Electronic Supplementary Information (ESI)

A Rational Designed Vapoluminescent Compound with Adsorptive

Channels and Responsive Luminophores for Volatile Organic

Compounds (VOCs)

Mingxue Yang,^{a,b} Xiaoning Li^{a,c}, Jihui Jia^{a,c}, Xu-Lin Chen^{*a,c}, and Can-Zhong Lu^{*a,c}

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China. E-mail: czlu@fjirsm.ac.cn University of Chinese Academy of Sciences, Beijing,100049, China.

Xiamen Institute of Rare-earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China.

Contents

Synthesis	& Characteristics	1			
a)	Characteristic Instruments and methods	1			
b)	Synthesis	2			
Hydroger	n Nuclear Magnetic Resonance (¹ H NMR) Spectra	5			
X-ray Diff	<-ray Diffraction Crystallography9				
Thermod	Thermodynamics Analysis				
Photophy	hotophysical Property				
Reference	es of ESI	14			

Synthesis & Characteristics

All the starting chemicals are purchased from reagent manufacturers and are chemical pure without further purification unless specified.

a) Characteristic Instruments and methods

• Nuclear Magnetic Resonance (NMR)

¹H NMR was performed by Bruker Avance III 400MHz NMR Spectroscopy.

• Crystallography

Crystallography data were obtained from Rigaku SuperNova, with CCD detector and X-ray source of Cu K_a (λ =1.54184Å). Crystal resolution were carried out by Olex2 program (ver.1.2.10) equipping ShelXL-2016 package.¹, ²

• Thermodynamics Analysis

Thermogravimetry - Differential Scanning Calorimeter (TG-DSC) diagram was performed by Mettler-Toledo TGA/DSC 1 STARe. The experiment was taken under nitrogen atmosphere. Alumina crucibles were used and the heating rate was 10°C / min.

• Photoluminescence properties

Photoluminescent properties were measured by Horiba Jobin-Yvon FluoroMax-4 fluorescence spectrometer.

The lifetime of each sample was characterized by Edinburgh Instruments FLS980 UV/V/NIR Fluorescence Spectrometer. 375 nm laser was served as the light source.

Calculation

The distribution of frontier molecule orbitals was obtained from Gaussian 09 program (version D.01)³, and the charge density difference was calculated by Multiwfn 3.4.⁴ All the diagrams were plotted by VMD.⁵

b) Synthesis

Chart S1 Chemical structure of OBC, POB, and POBC.

Chart S2 Synthetic procedure of POBC.

• (4-(1'H-[1,3'-bipyrazol]-1'-yl)phenyl)(4-fluorophenyl)methanone

(FOB)

1'H-1,3'-bipyrazole (10 mmol) was obtained from previous report.⁶ 4.89 g of Cs_2CO_3 (15 mmol), 1.34 g of 1'H-1,3'-bipyrazole (10 mmol) and 15mL of N,N-dimethylformamide (DMF) was added to a 100mL round Schlenk flask under the nitrogen atmosphere, and stirred for half an hour. 2.62 g of

bis(4-fluorophenyl)methanone (12 mmol) was then added into the solution. The

mixture was heated to 150° C for 12 h. After cooled to room temperature, distilled water was poured into the mixture. After being filtered, the solid was washed by 25 mL of brine for 3 times and dissolved by 25 mL of dichloromethane, and dried with MgSO₄ and filtered. The filtered solvent was removed under reduced pressure. The powder was purified by silica column chromatography using hexane and ethyl acetate as eluent. The product yielded 2.90g (87.4%).

¹H NMR (400 MHz, DMSO- d_6) δ 8.79 (s, 1H), 8.42 (s, 1H), 8.09 (s, 2H), 7.89 (d, J = 22.7 Hz, 4H), 7.80 (s, 1H), 7.43 (s, 2H), 6.90 (s, 1H), 6.58 (s, 1H). Elemental Analysis: N=16.57; C=69.03; H=3.65.

• (4-(1'*H*-[1,3'-bipyrazol]-1'-yl) phenyl) (4-(10*H*-phenoxazin-10-

yl)phenyl)methanone (POB)

Similar to the reaction (1) in **Chart S2**. 10Hphenoxazine of 1.2 equivalent to **FOB** was added. The yellow product yielded 83.7%.

