Supporting information

¹¹B and ⁸⁹Y solid state MAS NMR spectroscopic investigations of the layered borides YTB_4 (T = Mo, W, Re)

Christopher Benndorf^{a,b,c}, Marcos de Oliveira^d, Carsten Doerenkamp^d, Frank Haarmann^{e,f}, Thomas Fickenscher^b, Jutta Kösters^b, Hellmut Eckert^{c,d} *, and Rainer Pöttgen^b *

- ^a Institut für Mineralogie, Kristallographie und Materialwissenschaft, Universität Leipzig, Scharnhorststrasse 20, D-04275 Leipzig, Germany
- ^b Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany. E-mail: pottgen@uni-muenster.de; Fax: +49 251-83-36002
- ^c Institut für Physikalische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany
- ^d Institute of Physics in Sao Carlos, University of Sao Paulo, Sao Carlos, SP 13560-590, Brazil. E-mail: eckerth@uni-muenster.de
- ^e Institut für Anorganische Chemie, RWTH Aachen, Landoltweg 1, D-52074 Aachen, Germany. E-mail: frank.haarmann.2108@gmail.com
- ^f Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, D-01187 Dresden, Germany

Received ## November 2018, Accepted ## ###### 2018

DOI: ########

Density of States Calculations.

Fig. S1 Site resolved electronic density of states (DOS) of YMoB₄ calculated by WIEN2k. The the sum of the B-sites is shown by a black line. The B1, B2, B3, and B4 sites are represented by grey, green, red, and blue areas, respectively.

Fig. S2 Site resolved electronic density of states (DOS) of YWB₄ calculated by WIEN2k. The the sum of the B-sites is shown by a black line. The B1, B2, B3, and B4 sites are represented by grey, green, red, and blue areas, respectively.

Fig. S3 Site resolved electronic density of states (DOS) of $YReB_4$ calculated by WIEN2k. The the sum of the B-sites is shown by a black line. The B1, B2, B3, and B4 sites are represented by grey, green, red, and blue areas, respectively.

¹¹B TQMAS Results.

Experimental Details. Triple-quantum MAS NMR (MQMAS) spectra were measured at 14.1 T using the three-pulse z-filtering sequence,¹ using hard excitation and reconversion pulses of 4.8 μ s and 1.9 μ s length and soft detection pulses of 11 μ s length. Typical recycle delay for ¹¹B was 3 s. ¹¹B chemical shifts were externally referenced relative to the BPO₄ secondary standard (-3.5 ppm).

Figure S4 ¹¹B MQMAS spectrum for YWB₄ (left) and traces in the f1 and f2 domains (right). A ¹¹B MAS spectrum is shown at the top trace on the right for the sake of comparison. Asterisks indicate spinning sidebands from the indirect dimension.

Figure S5¹¹B MQMAS spectrum for YReB₄ (left) and traces in the f1 and f2 domains (right). A ¹¹B MAS spectrum is shown at the top trace on the right for the sake of comparison.

Figure S6¹¹B MQMAS spectrum for YMoB₄ (left) and traces in the f1 and f2 domains (right). A ¹¹B MAS spectrum is shown at the top trace on the right for the sake of comparison. Asterisks indicate spinning sidebands from the indirect dimension.

Sample	Line	Δ_{iso}^{MQ} (±1 ppm)	SOQE ^{MQ} (±50 kHz)
YMoB ₄	a	87	310
	b-d	56	560 ^a
YWB ₄	a	73	1500
	b	44	1200
	c	35	1400
	d	8.3	1900
YReB ₄	a-b	26 ^a	1140 ^a
	b	1	1240
	d	-12	1130

Table S1 Isotropic chemical shift (δ_{iso}^{MQ}) and second order quadrupolar effect parameter (SOQE^{MQ}) obtained from the MQMAS analysis.

References

(1) A. Medek, J. S. Harwood and L. Frydman, J. Am. Chem. Soc., 1995, **117**, 12779–12787.