Electronic Supplementary Information

The Deposition of Cadmium Selenide and Cadmium Phosphide Thin Films from Cadmium Thioselenoimidodiphosphinate by AACVD and the Formation of Aromatic Species

Temidayo Oyetunde,^{a,b} Mohammad Afzaal,*^c Mark A. Vincent,^d and Paul O'Brien^{†b}

^aCentre for Chemical and Biochemical Research (CCBR), Redeemer's University, Ede, P.M.B. 230, Osun State. 232102. Nigeria.

^bSchool of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

^cMaths and Natural Sciences Division, Higher Colleges of Technology, P.O.Box: 7947, Sharjah, United Arab Emirates. Email: mafzaal@hct.ac.ae

^dSchool of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

[†]Deceased

Figure S1. Thermogravimetry analysis of Cd[(SPⁱPr₂)(SePⁱPr₂)₂N]₂. Inset shows the structure of precursor.

Compound	Dep. Temp (°C)	Flow Rate (sccm)	Phase	Lattice Constant (Å)	
				Experimental	Literature ^{1,2}
CdSe	525/500	240	Hexagonal	<i>a</i> = 4.290(3)	<i>a</i> = 4.299
				<i>c</i> = 7.013(3)	<i>c</i> = 7.010
$CdSe/Cd_2P_3$	500/475	160	Monoclinic	<i>a</i> = 18.035(1)	<i>a</i> = 18.030
				b = 4.610(3)	<i>b</i> = 4.610
				<i>c</i> = 17.854(2)	<i>c</i> = 17.850

Table S1. Lattice parameters of the deposited thin films .

Compound	Dep. Temp (°C)	Flow Rate (sccm)	Cd (%)	Se (%)	P (%)
CdSe	525	240	39.3	30.6	29.8
	500	240	42.4	34.2	22.7
CdSe/Cd ₂ P ₃	500	160	43.4	33.9	22.5
	475	160	37.2	34.9	27.1

Table S2. Compositional analysis of films determined by EDAX.

Figure S2. XPS of Cd 3d peaks of (a) $Cd[(SP^{i}Pr_{2})(SeP^{i}Pr_{2})_{2}N]_{2}$ and (b) $Cd[(SeP^{i}Pr_{2})_{2}N]_{2}^{3}$.

Figure S3. XPS of Se 3d peaks of (a) $Cd[(SP^iPr_2)(SeP^iPr_2)_2N]_2$ and (b) $Cd[(SeP^iPr_2)_2N]_2^3$.

Figure S4. XPS of P 2p peaks of (a) $Cd[(SP^{i}Pr_{2})(SeP^{i}Pr_{2})_{2}N]_{2}$ and (b) $Cd[(SeP^{i}Pr_{2})_{2}N]_{2}^{3}$.

Figure. S5. The aromatic ion found in our previous study, at a charge to mass ratio of 207 in the MS. We assigned it this structure due to its stability. For clarity the hydrogens are omitted⁴.

Figure. S6. The $Cd[(SP^iPr_2)(SeP^iPr_2)N][(SP^iPr_2)(SeP^iPr_2)N]^+$ ion, which is the parent ion with the loss of an *iso*propyl group from P bound to Se (shown in Red). The Se from the other complete ligand attacks the trivalent P as indicated by the arrow in the left image, to yield the structure shown on the right. For clarity the hydrogens have been omitted⁴.

Figure S7. The stable ion $(SP^iPr_2)(SeP^iPr_2)_2N^+$ formed by the loss of an entire ligand from the ionized complex $Cd[(SP^iPr_2)(SeP^iPr_2)_2N]_2^+$ (formed during MS analysis). Once this ligand has been lost from the complex, it spontaneously cyclized as this results in each element being in a stable valence state. Thus with the positive charge on N, this forms two double bonds to each P and these in turn form two bonds to the *iso*-propyl groups and one bond to either S or Se, giving two five valent P atoms. The Se and S form a bond to each other to complete the cyclization of the ion and to give them two single bonds each. For clarity the hydrogens have been omitted⁴.

References:

1. (a) T. Logu, K. Sankarasubramanian, P. Soundarrajan and K. Sethuraman, *Elect. Mater. Lett.,* 2015, Vol 11, No 2, 206-212. (b) H. Chauhan, Y. Kumar and S. Deka, *Nanoscale.,* 2014, 6, 10347-10354.

2. D. Oyetunde, M. Afzaal, M. A. Vincent, I. H. Hillier and P. O'Brien, *Inorg. Chem.*, 2011, **50**, 2052.

3. T. Oyetunde, M. Afzaal, M. A. Vincent and P. O'Brien, *Dalton Trans.*, 2016, **45**, 18603.

4. G. Schaftenaar, E. Vlieg and G. Vriend, "Molden 2.0: quantum chemistry meets proteins", *J Comput Aided Mol. Des.*, **2017**, 31, 789. G.Schaftenaar and J.H. Noordik, "Molden: a pre- and post-processing program for molecular and electronic structures", *J. Comput.-Aided Mol. Design*, 2000, **14**, 123-134.