¹H NMR (400 MHz, DMSO- d_6) δ 8.81 (s, 1H), 8.42 (s, 1H), 8.11 (s, 2H), 8.03 (s, 4H), 7.81 (s, 1H), 7.64 (s, 2H), 6.91 (s, 1H), 6.78 (s, 2H), 6.72 (s, 4H), 6.59 (s, 1H),

6.02 (s, 2H). Elemental Analysis: N=13.11; C=73.18; H=4.34

• ((4-(1'*H*-[1, 3'-bipyrazol]-1'-yl)phenyl) (4-(10H-phenoxazin-10-

yl)phenyl)methanone)((oxybis(2,1-

phenylene))bis(diphenylphosphane)) copper(I) tetrafluoro-

borate (POBC)

0.108 grams of (oxybis(2,1-phenylene))bis-(diphenylphosphane) (**POP**, 0.2 mmol) and 0.063 g of Cu(CH₃CN)₄BF₄ (0.2 mmol) were added into 10 mL of dichloromethane (DCM), and stirred for 10 minutes. Then 0.099 g of **POB** (0.2 mmol) was added to the solution and stirred for another 20 minutes.

The final product was re-crystalized from the solution. The product yielded 0.139g (58.7%).

¹H NMR (400 MHz, DMSO- d_6) δ 8.83 (d, J = 2.7 Hz, 1H), 8.48 (s, 1H), 8.06 (d, J = 8.3 Hz, 2H), 8.00 – 7.72 (m, 5H), 7.67 (d, J = 8.0 Hz, 2H), 7.56 – 7.13 (m, 22H), 7.10 – 6.96 (m, 5H), 6.82 – 6.58 (m, 9H), 6.02 (dd, J = 7.5, 1.8 Hz, 2H). Elemental Analysis: N=5.84; C=67.90; H=4.16

• ((4-(1'*H*-[1, 3'-bipyrazol]-1'-yl)phenyl)(phenyl) methanone)

((oxybis(2,1-phenylene))bis(diphenylphosphane)) copper(I)

tetrafluoroborate (OBC)

Similar to the reaction (1) and (3) in **Chart S2**, except (4-fluorophenyl)(phenyl)methanone was used as the starting material instead of bis(4-fluorophenyl)methanone. The yield of re-crystalized **OBC** was 61.1%.

1H NMR (400 MHz, DMSO-d6) δ 8.81 (d, J = 2.8

Hz, 1H), 8.46 (s, 1H), 8.05 (d, J = 8.3 Hz, 2H), 7.89 – 7.68 (m, 6H), 7.60 (t, J = 7.6 Hz, 2H), 7.56 – 7.10 (m, 22H), 7.06 (t, J = 7.5 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.95 (s, 1H), 6.66 (d, J = 7.3 Hz, 2H), 6.61 (t, J = 2.2 Hz, 1H). Elemental Analysis: N=5.47; C=66.02; H=4.03

Hydrogen Nuclear Magnetic Resonance (¹H NMR) Spectra

Fig. S4 ¹H NMR spectra of FOB (*d*⁶-DMSO as solvent)

Fig. S6 ¹H NMR spectra of **OBC** (*d*⁶-DMSO as solvent)

Fig. S7 ¹H NMR spectra of **POBC** (*d*⁶-DMSO as solvent)

X-ray Diffraction Crystallography

Fig. S8 POB viewing in different perspectives. (a)/(b)/(c) are the single molecule of POB viewing through a/b/c axis, while (d)/(e)/(f) are the stacked molecules viewing in the same direction to (a)/(b)/(c), respectively.

Fig. S9 OBC viewing in different perspectives. (a)/(b)/(c) are the single molecule of OBC viewing through a/b/c axis, while (d)/(e)/(f) are the stacked molecules viewing in the same direction to (a)/(b)/(c), respectively.

Fig. S10 POBC viewing in different perspectives. (a)/(b)/(c) are the single molecule of POBC viewing through a/b/c axis, while (d)/(e)/(f) are the stacked molecules viewing in the same direction to (a)/(b)/(c), respectively. In Fig. S6(e), dichloromethane molecules are shown in the tunnels.

Identification code	1864205_OBC			
Empirical formula	$C_{55}H_{42}BCuF_4N_4O_2P_2$			
Formula weight	1003.21			
Temperature/K	100.0(2)			
Crystal system	monoclinic			
Space group	P2 ₁ /c			
a/Å	27.2797(2)			
b/Å	30.1904(3)			
c/Å	11.65080(10)			
α/°	90			
β/°	91.3520(10)			
γ/°	90			
Volume/Å ³	9592.75(14)			
Z	8			
$\rho_{calc}g/cm^3$	1.389			
µ/mm⁻¹	1.796			
F(000)	4128.0			
Crystal size/mm ³	$0.16 \times 0.12 \times 0.1$			
Radiation	CuKα (λ = 1.54184)			
20 range for data collection/°	8.136 to 141.114			
Index ranges	$-30 \le h \le 33$, $-36 \le k \le 32$, $-14 \le l \le 11$			
Reflections collected	60932			
Independent reflections	18213 [R _{int} = 0.0380, R _{sigma} = 0.0318]			
Data/restraints/parameters	18213/24/1300			
Goodness-of-fit on F ²	1.171			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0612, wR_2 = 0.1488$			
Final R indexes [all data]	$R_1 = 0.0672, wR_2 = 0.1518$			
Largest diff. peak/hole / e Å ⁻³	1.42/-0.45			

