Supporting Information

Flexible Ti₃C₂T_x/PEDOT:PSS Films with Outstanding Volumetric

Capacitance for Asymmetric Supercapacitors

Lu Li^{a, b}, Na Zhang^c, Mingyi Zhang^b, Xitian Zhang^{*, b}, Zhiguo Zhang^{*, a} ^a Condensed Matter Science and Technology Institute, Department of Physics, Harbin Institute of Technology, Harbin 150001, People's Republic of China.

^b Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.

^c Department of Chemistry and Chemical Biology, Cornell University, Ithaca, USA.

^{*}Corresponding author: E-mail: xtzhangzhang@hotmail.com (X. T. Zhang)

^{*}Corresponding author: E-mail: zhangzhiguo@hit.edu.cn (Z. G. Zhang)

Calculation

The capacitance could be calculated from CV or GCD curves by the following equations.

For specific capacitance (C_m) :

From CV curves:
$$C_m = \frac{\int \mathrm{Id}V}{2 \cdot m \cdot v \cdot \Delta V}$$
 (1)

Here, C_m is the specific capacitance (F g⁻¹). I is the response current (A), V is the potential vs. reference electrode (V), m is mass (mg), v is the scan rate (mV s⁻¹), ΔV is the potential window (V).

From GCD curves:
$$C_m = \frac{I \cdot \Delta t}{m \cdot \Delta V}$$
 (2)

Here, C_m is the specific capacitance (F g⁻¹). I is the current (A), Δt is the discharging time (s), m is mass (mg) and ΔV is the potential window (V).

For volumetric capacitance (C_v) :

$$C_v = \rho \cdot C_m \tag{3}$$

Here, C_m is the specific capacitance (F g⁻¹), C_v is the volumetric capacitance (F cm⁻³), and ρ is the electrode density (g cm⁻³).

Before assembling the ASC, it is necessary to maintain charge balance between positive and negative electrodes. The mass ratio of the negative electrode to the positive electrode was decided based on charge balance theory ($q_+ = q_-$). The charge stored (q) by each electrode depends on the following equation:

$$q = C_m \times \Delta V \times m \tag{4}$$

The volumetric capacitance (C), energy density (E) and power density (P) of the

ASC could be calculated by the following equations.

$$C = \frac{\mathbf{I} \cdot \Delta t}{\mathbf{v} \cdot \Delta V} \tag{5}$$

$$E = \frac{1}{2} C \cdot (\Delta V)^2 \tag{6}$$

$$P = \frac{E}{\Delta t} \tag{7}$$

Here, C is the volumetric capacitance (F cm⁻³), I is the constant discharge current (A), Δt is the discharging time (s), v is the volume of active materials including the two working electrodes (cm⁻³), and ΔV is the cell voltage (V).

Sample	Ti ₃ C ₂ T _x NSs (mL) (1.5 mg/mL)	PH1000 (μL) (1.5%)	MXene content	Soaked in concentrated	Density (g/cm³)
тст	(1.5 mg/mL)	(1.570)	1000/	H <u>2</u> 504	2.05
$\Pi_3 \mathbb{C}_2 \Pi_x$	10	U	100%	-	3.95
$Ti_3C_2T_x/P-50$	10	50	95.2%	-	3.67
Ti ₃ C ₂ T _x /P-100	10	100	90.9%	-	3.29
$Ti_3C_2T_x/P-200$	10	200	83.3%	-	3.13
$Ti_3C_2T_x$ -H	10	0	-	24 h	3.95
Ті ₃ С ₂ Т _{<i>х</i>} /Р-50-Н	10	50	-	24 h	3.92
Ті ₃ С ₂ Т _{<i>х</i>} /Р-100-Н	10	100	-	24 h	3.72
Ті ₃ С ₂ Т _{<i>x</i>} /Р-200-Н	10	200	-	24 h	3.31

 Table S1. Experimental parameters of the prepared samples.

