Electronic Supporting Information

Hybrid organic-inorganic supramolecular system based on a pyridine enddecorated molybdenum(II) halide cluster and zinc(II) porphyrinate

Marina V. Volostnykh,^a Maxim A. Mikhaylov,^{bc} Anna. A. Sinelshchikova,^a Gayane A. Kirakosyan,^{ad} Alexander G. Martynov,^a Mikhail S. Grigoriev,^a Dmitry A. Piryazev,^{bc} Aslan Yu. Tsivadze,^{ad} Maxim N. Sokolov^{bc*} and Yulia G. Gorbunova^{ad*}

^a Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia.

^b Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.

° Novosibirsk State University, Novosibirsk 630090, Russia.

^d Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia.

Email: yulia@igic.ras.ru

Table of contents

1. Characterization of $(Bu_4N)_2[\{Mo_6I_8\}(OOC-C_5H_4N)_6]$ (PyMoC)	S3
Fig. S1 ¹ H NMR spectra (C_3D_6O , 25°C) of (Bu_4N) ₂ [{ Mo_6I_8 }(OOC- C_5H_4N) ₆].	S3
Fig. S2 ¹³ C NMR spectra (C_3D_6O , 25°C) of (Bu_4N) ₂ [{ Mo_6I_8 }(OOC- C_5H_4N) ₆] (above) and free isonicotinic acid (bottom).	S3
2. X-ray structural analysis	S4
2.1. XRD of PyMoC	<i>S4</i>
Table S1 Crystal data and structure refinement for $(Bu_4N)_2[\{Mo_6I_8\}(OOC-C_5H_4N)_6]$	S4
Table S2 Selected bond distances (Å) in $(Bu_4N)_2[\{Mo_6I_8\}(OOC-C_5H_4N)_6]$	S4
Fig. S3 Cluster anion $[{Mo_6I_8}(OOC-C_5H_4N)_6]^2$, ellipsoids at 50% probability level	S5
2.2. XRD of ZnDTolP	
Table S3 Crystal data and structure refinement for ZnDTolP	S5
Fig. S4 ORTEP drawing of ZnDTolP . Thermal ellipsoids are at the 50% probability level	S6
Table S4 Selected bond distances (Å) in ZnDTolP	S6
2.3. XRD of CP ₂ and CP ₆	<i>S7</i>
Table S5 Crystal data and structure refinement for CP ₂ and CP ₆	S7
Fig. S5 ORTEP drawing of asymmetric unit of CP ₂ . Thermal ellipsoids are at the 50% probabili level. Hydrogen atoms are omitted for clarity. C atoms are marked by blue, N by magenta, O by Cl and I by green, Zn by dark-red, Mo by grey	ty red, S8

Fig. S6 Packing of CP ₂ . Hydrogen atoms and solvent molecules CH ₂ Cl ₂ are omitted for clarity. Ellipsoids are at the 50% probability level.	.S9
Fig. S7 ORTEP drawing of CP ₆ . Thermal ellipsoids are at the 30% probability level. Hydrogen atoms are omitted for clarity. C atoms are marked by blue, N by magenta, O by red, Cl and I by green, Zn by dark-red, Mo by grey.	.S9
Fig. S8 ORTEP drawing of asymmetric unit of CP ₆ . Thermal ellipsoids are at the 30% probability level. Hydrogen atoms are omitted for clarity. C atoms are marked by blue, N by magenta, O by re Cl and I by green, Zn by dark-red, Mo by grey	d, 10
Table S6 Geometry of Mo cluster complexes.	10
Table S7 Selected bond lengths (Å) and angles (°) for the hybrid supramolecular complexes CP _n .S	510
3. Powder X-ray diffraction analysis (PXRD)	12
Fig. S9 PXRD pattern of CP ₂ -bulkS	512
Fig. S10 PXRD pattern of CP ₆ -bulkS	13
4. NMR spectroscopyS	14
4.1. DOSY ExperimentsS	14
Fig. S11 DOSY ¹ H NMR spectra (in CDCl ₃ at 303 K) of ZnDTolP , PyMoC and their mixtures at different molar ratios (C : P = 1:2 – 1:10): (A) the porphyrin spectral range and (B) the range of the N-CH ₂ group of Bu_4N^+ (see Fig. 4)	514
Table S8 (Left) Experimental diffusion coefficients (<i>Ds</i>) of ZnDTolP , PyMoC and their mixtures different molar ratios (C : $P = 1:2 - 1:10$) according DOSY-NMR data. (Right) Changes of <i>Ds</i> at the different molar ratios (C : $P = 1:2 - 1:10$) in CDCl ₃	at he 15
4.2. Low-temperature NMR ExperimentsS	15
Fig. S12 Low-temperature ¹ H NMR spectra (in CDCl ₃ at 233 K) of mixtures of ZnDTolP and PyMoC at different cluster : porphyrin molar ratios (C : $P = 1:2 - 1:6$)S	15
5. UV-Vis spectroscopyS	16
Fig. S13 (A) UV-Vis spectral changes at 298 K of ZnDTolP (90 μ M) in CH ₂ Cl ₂ upon titration with PyMoC solution (0.034 equiv each addition). (B) Species concentration plot of ZnDTolP (black), hybrid complex CP ₂ (aquamarine) and hybrid complex CP ₆ (blue) upon the addition of PyMoC . (Absorbance changes of ZnDTolP at 537 nm upon the addition of PyMoC .	C)