Table 1 Crystal data and structure refinement for OBC

		1		1	1
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu10	P101	2.2819(10)	P202	C243	1.822(4)
Cu10	P102	2.2337(10)	P202	C244	1.826(4)
Cu10	N101	2.073(3)	P202	C250	1.825(4)
Cu10	N103	2.157(3)	O201	C213	1.226(5)
P101	C120	1.820(4)	O202	C237	1.401(4)
P101	C126	1.819(4)	O202	C238	1.397(4)
P101	C132	1.833(4)	N201	N202	1.363(4)
P102	C143	1.827(3)	N201	C201	1.328(5)
P102	C144	1.822(4)	N202	C203	1.353(4)
P102	C150	1.825(4)	N202	C204	1.397(4)
0101	C113	1.228(6)	N203	N204	1.372(4)
0102	C137	1.400(4)	N203	C204	1.322(4)
0102	C138	1.405(4)	N204	C206	1.355(4)
N101	N102	1.363(4)	N204	C207	1.415(4)
N101	C101	1.330(5)	C201	C202	1.400(5)
N102	C103	1.360(5)	C202	C203	1.377(6)
N102	C104	1.391(4)	C204	C205	1.400(5)
N103	N104	1.370(4)	C205	C206	1.358(5)
N103	C104	1.321(4)	C207	C208	1.399(5)
N104	C106	1.357(4)	C207	C212	1.394(5)
N104	C107	1.413(4)	C208	C209	1.381(5)
C101	C102	1.406(6)	C209	C210	1.394(5)
C102	C103	1.362(6)	C210	C211	1.390(5)
C104	C105	1.391(5)	C210	C213	1.482(5)
C105	C106	1.371(5)	C211	C212	1.377(5)
C107	C108	1.398(5)	C213	C214	1.491(5)
C107	C112	1.394(5)	C214	C215	1.391(6)
C108	C109	1.376(5)	C214	C219	1.393(5)
C109	C110	1.390(5)	C215	C216	1.393(6)
C110	C111	1.395(5)	C216	C217	1.389(7)
C110	C113	1.476(5)	C217	C218	1.386(8)
C111	C112	1.374(5)	C218	C219	1.389(6)
C113	C114	1.500(6)	C220	C221	1.374(5)
C114	C115	1.404(8)	C220	C225	1.388(6)
C114	C119	1.394(7)	C221	C222	1.397(6)
C115	C116	1.390(7)	C222	C223	1.371(6)
C116	C117	1.380(10)	C223	C224	1.366(7)

Table 2 Selected Bond Lengths for OBC

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
P102	Cu10	P101	113.32(4)	C243	P202	Cu20	109.23(12)
N101	Cu10	P101	106.91(9)	C243	P202	C244	103.10(16)
N101	Cu10	P102	122.88(9)	C243	P202	C250	104.85(16)
N101	Cu10	N103	78.24(11)	C244	P202	Cu20	117.39(13)
N103	Cu10	P101	110.82(8)	C250	P202	Cu20	117.10(12)
N103	Cu10	P102	119.78(8)	C250	P202	C244	103.63(17)
C120	P101	Cu10	107.76(12)	C238	0202	C237	118.6(3)
C120	P101	C132	103.46(17)	N202	N201	Cu20	113.0(2)
C126	P101	Cu10	115.01(13)	C201	N201	Cu20	142.3(3)
C126	P101	C120	103.58(17)	C201	N201	N202	104.4(3)
C126	P101	C132	103.80(17)	N201	N202	C204	118.3(3)
C132	P101	Cu10	121.34(12)	C203	N202	N201	112.4(3)
C143	P102	Cu10	108.56(11)	C203	N202	C204	129.3(3)
C144	P102	Cu10	118.22(13)	N204	N203	Cu20	144.4(2)
C144	P102	C143	102.20(16)	C204	N203	Cu20	111.7(2)
C144	P102	C150	104.01(17)	C204	N203	N204	103.9(3)
C150	P102	Cu10	117.70(11)	N203	N204	C207	121.1(3)
C150	P102	C143	104.27(16)	C206	N204	N203	110.7(3)
C137	0102	C138	116.2(3)	C206	N204	C207	128.2(3)
N102	N101	Cu10	113.0(2)	N201	C201	C202	111.7(3)
C101	N101	Cu10	142.6(3)	C203	C202	C201	105.3(3)
C101	N101	N102	104.4(3)	N202	C203	C202	106.2(3)
N101	N102	C104	118.6(3)	N202	C204	C205	128.5(3)
C103	N102	N101	112.2(3)	N203	C204	N202	118.4(3)
C103	N102	C104	129.1(3)	N203	C204	C205	113.1(3)
N104	N103	Cu10	144.2(2)	C206	C205	C204	103.7(3)
C104	N103	Cu10	111.9(2)	N204	C206	C205	108.5(3)
C104	N103	N104	103.9(3)	C208	C207	N204	119.1(3)
N103	N104	C107	121.6(3)	C212	C207	N204	121.0(3)
C106	N104	N103	110.8(3)	C212	C207	C208	119.9(3)
C106	N104	C107	127.5(3)	C209	C208	C207	119.2(3)
N101	C101	C102	111.2(4)	C208	C209	C210	121.2(3)
C103	C102	C101	105.9(3)	C209	C210	C213	123.6(3)
N102	C103	C102	106.2(4)	C211	C210	C209	118.6(3)
N102	C104	C105	128.0(3)	C211	C210	C213	117.8(3)
N103	C104	N102	118.3(3)	C212	C211	C210	121.0(3)
N103	C104	C105	113.7(3)	C211	C212	C207	119.8(3)

