. Afzaal, M. A. Vincent, I. H. Hillier and P. O’Brien, Inorg. Chem., 2011, 50, 2052.
3. T. Oyetunde, M. Afzaal, M. A. Vincent and P. O’Brien, Dalton Trans., 2016, 45, 18603.
4. G. Schaftenaar, E. Vlieg and G. Vriend,"Molden 2.0: quantum chemistry meets proteins", J Comput Aided Mol. Des., 2017, 31, 789. G.Schaftenaar and J.H. Noordik, "Molden: a pre- and post-processing program for molecular and electronic structures", J. Comput.-Aided Mol. Design, 2000, 14, 123-134.