1. Characterization of (Bu₄N)₂[{Mo₆I₈}(OOC-C₅H₄N)₆] (PyMoC)

Fig. S1 ¹H NMR spectra (C_3D_6O , 25°C) of (Bu_4N)₂[{ Mo_6I_8 }(OOC- C_5H_4N)₆].

Fig. S2 ¹³C NMR spectra (C_3D_6O , 25°C) of (Bu_4N)₂[{ Mo_6I_8 }(OOC- C_5H_4N)₆] (above) and free isonicotinic acid (bottom).

2. X-ray structural analysis

2.1. XRD of PyMoC

CCDC deposition code	1834666
Empirical formula	$C_{24}H_{49}N_4\Omega_5M_{02}L_4$
FW	1404 18
Temperature K	150.0(2)
Crystal system	triclinic
Space group	D 1
	10.5010(8)
	12.0062(11)
	15.9002(11)
	10.2223(13)
$\frac{\alpha}{\alpha}$	113.400(2)
β, °	93.501(2)
γ, °	97.357(2)
Volume, Å ³	2139.8(3)
Ζ	2
$\rho_{calc} g/cm^3$	2.179
μ, mm ⁻¹	3.796
F(000)	1332.0
Crystal size, mm ³	$0.364 \times 0.162 \times 0.126$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection, °	3.236 to 66.038
Index ranges	$-15 \le h \le 15, -21 \le k \le 13, -17 \le l \le 24$
Reflections collected	36120
Independent reflections	14578 [$R_{int} = 0.0203$, $R_{sigma} = 0.0255$]
Data/restraints/parameters	14578/0/464
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0347, wR_2 = 0.0842$
Final R indexes [all data]	$R_1 = 0.0469, wR_2 = 0.0923$
Largest diff. peak/hole, e Å-3	4.15/-2.01

Table S1 Crystal data and structure refinement for $(Bu_4N)_2[\{Mo_6I_8\}(OOC-C_5H_4N)_6]$

Table S2 Selected bond distances (Å) in $(Bu_4N)_2[\{Mo_6I_8\}(OOC-C_5H_4N)_6]$.

I(1)	Mo(1)	2.7630(4)
I(1)	Mo(2)	2.7826(4)
I(1)	Mo(3) ¹	2.7742(4)
I(2)	Mo(1)	2.7689(4)
I(2)	Mo(2)	2.7901(4)
I(2)	Mo(3)	2.7857(4)
I(3)	Mo(1)	2.7633(4)
I(3)	Mo(2) ¹	2.7765(4)
I(3)	Mo(3)	2.7716(4)

I(4)	Mo(1)	2.8046(4)
I(4)	Mo(2) ¹	2.7930(4)
I(4)	Mo(3) ¹	2.8067(4)
Mo(1)	Mo(2) ¹	2.6652(4)
Mo(1)	Mo(2)	2.6743(4)
Mo(1)	Mo(3)	2.6676(4)
Mo(1)	Mo(3) ¹	2.6737(4)
Mo(1)	O(1A)	2.119(3)
Mo(2)	I(3) ¹	2.7765(4)
Mo(2)	$I(4)^{1}$	2.7929(4)
Mo(2)	Mo(1) ¹	2.6652(4)
Mo(2)	Mo(3)	2.6698(4)
Mo(2)	Mo(3) ¹	2.6719(4)
Mo(2)	O(1B)	2.168(3)
Mo(3)	I(1) ¹	2.7742(4)
Mo(3)	$I(4)^1$	2.8067(4)
Mo(3)	$Mo(1)^1$	2.6738(4)
Mo(3)	$Mo(2)^{1}$	2.6719(4)
Mo(3)	O(1C)	2.144(2)

¹1-X,-Y,-Z

Fig. S3 Cluster anion $[{Mo_6I_8}(OOC-C_5H_4N)_6]^2$, ellipsoids at 50% probability level.