Table 3 Selected Bond Angles for OBC

Identification code	1864206_POB		
Empirical formula	$C_{31}H_{21}N_5O_2$		
Formula weight	495.53		
Temperature/K	100.0(2)		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	17.7416(4)		
b/Å	5.58580(10)		
c/Å	24.5679(8)		
α/°	90		
β/°	102.175(3)		
γ / °	90		
Volume/Å ³	2379.94(11)		
Z	4		
ρ _{calc} g/cm ³	1.383		
μ/mm⁻¹	0.718		
F(000)	1032.0		
Crystal size/mm ³	0.28 × 0.26 × 0.15		
Radiation	CuKα (λ = 1.54184)		
20 range for data collection/°	7.362 to 148.982		
Index ranges	$-21 \le h \le 17, -6 \le k \le 6, -28 \le l \le 30$		
Reflections collected	8865		
Independent reflections	4701 [R _{int} = 0.0233, R _{sigma} =		
	0.0334]		
Data/restraints/parameters	4701/0/343		
Goodness-of-fit on F ²	1.058		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0369, wR_2 = 0.0883$		
Final R indexes [all data]	$R_1 = 0.0452, wR_2 = 0.0943$		
Largest diff. peak/hole / e Å ⁻³	0.20/-0.27		

Table 4 Crystal data and structure refinement for POB

			0		
Atom	Atom	Length/Å	Atom	Atom	Length/Å
0001	C00H	1.2204(16)	COOB	COOP	1.3878(18)
O002	C00Q	1.3851(18)	C00C	COOF	1.3827(18)
O002	C00U	1.3887(18)	C00D	C00M	1.3948(18)
N003	N004	1.3679(15)	C00D	COOP	1.3888(19)
N003	C008	1.4144(16)	COOE	COOS	1.3864(18)
N003	C00I	1.3618(17)	C00G	C00I	1.3697(19)
N004	COON	1.3241(17)	C00G	C00N	1.4035(19)
N005	N007	1.3625(15)	C001	C00O	1.3671(19)
N005	COOJ	1.3604(18)	СООК	C00M	1.3918(18)
N005	COON	1.4011(16)	COOL	C00T	1.3926(19)
N006	C00D	1.4270(16)	COOL	C00U	1.4003(19)
N006	COOL	1.4086(17)	C00O	COOR	1.404(2)
N006	C00V	1.4083(16)	C00Q	C00V	1.4000(19)
N007	COOR	1.3280(18)	C00Q	COOX	1.3770(19)
C008	C00C	1.3942(18)	C00T	C00Y	1.393(2)
C008	COOS	1.3975(18)	C00U	C011	1.377(2)
C009	COOB	1.3959(17)	C00V	C00Z	1.389(2)
C009	C00H	1.4990(17)	C00W	COOX	1.394(2)
C009	С00К	1.3983(19)	C00W	C010	1.381(2)
C00A	COOE	1.3968(19)	C00Y	C012	1.385(2)
C00A	COOF	1.3999(18)	COOZ	C010	1.396(2)
C00A	C00H	1.4923(17)	C011	C012	1.393(2)

