Supplementary Information for:

Tuning the Electrochemiluminescent properties of Iridium Complexes of N-Heterocyclic Carbene Ligands

Linh M. Quan, Bradley D. Stringer, Mohammad A. Haghighatbin, Johnny Agugiaro, Gregory J. Barbante, David D. J. Wilson, Conor F. Hogan* and Peter J. Barnard*

Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia, E-mail: c.hogan@latrobe.edu.au and p.barnard@latrobe.edu.au

X ray crystallography

X-ray Crystallography. Single crystals of the Ir(III) complexes **1**, **3**, **5**, and **6** suitable for X-ray diffraction studies were grown by slow diffusion of ethyl acetate into acetonitrile solutions of each compound at ambient temperature. Crystallographic data for all structures determined are given in Tables 1 and S1. For all samples, crystals were removed from the crystallisation vial and immediately coated with paratone oil on a glass slide. A suitable crystal was mounted in Paratone oil on a glass fibre and cooled rapidly to 173 K in a stream of cold N2 using an Oxford low temperature device. Diffraction data were measured using an Oxford Gemini diffractometer mounted with Mo-K $\alpha \lambda = 0.71073$ Å and Cu-K $\alpha \lambda = 1.54184$. Data were reduced and corrected for absorption using the CrysAlis Pro program. The SHELXL2013-2 program was used to solve the structures with Direct Methods, with refinement by the Full-Matrix Least-Squares refinement techniques on F2. The non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed geometrically and refined using the riding model. Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. All calculations were carried out using the program Olex2. Images were generated by using ORTEP-3. Further XRD details are provided in the Supporting Information. CCDC 1869253-1869256 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound	1	3	5	6
Empirical formula	$C_{34}H_{24}N_5F_4Ir$	C ₃₄ H ₂₅ F ₄ IrN ₄ O ₂	$C_{32}H_{19}N_4F_6Ir$	C ₃₆ H ₂₉ N ₅ F ₄ IrCl
Formula weight	770.78	789.78	765.71	835.29
Temperature/K	173	173	173	173
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1	$P2_1/n$	<i>P</i> -1
a/Å	9.8986(3)	10.3830(3)	10.84307(11)	9.0031(3)
b/Å	11.6908(4)	10.6683(3)	15.66542(16)	12.7459(4)
c/Å	13.1739(4)	13.4176(4)	15.57142(16)	15.4060(5)
$\alpha/^{\circ}$	71.971(3)	76.274(2)	90	104.264(3)
β/°	89.258(2)	82.985(2)	92.5122(9)	105.973(3)
$\gamma/^{\circ}$	88.706(3)	84.990(2)	90	98.494(2)
Volume/Å3	1449.28(8)	1430.37(7)	2642.44(5)	1602.56(9)
Z	2	2	4	2
pcalcmg/mm ₃	1.766	1.834	1.925	1.731
m/mm ⁻¹	9.429	4.734	10.44	4.307
F(000)	752	772	1480	820
Crystal size/mm3	$0.15\times0.15\times0.04$	$0.08 \times 0.04 \times 0.04$	$0.1\times0.08\times0.05$	$0.1\times0.05\times0.05$
	$CuK\alpha$ ($\lambda =$	MoK α (λ =	$CuK\alpha$ ($\lambda =$	MoK α (λ =
Radiation	1.54184)	0.71073)	1.54184)	0.71073)
2Θ range for data collection	7.056 to 147.464°	6.286 to 52.74 -12 \leq h \leq 11, -13	8.01 to 147.702°	5.77 to 52.738°
	$-12 \le h \le 12, -14 \le$	\leq k \leq 13, -16 \leq l \leq	$-8 \le h \le 13, -19 \le k$	$-11 \le h \le 11, -15 \le$
Index ranges	$k \le 13, -16 \le l \le 11$	16	$\leq 18, -19 \leq l \leq 19$	$k \le 15, -19 \le l \le 19$
Reflections collected	9129	11588 5844 [R _{int} =	17700	14873
	5672 [$R_{int} = 0.0346$,	0.0181, R _{sigma} =	5281 [$R_{int} = 0.0209$,	$6542 [R_{int} = 0.0255,$
Independent reflections	$R_{sigma} = 0.0290]$	0.0280]	$R_{sigma} = 0.0172$]	$R_{sigma} = 0.0347$]
Data/restraints/parameters	5672/0/399	5844/0/409	5281/0/389	6542/0/428
Goodness-of-fit on F ²	1.054	1.075	1.16	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0473, wR_2 = 0.1270$	$R_1 = 0.0204, wR_2$ = 0.0498	$R_1 = 0.0205, wR_2 = 0.0506$	$R_1 = 0.0209, wR_2 = 0.0473$
	$R_1 = 0.0480, wR_2 =$	$R_1 = 0.0233, wR_2$	$R_1 = 0.0212, wR_2 =$	$R_1 = 0.0244, WR_2 =$
Final R indexes [all data]	0.1279	= 0.0515	0.0509	0.0492
Largest diff. peak/hole / e Å ⁻³	3.29/-2.19	0.89/-0.82	0.74/-1.13	0.85/-0.71

Table S1. Crystallographic data for all structures 1, 2, 5, and 6.

Details:

1: Solved using direct methods in the triclinic space group *P-1*. The asymmetric unit contains one molecule of the title compound.

3: Solved using direct methods in the triclinic space group P-1. The asymmetric unit contains one molecule of the title compound. Disorder was identified in the positions of fluorine atoms: F1 and F3. Attempts to model this disorder using two different closely spaced positions for each of these F atoms were unsatisfactory with the site occupancy for one component refining to unreasonably low levels. As a result, disorder in the positions of these atoms was not modelled. Three level B Checkcif alerts result from the disorder associated with these F atoms: Hirshfeld Test Diff for F1 - C12 ...10.7 su, Hirshfeld Test Diff for F3 - C23 ... 9.0 su and Short Inter HL..HL Contact F1 ... F3 . 2.42 Ang.

5: Solved using direct methods in the monoclinic space group $P2_1/n$. The asymmetric unit contains one molecule of the title compound.

6: Solved using direct methods in the triclinic space group *P-1*. The asymmetric unit contains one molecule of the title compound and one molecule of acetonitrile as a solvent of crystallisation.

Figure S1. Photoluminescence decay profiles for dilute solutions of complexes 1 (red) 2 (green) 3 (black) 4 (pink) and 5 (blue) in de-aerated acetonitrile

Figure S2. B3LYP/def2-TZVP//B3LYP/def2-SVP calculated molecular orbital energy HOMO–LUMO gaps and surface plots of the HOMO and LUMO for compounds 1–5. Acetonitrile solvent correction included with single-pint SCRF. Units of eV.

Figure S3. Percentage contribution to the HOMO from the metal centre and ligands (C^C and C^N ligands) of complexes 1-5 (B3LYP/def2-TZVP calculations).

Figure S4. Percentage contribution to the LUMO from the metal centre and ligands (C^C and C^N ligands) of complexes 1-5 (B3LYP/def2-TZVP calculations).