Supporting information

Plastomeric-like polyethylenes achievable using thermally robust *N,N'*-nickel catalysts appended with electron withdrawing difluorobenzhydryl and nitro groups

Randi Zhang,^{a,b} Zheng Wang,^{a,b} Yanping Ma,^{a,b} Gregory A. Solan,^{*,a,c} Yang Sun,^a Wen-Hua Sun^{*,a,b,d}

^a Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^b CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

^c Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.

^d State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Contents

- 1. Figure S1. Dimerization of Ni3(OH₂) through OH…Br intermolecular hydrogen-bonding interactions
- 2. Figure S2. GPC curves of the polyethylenes obtained using Ni1/EASC at di□erent Al:Ni ratios (entries 1 6, Table 3).
- 3. Figure S3. GPC curves of the polyethylenes obtained using Ni1/EASC at di \Box erent reaction temperatures (entries 4, 7 11, Table 3).
- 4. **Figure S4.** GPC curves of the polyethylenes obtained using Ni1/EASC over di□erent reaction times (entries 9 and 12 14, Table 3).
- 5. Figure S5. GPC curves of the polyethylenes obtained using Ni1/MAO at di□erent Al:Ni molar ratios (entries 1 5, Table 4).
- 6. Figure S6. GPC curves of the polyethylenes obtained using Ni1/MAO at di \Box erent reaction temperatures (entries 3 and 6 9, Table 4).
- 7. Figure S7. GPC curves of the polyethylenes obtained using Ni1/MAO at di \Box erent reaction times (entries 3 and 10 12, Table 4).
- 8. Figure S8. ¹³C NMR spectrum of PE-50_{E/Ni1} obtained using Ni1/EASC at 50 °C (entry 7, Table 3).
- 9. Figure S9. ¹³C NMR spectrum of PE-60_{M/Ni1} obtained using Ni1/MAO at 60 °C (entry 9, Table 4).
- 10. **Table S1.** Variation in the polyethylene properties as a function of the precatalyst structure; MAO activation^a
- 11. Table S2. Crystal data and structural refinements for L3, Ni3 and Ni4.

Figure S1. Dimerization of Ni3(OH₂) through OH…Br intermolecular hydrogen-bonding interactions.

Figure S2. GPC curves of the polyethylenes obtained using Ni1/EASC at di \Box erent Al:Ni ratios (entries 1 – 6, Table 3).

Figure S3. GPC curves of the polyethylenes obtained using Ni1/EASC at di \Box erent reaction temperatures (entries 4, 7 – 11, Table 3).

Figure S4. GPC curves of the polyethylenes obtained using Ni1/EASC over di \Box erent reaction times (entries 9 and 12 – 14, Table 3).

Figure S5. GPC curves of the polyethylenes obtained using Ni1/MAO at di \Box erent Al:Ni molar ratios (entries 1 – 5, Table 4).

Figure S6. GPC curves of the polyethylenes obtained using Ni1/MAO at di \Box erent reaction temperatures (entries 3 and 6 – 9, Table 4).

Figure S7. GPC curves of the polyethylenes obtained using Ni1/MAO at di \Box erent reaction times (entries 3 and 10 – 12, Table 4).

Figure S8. ¹³C NMR spectrum of PE-50_{E/Ni1} obtained using Ni1/EASC at 50 °C (entry 7, Table 3).

Figure S9. ¹³C NMR spectrum of PE-60_{M/Ni1} obtained using Ni1/MAO at 60 °C (entry 9, Table 4).

Precatalyst	Temp /°C	Activity ^b	$M_{ m w}{}^c$	$M_{ m w}/M_{ m n}^{c}$
$\begin{array}{c} \begin{array}{c} Ph_2HC \\ O_2N \\ Ph_2HC \\ Ph_2HC \\ C_{2,6-Me2Ph} \end{array}$	20	1.32	24.10	1.4
(p-FPh) ₂ HC (p-FPh) ₂ HC (p-FPh) ₂ HC D _{Me(2,4,6-Me3Ph}	30	8.73	4.33	1.8
$(p-FPh)_2HC$ $F \rightarrow (p-FPh)_2HC$ $(p-FPh)_2HC$ $D_{F/2,4,6-Me3Ph}$	30	12.48	4.81	2.1
(p-FPh) ₂ HC O ₂ N (p-FPh) ₂ HC Br Br	30	5.12	8.21	3.0

Table S1. Variation in the polyethylene properties as a function of the precatalyst structure; all polymerization runs performed with MAO activation^a

^a 10 atm C₂H₄; toluene as solvent and MAO as co-catalyst; ^b Values in units of 10⁶ g (PE) mol⁻¹ (Ni) h⁻¹; ^c Determined by GPC, M_w : 10⁵ g mol⁻¹.

	L3	Ni3 (OH ₂)	Ni4
Empirical formula	$C_{56}H_{43}F_4N_3O_2$	C56H45Br2F4N3NiO3	$C_{53}H_{37}Br_2F_4N_3NiO_2$
Formula weight	865.93	1102.48	1042.38
Temperature/K	173.15	173.15	173.15
Wavelength/Å	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/c$	$P2_1/n$	$P2_1/c$
a/Å	11.3537(4)	11.3027(3)	14.652(3)
$b/\text{\AA}$	23.9312(6)	32.3842(7)	32.546(7)
c/Å	17.2928(5)	15.9132(4)	10.810(2)
Alpha/°	90	90	90
Beta/°	105.819(3)	108.872(3)	95.61(3)
Gamm/°	90	90	90
Volume/Å ³	4520.6(2)	5511.6(3)	5130.0(18)
Ζ	4	4	4
$D_{\text{calcd}}/(\text{g/cm}^{-3})$	1.272	1.329	1.350
μ/mm^{-1}	0.089	1.858	1.991
<i>F</i> (000)	17628.0	2240.0	2104.0
Crystal size/mm ³	0.160 ×0.147 ×0.042	$0.308 \times 0.164 \times 0.132$	$0.243 \times 0.156 \times$

Table S2.	Crystal of	data and	structural	refinements	for I	L 3 , Ni3	3 and Ni4
-----------	------------	----------	------------	-------------	-------	------------------	-----------

			0.102
θ range (°)	2.982 to 63.074	2.982 to 63.12	2.502 to 54.934
	$-16 \le h \le 16$	$-15 \le h \le 16$	$\text{-}18 \leq h \leq 19$
Limiting indices	$-34 \le k \le 35$	$-45 \le k \le 47$	$-42 \le k \le 42$
	$-25 \le l \le 25$	$-23 \le l \le 22$	$-14 \le l \le 14$
No. of rflns collected	60972	92431	69720
No. unique rflns	14101	17353	11709
R _{int}	0.0798	0.1041	0.0691
No. of params	590	627	589
Completeness to θ	93.4	94.1	99.7
Goodness of fit on F^2	1.013	1.038	1.211
Final R indexes	$R_1 = 0.0715$	$R_1 = 0.0700$	$R_1 = 0.0772$
[<i>I</i> >=2σ (<i>I</i>)]	$wR_2 = 0.1279$	$wR_2 = 0.1595$	$wR_2 = 0.1558$
Final <i>R</i> indexes (all data)	$R_1 = 0.1588$	$R_1 = 0.1413$	$R_1 = 0.0840$
	$wR_2 = 0.1562$	$wR_2 = 0.1849$	$wR_2 = 0.1614$
Largest di \Box . peak and hole/(e Å ⁻³)	0.32/-0.25	1.24/-0.68	1.21/-0.51