Table 5 Bond Lengths for POB

Atom	Atom	Atom	Δngle/°	Atom	Atom	Atom	Δngle/°
<u> </u>	0002		116 20(11)			<u></u>	107 67(12)
	0002	C000	110.30(11)	NOOS	C001	C000	107.07(12)
N004	N003	008	119.37(10)	N005	COOJ	0000	106.61(12)
C001	N003	N004	111.66(10)	COOM	COOK	C009	119.78(12)
C001	N003	C008	128.91(11)	С00Т	COOL	N006	124.03(12)
COON	N004	N003	103.48(10)	C00T	COOL	C00U	117.80(12)
N007	N005	COON	118.99(11)	C00U	COOL	N006	118.08(12)
COOJ	N005	N007	112.40(11)	СООК	C00M	C00D	120.20(12)
C00J	N005	C00N	128.00(11)	N004	C00N	N005	119.28(12)
COOL	N006	C00D	121.24(11)	N004	COON	C00G	113.60(11)
C00V	N006	C00D	120.53(11)	N005	COON	C00G	126.98(12)
C00V	N006	COOL	117.83(11)	COOJ	C00O	COOR	104.83(12)
COOR	N007	N005	103.71(11)	COOB	COOP	C00D	119.73(12)
C00C	C008	N003	119.38(11)	0002	C00Q	C00V	121.02(12)
C00C	C008	C00S	120.49(12)	C00X	C00Q	0002	117.34(13)
COOS	C008	N003	120.13(11)	C00X	C00Q	C00V	121.63(14)
COOB	C009	C00H	120.62(11)	N007	COOR	C000	112.44(12)
COOB	C009	С00К	119.50(12)	C00E	COOS	C008	119.67(12)
COOK	C009	C00H	119.88(11)	COOL	С00Т	C00Y	120.94(14)
COOE	C00A	C00F	118.97(12)	0002	C00U	C00L	121.61(12)
COOE	C00A	C00H	119.72(11)	C011	C00U	0002	116.67(13)
COOF	C00A	C00H	121.28(12)	C011	C00U	C00L	121.56(14)
COOP	C00B	C009	120.64(12)	C00Q	C00V	N006	118.76(12)
COOF	C00C	C008	119.25(11)	C00Z	C00V	N006	123.03(12)
C00M	C00D	N006	119.25(12)	C00Z	C00V	C00Q	118.21(13)
COOP	C00D	N006	120.64(12)	C010	C00W	C00X	119.69(13)
COOP	C00D	C00M	120.12(12)	C00Q	C00X	C00W	119.58(14)
COOS	C00E	C00A	120.51(11)	C012	C00Y	C00T	120.25(15)
C00C	COOF	C00A	121.11(12)	C00V	C00Z	C010	120.43(14)
C001	C00G	C00N	103.59(12)	C00W	C010	C00Z	120.44(15)
0001	C00H	C009	120.88(11)	C00U	C011	C012	120.01(14)
0001	C00H	C00A	121.39(12)	C00Y	C012	C011	119.43(14)
C00A	C00H	C009	117.73(10)				

Table 6 Bond Angles for POB

Identification code	1864207_POBC_EtOH		
Empirical formula	$C_{67}H_{49}CuN_5O_3P_2BF_4$		
Formula weight	1184.40		
Temperature/K	100.00(16)		
Crystal system	triclinic		
Space group	P-1		
a/Å	14.8651(7)		
b/Å	15.2844(6)		
c/Å	16.9100(5)		
α/°	96.249(3)		
β/°	107.674(3)		
γ/°	114.228(4)		
Volume/Å ³	3215.5(2)		
Z	2		
ρ _{calc} g/cm ³	1.223		
μ/mm ⁻¹	1.437		
F(000)	1220.0		
Crystal size/mm ³	0.29 × 0.15 × 0.09		
Radiation	CuKα (λ = 1.54184)		
20 range for data collection/°	6.584 to 149.376		
Index ranges	$-18 \le h \le 16$, $-17 \le k \le 19$, $-18 \le l \le 21$		
Reflections collected	23544		
Independent reflections	12789 [R _{int} = 0.0288, R _{sigma} = 0.0371]		
Data/restraints/parameters	12789/0/748		
Goodness-of-fit on F ²	1.037		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0353$, $wR_2 = 0.0885$		
Final R indexes [all data]	$R_1 = 0.0429$, $wR_2 = 0.0933$		
Largest diff. peak/hole / e Å ⁻³	0.33/-0.50		