2.2. XRD of ZnDTolP

Table S3 Crystal data and structure refinement for ZnDTolP

CCDC deposition code	1843802
Empirical formula	$C_{34}H_{24}N_4Zn$
FW	553.94
Temperature, K	100.15
Crystal system	monoclinic

Space group	$P2_1/c$
a, Å	14.9605(15)
b,Å	9.7595(11)
c,Å	8.5421(9)
α, °	90
β, °	93.363(6)
γ, °	90
Volume, Å ³	1245.1(2)
Ζ	2
$\rho_{calc} g/cm^3$	1.478
μ, mm ⁻¹	1.019
F(000)	572.0
Crystal size, mm ³	0.5 imes 0.5 imes 0.05
Radiation	$MoK\alpha (\lambda = 0.71073)$
20 range for data collection, °	8.186 to 56.09
Index ranges	$-19 \le h \le 19, -12 \le k \le 12, -10 \le 1$ ≤ 11
Reflections collected	12363
Independent reflections	2980 [$R_{int} = 0.0757, R_{sigma} = 0.0709$]
Data/restraints/parameters	2980/90/181
Goodness-of-fit on F ²	1.074
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0713, wR_2 = 0.1641$
Final R indexes [all data]	$R_1 = 0.0920, wR_2 = 0.1751$
Largest diff. peak/hole, e Å ⁻³	1.24/-0.76

Fig. S4 ORTEP drawing of **ZnDTolP**. Thermal ellipsoids are at the 50% probability level.

Zn1	N1	2.032(4)
Zn1	N1 ¹	2.032(4)
Zn1	N2 ¹	2.011(4)
Zn1	N2	2.011(4)
N1	C1	1.369(6)
N1	C4	1.378(6)
N2	C6	1.374(6)

|--|

N2	С9	1.411(6)
C1	C2	1.436(7)
C1	C10 ¹	1.418(7)
C2	C3	1.354(8)
C3	C4	1.441(7)
C4	C5	1.386(7)
C5	C6	1.387(7)
C6	C7	1.441(7)
C7	C8	1.363(7)
C8	С9	1.451(7)
C9	C10	1.403(7)
C10	C1 ¹	1.418(7)
C10	C11	1.488(7)
C11	C12	1.390(9)
C11	C16	1.390(9)
C12	C13	1.389(7)
C13	C14	1.396(10)
C14	C15	1.391(10)
C14	C17	1.523(8)
C15	C16	1.399(7)

¹1-x,1-y,-z

2.3. XRD of CP_2 and CP_6

Table S5 Crystal data and structure refinement for \mathbf{CP}_2 and \mathbf{CP}_6 .

Parameter	CP ₂	CP ₆ _sq
CCDC deposition code	1843800	1843801
Chemical formula	$C_{140}H_{152}Cl_8I_8Mo_6N_{16}O_{12}Zn_2$	$C_{368}H_{356}Cl_8I_8Mo_6N_{40}O_{14}Zn_8$
Chemical formula moiety	$C_{104}H_{72}I_8Mo_6N_{14}O_{12}Zn_2,$	$C_{240}H_{168}I_8Mo_6N_{30}O_{12}Zn_6,$
	$2(C_{16}H_{36}N), 4(CH_2Cl_2)$	$2(C_{34}H_{26}N_4OZn), 2(C_{16}H_{36}N),$
		$4(CH_2Cl_2), 4(C_6H_{14})$
FW	4255.95	7960.31
Temperature, K	100(2)	100(2)
Crystal system, space	Monoclinic, $P2_1/c$	Triclinic, P-1
group		
Unit cell dimensions	11.9029(7), 21.0461(13),	20.2530(10), 20.5959(11),
<i>a</i> , <i>b</i> , <i>c</i> , Å	29.4339(19)	21.6995(10)
α, β, γ, °	90, 91.286(3), 90	103.620(2), 107.057(3),
		98.424(2)
Volume, Å ³	7371.6(8)	8180.5(7)
Ζ	2	1
Density (calculated),	1.917	1.616
g/cm ³		
μ, mm ⁻¹	2.697	1.685
Crystal size, mm	0.4 imes 0.2 imes 0.08	0.4 imes 0.2 imes 0.06
Radiation, λ , Å	ΜοΚα, 0.71073	ΜοΚα, 0.71073
Data collection range, θ , °	4.082 - 27.499	4.085 - 27.499