Material	Electrolyte	Volumetric capacitance	Ref.
few-layer $Ti_3C_2T_x$	1M KOH	350 mF/cm ³ at 2 mV/s	1
$Ti_3C_2T_x$ clay	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	900 mF/cm ³ at 2 mV/s	2
d-Ti ₃ C ₂ /CNT	6М КОН	393 mF/cm ³ at 5 mV/s	3
PPy/ $Ti_3C_2T_x$ films	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	1000 mF/cm ³ at 5 mV/s	4
$Ti_3C_2T_x$	$1 M H_2 SO_4$	$360 \text{ mF/cm}^3 \text{ at } 2 \text{ mV/s}$	5
Mixed Ti ₃ C ₂ T _x /SWCNT	$1 M H_2 SO_4$	$300 \text{ mF/cm}^3 \text{ at } 2 \text{ mV/s}$	5
Sandwich-like Ti ₃ C ₂ T _x /SWCNT	$1 M H_2 SO_4$	$390 \text{ mF/cm}^3 \text{ at } 2 \text{ mV/s}$	5
Sandwich-like Ti ₃ C ₂ T _x /OLC	$1 M H_2 SO_4$	$397 \text{ mF/cm}^3 \text{ at } 2 \text{ mV/s}$	5
Sandwich-like Ti ₃ C ₂ T _x /rGO	$1 M H_2 SO_4$	435 mF/cm ³ at 2 mV/s	5
d-Ti ₃ C ₂	$1 M H_2 SO_4$	520 mF/cm ³ at 2 mV/s	6
Ti ₃ C ₂ T _x /PVA	1M KOH	528 mF/cm ³ at 2 mV/s	7
$Ti_3C_2T_x$ hydrogels	$3M H_2 SO_4$	1500 mF/cm ³ at 2 mV/s	8
Ti ₃ C ₂ T _x /PDDA film	1M KOH	296 mF/cm ³ at 2 mV/s	7
HM treated $Ti_3C_2T_x$	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	250 mF/cm ³ at 2 mV/s	9
$Ti_3C_2T_x/rGO$	$3M H_2 SO_4$	1040 mF/cm ³ at 2 mV/s	10
$Ti_3C_2T_x/P3$	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	1026 mF/cm ³ at 2 mV/s	11
MnO_x -Ti ₃ C ₂ film	1 M LiSO ₄	$602 \text{ mF/cm}^3 \text{ at } 2 \text{ mV/s}$	12
Ті ₃ С ₂ Т _x /Р-100-Н	1M H ₂ SO ₄	1065 mF/cm ³ at 2 mV/s	This
			work

Table S2. The comparison of related experimental results of volumetric capacitance

 from recent years.

Supercapacitor	Energy density (mWh/cm ³)	Power density (mW/cm ³)	Reference	
	4.8	40	- 13	
$EG/11_3C_2 1.3 SC$	1.4	1 600		
Ti ₃ C ₂ /rGO-5% SC	10.3	74 400	10	
	13.6	100	- 12	
$MINO_x/11_3C_2$ SC	10.5	3 756		
Ti ₃ C ₂ // rGO ASC	8.6	200	14	
	11	15 000	- 15	
$L-S-\Pi_3C_2 SC$	18	700		
T: C SC	5.48	~1 000	16	
$\Pi_3 C_2 SC$	6.1	~100		
Nanoporous Ti ₃ C ₂ film SC	20.7	184.8	17	
T: C SC	2.3	159.6	10	
$\Pi_3 C_2 SC$	1.3	2 015	18	
PPy/l-Ti ₃ C ₂ SC	10	500	19	
EG SC	4.9	317 000	20	
Nanoporous graphene film SC	2.65	20 800	21	
	28.2	30 000	- 22	
GO film//3D-DG@MnO ₂	16	55 000		
MXene-CNT// RuO ₂ /CNT yarn	61.6	358	23	
т: с т /р 100 ц//-со Асс	23	848	This work	
11 ₃ U ₂ 1 _x /P-100-H//rGU ASC	13	7659		

 Table S3. The comparison of related experimental results from recent years.

Fig. S1 Zeta potential of $Ti_3C_2T_x$ and PH1000 aqueous solution.

Fig. S2 (a) Cross-section SEM image of $Ti_3C_2T_x$ after H_2SO_4 treatment. (b) HRTEM images of $Ti_3C_2T_x/P$ -100 film, inset is profile plot of the calibration for measuring the spacing of $Ti_3C_2T_x$ NSs. (c) Enlarged HRTEM images of $Ti_3C_2T_x/P$ -100-H film.

Fig. S3 Nitrogen adsorption and desorption isotherms of $Ti_3C_2T_x/P$ -100-H hybrid film and $Ti_3C_2T_x$ film.

Fig. S4 Raman spectra of PEDOT film before and after concentrated H_2SO_4 treatment.