Table 7 Crystal data and structure refinement for POBC (grown in EtOH)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu1	P1	2.3015(5)	C21	C22	1.397(3)
Cu1	P2	2.2138(5)	C22	C23	1.380(3)
Cu1	N3	2.1092(13)	C23	C24	1.394(3)
Cu1	N5	2.0689(14)	C24	C25	1.395(3)
P1	C32	1.8218(17)	C26	C27	1.369(2)
P1	C38	1.8265(16)	C27	C28	1.399(2)
P1	C44	1.8358(16)	C29	C30	1.370(3)
P2	C55	1.8238(16)	C30	C31	1.397(2)
P2	C56	1.8215(16)	C32	C33	1.398(2)
P2	C62	1.8208(17)	C32	C37	1.398(2)
01	C1	1.220(2)	C33	C34	1.390(2)
02	C49	1.403(2)	C34	C35	1.386(3)
02	C50	1.3922(19)	C35	C36	1.383(3)
03	C19	1.391(3)	C36	C37	1.390(2)
03	C20	1.388(2)	C38	C39	1.389(2)
N1	C5	1.445(2)	C38	C43	1.392(2)
N1	C14	1.419(2)	C39	C40	1.391(2)
N1	C25	1.406(3)	C40	C41	1.380(3)
N2	N3	1.3662(18)	C41	C42	1.381(3)
N2	C11	1.419(2)	C42	C43	1.396(2)
N2	C26	1.362(2)	C44	C45	1.400(2)
N3	C28	1.328(2)	C44	C49	1.396(2)
N4	N5	1.3688(19)	C45	C46	1.390(2)
N4	C28	1.401(2)	C46	C47	1.386(3)
N4	C29	1.355(2)	C47	C48	1.392(3)
N5	C31	1.329(2)	C48	C49	1.387(2)
C1	C2	1.496(2)	C50	C51	1.386(2)
C1	C8	1.493(2)	C50	C55	1.401(2)
C2	C3	1.396(2)	C51	C52	1.394(2)
C2	C7	1.393(3)	C52	C53	1.382(3)
C3	C4	1.386(2)	C53	C54	1.394(2)
C4	C5	1.389(3)	C54	C55	1.398(2)
C5	C6	1.383(2)	C56	C57	1.391(2)
C6	C7	1.398(3)	C56	C61	1.401(2)
C8	C9	1.404(2)	C57	C58	1.385(2)
C8	C13	1.396(2)	C58	C59	1.390(2)
C9	C10	1.386(2)	C59	C60	1.382(3)

Table 8 Selected Bond Lengths for POBC (grown in EtOH)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	, Angle/°
P2	Cu1	P1	117.750(17)	C23	C22	C21	119.3(2)
N3	Cu1	P1	101.29(4)	C22	C23	C24	120.5(2)
N3	Cu1	P2	125.91(4)	C23	C24	C25	120.64(19)
N5	Cu1	P1	100.02(4)	C20	C25	N1	118.58(17)
N5	Cu1	P2	125.06(4)	C24	C25	N1	123.33(17)
N5	Cu1	N3	78.26(5)	C24	C25	C20	118.08(19)
C32	P1	Cu1	105.26(5)	N2	C26	C27	108.00(15)
C32	P1	C38	105.29(8)	C26	C27	C28	103.68(14)
C32	P1	C44	103.53(8)	N3	C28	N4	116.61(14)
C38	P1	Cu1	115.44(6)	N3	C28	C27	113.26(15)
C38	P1	C44	102.73(7)	C27	C28	N4	130.12(15)
C44	P1	Cu1	122.84(5)	N4	C29	C30	106.73(15)
C55	P2	Cu1	107.50(5)	C29	C30	C31	105.51(16)
C56	P2	Cu1	119.14(6)	N5	C31	C30	111.53(16)
C56	P2	C55	105.88(7)	C33	C32	P1	119.73(13)
C62	P2	Cu1	118.07(6)	C37	C32	P1	120.44(12)
C62	P2	C55	103.51(8)	C37	C32	C33	118.69(16)
C62	P2	C56	101.16(8)	C34	C33	C32	120.60(16)
C50	02	C49	116.09(12)	C35	C34	C33	120.10(17)
C20	03	C19	115.14(15)	C36	C35	C34	119.83(17)
C14	N1	C5	117.90(16)	C35	C36	C37	120.43(17)
C25	N1	C5	116.93(15)	C36	C37	C32	120.35(16)
C25	N1	C14	116.56(16)	C39	C38	P1	122.43(13)
N3	N2	C11	120.28(13)	C39	C38	C43	119.07(15)
C26	N2	N3	111.13(13)	C43	C38	P1	118.43(13)
C26	N2	C11	128.57(14)	C38	C39	C40	119.74(18)
N2	N3	Cu1	141.71(10)	C41	C40	C39	120.87(19)
C28	N3	Cu1	113.67(11)	C40	C41	C42	119.98(16)
C28	N3	N2	103.93(13)	C41	C42	C43	119.40(18)
N5	N4	C28	117.90(13)	C38	C43	C42	120.93(18)
C29	N4	N5	111.63(14)	C45	C44	P1	121.72(12)
C29	N4	C28	130.45(15)	C49	C44	P1	120.85(12)
N4	N5	Cu1	112.87(10)	C49	C44	C45	117.42(15)
C31	N5	Cu1	142.04(12)	C46	C45	C44	121.11(16)
C31	N5	N4	104.60(13)	C47	C46	C45	120.16(16)

