Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supplementary Material

Highly Enantioselective Epoxidation of Olefins by H₂O₂ Catalyzed by a Nonheme Fe(II) Catalyst of a Chiral Tetradentate Ligand

Mainak Mitra,^{a,†} Olaf Cusso,^b Satish K Bhat,^a Mingzhe Sun,^a Marco Cianfanelli,^b Miquel Costas,^{b,*} and Ebbe Nordlander^{a,*}

 ^aChemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. Fax: +46 46 22 24119; Tel: +46 46 22 28118; E-mail: Ebbe.Nordlander@chemphys.lu.se
^bQBIS, Universitat de Girona, Girona, Spain, E-17071. Fax: +34 972 41 81 50; Tel: +34 972 41 98 42; E-mail: <u>Miquel.Costas@udg.edu</u>
[†]Present Address: Department of Chemistry, Burdwan Raj College, Purba Bardhaman, West Bengal-713104, India

Figure S2. The experimental (top) and simulated (bottom) isotopic distribution patters for $[Fe^{II}(S, S-^{PDB2}L)(CF_3SO_3)]^+$.

Figure S3. The experimental (top) and simulated (bottom) isotopic distribution patters for [Fe^{II}(*S*,*S*-^{PDBz}L)]²⁺.

Figure S4. The HRMS of complex 1^{SbF6} in CH₃CN.

Figure S5. The experimental (top) and simulated (bottom) isotopic distribution patters for $[Fe^{II}(S, S-^{PDB2}L)(SbF_6)]^+$.

Figure S6. The ¹H-NMR spectrum of complex 1^{OTf} in CD₃CN.

Figure S7. The ¹H-NMR spectrum of complex 1^{SbF6} in CD₃CN.

Figure S10. GC chromatogram for the oxidation of cyclohexanone by complex **10Tf** in the presence of 2-ethylhexanoic acid (eha).

Figure S11. GC-MS chromatogram for the oxidation of cyclohexanone by complex 1^{orf} in the presence of 2-ethylhexanoic acid (eha). Individual mass spectra are not shown.

Figure S12. GC chromatogram for the oxidation of cyclohexanone by complex 1^{oTf} in the presence of acetic acid.

Figure S13. GC-MS chromatogram for the oxidation of cyclohexanone by complex 1^{orf} in the presence of acetic acid. Individual mass spectra are not shown.

Substrate	CA ^[b]	Conversion of	Yield of	ee (%) ^[c]
	(equivalent)	substrate	epoxide	
Ph	EHA (1.4)	67	40	10
Cl Cl 4-Chloro-α-methylstyrene	EHA (1.4)	95	37	9
H ₃ C H ₃ C CH ₃	EHA (1.4)	45	12	91
Isophorone				
NC O CH ₃ CH ₃	EHA (1.4)	100	28	80
CH ₃ O	EHA (1.4)	96	60	20

Table S1. Catalytic epoxidation by complex $\mathbf{1}^{\text{OTf}\,[a]}$

[a] Reaction conditions: see Experimental section; [b] carboxylic acid; [c] ee determined by GC.

Table S2. Catalytic epoxidation of isophorone by complex $\mathbf{1}^{oTf [a]}$

Catalyst used (other reaction conditions)	Solvent	Temp (°C)	CA (Equivalent)	Conversion	Yield of epoxides	ee (%)
2 mol %	CH₃CN	-30	EHA (1.4)	45	12	91
4 mol %	CH₃CN	-30	EHA (1.4)	39	10	89
6 mol %	CH₃CN	-30	EHA (1.4)	40	11	90
2 mol %	CH₃CN	-30	EHA (2.8)	35	9	90
2 mol %	CH₃CN	0	EHA (1.4)	51	19	88
2 mol %	CH ₃ COCH ₃	0	EHA (1.4)	34	8	90
2 mol %	DMF	0	EHA (1.4)	00	00	00
2 mol %	CH₃CN	0	mCPBA (1.4)	17	<1	31
2 mol %	CH₃CN	0	Peracetic acid (1.4)	16	<1	57
2 mol % catalyst (after H ₂ O ₂ addition additional stirring for 1 h)	CH₃CN	0	EHA (0.3)	45	7	79
2 mol % catalyst (after H ₂ O ₂ addition additional stirring for 1 h)	CH₃CN	0	EHA (1.4)	57	18	89
2 mol % catalyst (filtered through silica only)	CH₃CN	0	EHA (1.4)	54	18	93
2 mol % catalyst (filtered through alumina only)	CH₃CN	0	EHA (1.4)	61	17	89