Fig. S5 CV curves of (a) $Ti_3C_2T_x$ and (c) $Ti_3C_2T_x/P$ -100 electrode at different scan rates, GCD curves of (b) $Ti_3C_2T_x$ and (d) $Ti_3C_2T_x/P$ -100 electrode at different current densities.

Fig. S6 (a) Specific capacitance of the as-prepared hybrid film electrodes as a function of scan rate. (b) Volumetric capacitance of the as-prepared hybrid film electrodes as a function of current density.

The relationships of specific capacitance as a function of scan rates for the asprepared samples are shown Fig. S6(a). The pure $Ti_3C_2T_x$ film electrode showed the specific capacitance of 241 F g⁻¹ at 2 mV s⁻¹ and a rate performance of 58 % as the scan rate increases to 100 mV s⁻¹. After mixing PH1000 with $Ti_3C_2T_x$ to form the $Ti_3C_2T_x/P$ -100 film, the specific capacitance decreases dramatically to 216 F g⁻¹ at 2 mV s⁻¹. However, after treated by concentrated H₂SO₄, the specific capacitance of Ti₃C₂T_x/P-100-H film electrode is significantly improved to 286 F g⁻¹ at 2 mV s⁻¹ and the capacitance retention is 62% after increasing the scan rate by 50 times.

The volumetric capacitance calculated from GCD curves of the as-prepared samples are shown Fig. S6(b). Compared with the pure $Ti_3C_2T_x$ film electrode with volumetric capacitance of 980 F cm⁻³ at 2 mA cm⁻², the $Ti_3C_2T_x/P$ -100 film showed a decreased volumetric capacitance of 667 F cm⁻³. However, after concentrated H₂SO₄ treatment, the volumetric capacitance of Ti₃C₂T_x/P-100-H film electrode is significantly improved to 1060 F cm⁻³.

Fig. S7 (a) CV curves and (b) GCD curves of $Ti_3C_2T_x$ -H electrode at different current densities, (c) Volumetric capacitance and specific capacitance of $Ti_3C_2T_x$ -H electrode as a function of scan rate.

Fig. S8 (a) CV curves of P-H electrode at different scan rates, (b) GCD curves of P-H electrode at different current densities, (c) Volumetric capacitance and specific capacitance of P-H film electrode as a function of scan rate.

Fig. S9 CV curves of (a) $Ti_3C_2T_x/P$ -50-H and (c) $Ti_3C_2T_x/P$ -200-H electrode at different scan rates, GCD curves of (b) $Ti_3C_2T_x/P$ -50-H and (d) $Ti_3C_2T_x/P$ -200-H electrode at different current densities.

Fig. S10 Volumetric capacitance of the as-prepared hybrid film electrodes as a function of scan rate.

Fig. S11 (a) XRD patterns of $Ti_3C_2T_x$ -H, $Ti_3C_2T_x/P$ -50-H, $Ti_3C_2T_x/P$ -100-H and $Ti_3C_2T_x/P$ -200-H and (b) the corresponding enlarged XRD patterns.

Fig. S12 (a) XRD patterns of GO and rGO film, (b) cross-section SEM image of rGO film, (c) CV curves of rGO film electrode at different scan rates, (d) GCD curves of rGO film electrode at different current densities, (c) Volumetric capacitance and specific capacitance of rGO film electrode as a function of scan rate.

Fig. S13 (a) The equivalent circuit diagram and physical diagram of OCV test, (b) OCV curve of the serial-connected ASCs, the inset is the enlarged OCV curve.

The discharge curve of the serial-connected ASCs when connected to the LEDs is obtained by OCV test as shown in Fig. S13. Fig. S13 is added in the supplementary. The equivalent circuit diagram and physical diagram of OCV test is shown in Fig. S13a. The electrochemical workstation is in parallel with the ASCs. Once the LEDs are connected to the circuit, the voltage drops significantly at the 4th second, as shown in the inset in Fig. S13b. When the voltage is less than 1.5V, the LEDs are extinguished. Thus, the serial-connected ASCs could drive the luminous band for about five minutes.