Table 9 Selected Bond Angles for POBC (grown in EtOH)

Identification code	1864278_POBC_DCM			
Empirical formula	$C_{67}H_{49}CuN_5O_3P_2BF_4 \cdot CH_2Cl_2$			
Formula weight	1269.32			
Temperature/K	99.99(17)			
Crystal system	triclinic			
Space group	P-1			
a/Å	14.5410(5)			
b/Å	15.2405(4)			
c/Å	16.9377(6)			
α/°	96.877(3)			
β/°	106.932(3)			
γ/°	113.006(3)			
Volume/Å ³	3186.9(2)			
Z	2			
ρ _{calc} g/cm ³	1.323			
μ/mm⁻¹	2.238			
F(000)	1304.0			
Crystal size/mm ³	$0.23 \times 0.21 \times 0.14$			
Radiation	CuKα (λ = 1.54184)			
20 range for data collection/°	7.108 to 149.58			
Index ranges	-18 ≤ h ≤ 17, -8 ≤ k ≤ 18, -21 ≤ l ≤ 19			
Reflections collected	22764			
Independent reflections	12639 [R _{int} = 0.0274, R _{sigma} = 0.0381]			
Data/restraints/parameters	12639/69/763			
Goodness-of-fit on F ²	1.022			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0432, wR_2 = 0.1197$			
Final R indexes [all data]	$R_1 = 0.0508$, $wR_2 = 0.1265$			
Largest diff. peak/hole / e Å-3	0.52/-1.29			

Table 10 Crystal data and structure refinement for POBC (grown in DCM/Ether)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu1	P8	2.3004(6)	C22	C23	1.383(4)
Cu1	P28	2.2127(6)	C23	C24	1.390(4)
Cu1	N2	2.0657(18)	C24	C25	1.393(4)
Cu1	N4	2.1065(17)	C26	C27	1.371(3)
P8	C32	1.824(2)	C27	C28	1.401(3)
P8	C38	1.829(2)	C29	C30	1.369(3)
P8	C44	1.835(2)	C30	C31	1.401(3)
P28	C55	1.824(2)	C32	C33	1.398(3)
P28	C56	1.823(2)	C32	C37	1.398(3)
P28	C62	1.821(2)	C33	C34	1.394(3)
01	C1	1.222(3)	C34	C35	1.382(4)
02	C19	1.377(3)	C35	C36	1.387(4)
02	C20	1.397(4)	C36	C37	1.388(3)
03	C49	1.398(3)	C38	C39	1.399(3)
03	C50	1.393(3)	C38	C43	1.395(3)
N1	C11	1.437(3)	C39	C40	1.392(3)
N1	C14	1.439(2)	C40	C41	1.387(4)
N1	C25	1.402(4)	C41	C42	1.381(4)
N2	N3	1.366(2)	C42	C43	1.397(3)
N2	C31	1.329(3)	C44	C45	1.401(3)
N3	C28	1.403(3)	C44	C49	1.400(3)
N3	C29	1.354(3)	C45	C46	1.389(3)
N4	N5	1.364(2)	C46	C47	1.384(4)
N4	C28	1.327(3)	C47	C48	1.391(3)
N5	C5	1.419(3)	C48	C49	1.391(3)
N5	C26	1.360(3)	C50	C51	1.390(3)
C1	C2	1.496(3)	C50	C55	1.394(3)
C1	C8	1.497(3)	C51	C52	1.390(3)
C2	C3	1.401(3)	C52	C53	1.376(3)
C2	C7	1.397(3)	C53	C54	1.393(3)
C3	C4	1.387(3)	C54	C55	1.398(3)
C4	C5	1.395(3)	C56	C57	1.402(3)
C5	C6	1.388(3)	C56	C61	1.393(3)
C6	C7	1.387(3)	C57	C58	1.385(3)
C8	C9	1.395(3)	C58	C59	1.390(4)
C8	C13	1.398(3)	C59	C60	1.387(3)
C9	C10	1.387(3)	C60	C61	1.400(3)

