Electronic supplementary information

A new family of dinuclear lanthanide complexes constructed from 8-hydroxyquinoline Schiff base and β-diketone: Magnetic properties and near-infrared luminescence

Dong-Fang Wu,^a Zhen Liu,^a Peng Ren,^b Xiao-He Liu,^a Ning Wang,^a Jian-Zhong Cui^{*a,} ^c and Hong-Ling Gao^{*a,c}

List of contents

Supplementary Experimental section

Scheme S1 The synthesis route of the ligand HL.

Table S1 The important bond lengths (Å) and angles (°) of complexes 1-6.

Fig. S1 ¹H NMR spectrum (400 MHz, d_6 -DMSO) of HL.

- Fig. S2 IR spectra of a crystalline sample of HL.
- Fig. S3 TGA curves of complexes 1-6 on crystalline sample under the air atmosphere in the temperature range of 30-800 °C.
- Fig. S4 PXRD patterns for 1-6.
- Fig. S5 UV-Vis absorption spectra of complexes 1-6 in methanol solution at room temperature.
- Fig. S6 The luminescence spectra of complex 2 (a) and 4 (b) in methanol solution at room temperature.
- Fig. S7 Plots of χ_{M}^{-1} vs T at 2-300 K with a *dc* magnetic field of 1000 Oe for complexes **3** (a), **4** (b) and **5** (c). The solid lines were generated from the best fits by the Curie-Weiss expression.
- Fig. S8 Temperature dependence of χ' (a) and χ'' (b) signals of the *ac* susceptibilities under different frequency (Hz) for 4 ($H_{ac} = 3$ Oe, $H_{dc} = 3000$).

^aDepartment of Chemistry, Tianjin University, Tianjin, 300354, China.

^{*} Corresponding authors, E-mail: cuijianzhong@tju.edu.cn, ghl@tju.edu.cn.

^bSchool of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

^cKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China.

Fig. S2 IR spectra of a crystalline sample of HL.

Table S1 The im	portant bond l	lengths (Å) and ang	gles (°) of	complexes 1	1-6 .
-----------------	----------------	------------	-----------	-------------	-------------	--------------

Complexes	The range of Ln-O	The range of Ln-N	The distance of	The range of Ln-O-Ln
	bond lengths / Å	bond lengths / Å	Ln…Ln / Å	bond angles / o
1	2.367(2) - 2.453(2)	2.584(3) - 2.739(3)	3.979(5) - 3.991(2)	109.16(8) - 109.59(9)
2	2.333(4) - 2.433(1)	2.519(5) - 2.689(1)	3.899(4)	108.51(5)
3	2.325(2) - 2.429(8)	2.501(2) - 2.679(2)	3.889(8)	108.96(7)
4	2.312(01) - 2.414(5)	2.491(1) -2.671(8)	3.863(3)	108.85(6)
5	2.300(2) - 2.408(2)	2.480(2) -2.670(3)	3.863(8)	109.08(8)
6	2.274(2) - 2.380(2)	2.453(2) - 2.649(3)	3.823(3)	109.41(7)

Fig. S3 TGA curves of complexes 1-6 on crystalline sample under the air atmosphere in the temperature range of 30-800 °C.

Fig. S4 PXRD patterns for 1-6.

Fig. S5 UV-Vis absorption spectra of complexes 1-6 in methanol solution at room temperature.

Fig. S6 The luminescence spectra of complex 2 (a) and 4 (b) in methanol solution at room temperature.

Fig. S7 Plots of χ_{M}^{-1} vs T at 2-300 K with a *dc* magnetic field of 1000 Oe for complexes **3** (a), **4** (b) and **5** (c). The solid lines were generated from the best fits by the Curie-Weiss expression.

Fig. S8 Temperature dependence of χ' (a) and χ'' (b) signals of the *ac* susceptibilities under different frequency (Hz) for 4 ($H_{ac} = 3$ Oe, $H_{dc} = 3000$ Oe).