Notes and references

- M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. D. Agnese, P. Rozier, P. L. Taberna, M. Naguib and P. Simon, *Science*, 2013, 341, 1502.
- M. Ghidiu, M. R Lukatskaya, M. Q. Zhao, Y. Gogotsi and M. W. Barsoum, *Nature*, 2014, **516**, 78.
- P. T. Yan, R. J. Zhang, J. Jia, C. Wu, A. G. Zhou, J. Xu and X. S. Zhang, J. Power Sources., 2015, 284, 38
- M. Boota, B. Anasori, C. Voigt, M. Q. Zhao, M. W. Barsoum and Y. Gogotsi, *Adv. Mater.*, 2016, 28, 1517.
- M. Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. F. Zhang, K. L. V. Aken, M. W. Barsoum and Y. Gogotsi, *Adv. Mater.*, 2015, 27, 339.
- Y. Dall'Agnese, M. R. Lukatskaya, K. M. Cook, P. L. Taberna, Y. Gogotsi and P. Simon, *Electrochem. Commun.*, 2014, 48, 118.
- Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. S. Qiu, M. W. Barsoum and Y. Gogotsi, *PNAS*, 2014, 111, 16676.
- M. R. Lukatskaya, S. Kota, Z. F. Lin, M. Q. Zhao, N. Shpigel, M. D. Levi, J. Halim,
 P. L. Taberna, M. W. Barsoum, P. Simon and Y. Gogotsi, *Nat. Energy.*, 2017, 2, 17105.
- O. Mashtalir, M. R. Lukatskaya, A. I. Kolesnikov, E. Raymundo-Piñero, M. Naguib, M. W. Barsouma and Y. Gogotsi, *Nanoscale*, 2016, 8, 9128.
- J. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva and Y. Gogotsi, *Adv. Funct. Mater.*, 2017, 27, 1701264.

- M. Boota, M. Pasini, F. Galeotti, Wi. Porzio, M. Q. Zhao, J. Halim and Y. Gogotsi, *Chem. Mater.*, 2017, 29, 2731.
- 12. Y. P. Tian, C. H. Yang, W. X. Que, X. B. Liu, X. T. Yin and L. B. Kong, J. Power Sources, 2017, 359, 332.
- H. Y. Li, Y. Hou, F. X. Wang, M. R. Lohe, X. D. Zhuang, L. Niu and X. L. Feng, *Adv. Energy Mater.*, 2016, 28, 1601847.
- C. Couly, M. Alhabeb, K. L. Van Aken, N. Kurra, L. Gomes, A. M. Navarro-Suárez, B. Anasori, H. N. Alshareef and Y. Gogotsi, *Adv. Electron. Mater.*, 2018, 4, 1700339.
- Y. Y. Peng, B. Akuzum, N. Kurra, M. Q. Zhao, M. Alhabeb, B. Anasori, E. C. Kumbur, H. N. Alshareef, M. D. Ger and Y. Gogotsi, *Energy Environ. Sci.*, 2016, 9, 2847.
- 16. H. B. Hu and T. Hua, J. Mater. Chem. A, 2017, 5, 19639.
- 17. Z. M. Fan, Y. S. Wang, Z. M. Xie, X. Q. Xu, Y. Yuan, Z. J. Cheng and Y. Y. Liu, *Nanoscale*, 2018, **10**, 9642.
- P. Li, W. H. Shi, W. X. Liu, Y. F. Chen, X. L. Xu, S. F. Ye, R. L. Yin, L. Zhang,
 L. X. Xu and X. H. Cao, *Nanotechnology*, 2018, **29**, 445401.
- M. S. Zhu, Y. Huang, Q. H. Deng, J. Zhou, Z. X. Pei, Q. Xue, Y. Huang, Z. F. Wang, H. F. Li, Q. Huang and C. Y. Zhi, *Adv. Energy Mater.*, 2016, 6, 1600969.
- 20. Z. S. Wu, Y. J. Zheng, S. H. Zheng, S. Wang, C. L. Sun, K. Parvez, T. Ikeda, X. H. Bao, K. Müllen and X. L. Feng, *Adv. Mater.*, 2017, **29**, 1602960.
- 21. K. Q. Qin, J. L. Kang, J. J. Li, E. Z. Liu, C. S. Shi, Z. J. Zhang, X. X. Zhang and

N. Q. Zhao, Nano energy, 2016, 24, 158.

- 22. K. Q. Qin, E. Z. Liu, J. J. Li, J. L. Kang, C. S. Shi, C. N. He, F. He and N. Q. Zhao, *Adv. Energy Mater.*, 2016, 6, 1600755.
- 23. Z. Y. Wang, S. Qin, S. Y. Seyedin, J. Z. Zhang, J. T. Wang, A. Levitt, N. Li, C. Haines, R. O. Robles, W. W. Lei, Y. Gogotsi, R. H. Baughman and J. M. Razal, *Small*, 2018, 14, 1802225.