Table 11 Selected Bond Lengths for POBC (grown in DCM/Ether)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
P28	Cu1	P8	117.95(2)	C22	C23	C24	120.4(3)
N2	Cu1	P8	99.49(5)	C23	C24	C25	120.8(3)
N2	Cu1	P28	125.52(5)	C20	C25	N1	118.4(2)
N2	Cu1	N4	78.33(7)	C24	C25	N1	123.7(2)
N4	Cu1	P8	101.41(5)	C24	C25	C20	118.0(3)
N4	Cu1	P28	125.48(5)	N5	C26	C27	108.20(19)
C32	P8	Cu1	105.46(7)	C26	C27	C28	103.49(18)
C32	P8	C38	105.35(10)	N4	C28	N3	116.81(18)
C32	P8	C44	103.47(10)	N4	C28	C27	113.12(19)
C38	P8	Cu1	115.81(7)	C27	C28	N3	130.07(19)
C38	P8	C44	102.18(9)	N3	C29	C30	107.02(19)
C44	P8	Cu1	122.81(7)	C29	C30	C31	105.3(2)
C55	P28	Cu1	107.52(7)	N2	C31	C30	111.4(2)
C56	P28	Cu1	118.08(7)	C33	C32	P8	120.37(17)
C56	P28	C55	104.04(10)	C33	C32	C37	119.18(19)
C62	P28	Cu1	119.08(7)	C37	C32	P8	119.26(16)
C62	P28	C55	105.85(10)	C34	C33	C32	119.9(2)
C62	P28	C56	100.76(10)	C35	C34	C33	120.5(2)
C19	02	C20	115.52(18)	C34	C35	C36	119.8(2)
C50	03	C49	116.66(15)	C35	C36	C37	120.3(2)
C11	N1	C14	118.46(19)	C36	C37	C32	120.3(2)
C25	N1	C11	117.9(2)	C39	C38	P8	122.33(17)
C25	N1	C14	117.45(19)	C43	C38	P8	118.20(16)
N3	N2	Cu1	113.04(13)	C43	C38	C39	119.4(2)
C31	N2	Cu1	141.47(15)	C40	C39	C38	119.8(2)
C31	N2	N3	104.81(17)	C41	C40	C39	120.5(2)
N2	N3	C28	117.65(17)	C42	C41	C40	120.1(2)
C29	N3	N2	111.48(17)	C41	C42	C43	119.9(2)
C29	N3	C28	130.81(18)	C38	C43	C42	120.3(2)
N5	N4	Cu1	141.63(13)	C45	C44	P8	121.55(16)
C28	N4	Cu1	113.55(14)	C49	C44	P8	120.80(16)
C28	N4	N5	104.20(16)	C49	C44	C45	117.64(19)
N4	N5	C5	120.46(16)	C46	C45	C44	120.8(2)
C26	N5	N4	110.98(17)	C47	C46	C45	120.5(2)
C26	N5	C5	128.54(18)	C46	C47	C48	120.0(2)
01	C1	C2	120.40(19)	C47	C48	C49	119.3(2)

Table 12 Selected Bond Angles for POBC (grown in DCM/Ether)

100 (%) tie 90 90 100 200 300 400 500 600 700 800 Temperature (°C)

Thermodynamics Analysis

Fig. S11 Thermogravimetry and Differential Scanning Calorimeter Plot for POBC. The solvent adsorbed in the sample continuously diffused before 200°C. Then the sample began to diffuse and completely liquidified at 284.5°C. The sample decomposed at around 336°C. Further decomposition occurred at c.a. 389°C. The whole decomposition proceeded until the temperature reached 550°C or so. The remnant Selected the sample gasified with the heating afterward.

Fig. S12 Photoluminescence spectra of OBC crystal without fumed and after fumed by hexane and ethanol.

Fig. S13 Photoluminescence spectra of POB crystal without fumed and after fumed by hexane and ethanol.

Fig. S14 Decay Spectra of dry sample, sample immersed in hexane and ethanol, respectively.

References of ESI

- 1. G. M. Sheldrick, *Acta Crystallographica*, 2008, **64**, 112–122.
- 2. O. V. Dolomanov, J. Appl. Crystallogr., 2010, 42, 339-341.
- 3. Author, Gaussian 09, Wallingford CT, Gaussian, Inc, 2016
- 4. T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.
- 5. W. Humphrey, A. Dalke and K. Schulten, *Journal of Molecular Graphics*, 1996, **14**, 33-38.
- 6. M. Bruix, M. L. Castellanos, M. R. Martín and J. de Mendoza, *Tetrahedron Lett.*, 1985, **26**, 5485-5488.