Index non cos	15 < h < 14 $27 < h < 27$ 20	2(-1) - 2(-2) - 2(-2) - 2(-2)
Index ranges	$ -13 \le n \le 14, -27 \le K \le 27, -38$	$-20 \le n \le 20, -20 \le K \le 20, -28$
	$ \leq l \leq 37$	$\leq l \leq 28$
Reflections collected	66689	62272
Unique reflections/R _{int}	16876/0.0392	28666/0.1055
Reflections with $I > 2\sigma(I)$	13166	12659
Data/restraints/parameters	16876/0/871	28666/1402/1932
Goodness-of-fit on F ²	1.021	0.941
Weight scheme	$w = 1/[\sigma^2(F_0^2) + (0.0260P)^2 +$	$w = 1/[\sigma^2(F_0^2) + (0.1179P)^2]$
	25.6363P] where	where $P = (F_0^2 + 2F_c^2)/3$
	$P = (F_{o}^{2} + 2F_{c}^{2})/3$	
Final R indexes [I>= 2σ	$R_1 = 0.0320, wR_2 = 0.0681$	$R_1 = 0.0717, wR_2 = 0.1719$
[(I)]		
Final R indexes [all data]	$R_1 = 0.0510, wR_2 = 0.0777$	$R_1 = 0.1936, wR_2 = 0.2503$
Largest diff. peak/ hole,	3.14/-1.98	2.76/-1.61
e/Å3		

Fig. S5 ORTEP drawing of asymmetric unit of CP_2 . Thermal ellipsoids are at the 50% probability level. Hydrogen atoms are omitted for clarity. C atoms are marked by blue, N by magenta, O by red, Cl and I by green, Zn by dark-red, Mo by grey.

Fig. S6 Packing of CP_2 . Hydrogen atoms and solvent molecules CH_2Cl_2 are omitted for clarity. Ellipsoids are at the 50% probability level.

Fig. S7 ORTEP drawing of CP_6 . Thermal ellipsoids are at the 30% probability level. Hydrogen atoms are omitted for clarity. C atoms are marked by blue, N by magenta, O by red, Cl and I by green, Zn by dark-red, Mo by grey.

Fig. S8 ORTEP drawing of asymmetric unit of CP_6 . Thermal ellipsoids are at the 30% probability level. Hydrogen atoms are omitted for clarity. C atoms are marked by blue, N by magenta, O by red, Cl and I by green, Zn by dark-red, Mo by grey.

Complex	Mo-Mo	Mo-µ ₃ -I	Mo-L	Ref
$[{Mo_6(\mu_3-I)_8}L_6]^{2-}$	2.6599(7)-	2.7642(7)-	L = C6H5COO;	1
	2.6725(8)	2.8057(7)	2.097(4)	
РуМоС	2.6652(4)-	2.7630(4)-	L = C5NH4COO;	This
	2.6738(4)	2.8067(4)	2.119(3)-2.168(3)	work
CP ₂	2.6570(5)-	2.7728(5)-	L = C5NH4COO;	This
	2.6774(5)	2.7937(5)	2.110(3)-2.136(3)	work
CP ₆	2.6625(14)-	2.7570(13)-	L = C5NH4COO;	This
	2.6707(16)	2.8031(14)	2.092(8)-2.102(8)	work

Table S6 Geometry of Mo cluster complexes.

Table S7 Selected bond lengths (Å) and angles (°) for the hybrid supramolecular complexes CP_n .

	Zn–N(por),	Zn–N(py),	Zn–N ₄	Maximum C_{β}	Dihedra	Dihedral angles
	Å	Å	deviatio	deviation from	l angles	$C_6H_4(tolyl)/N_4,^{\circ}$
			n, Å	N4, Å	$N_4/N_4^2,^{\circ}$	
CP ₂	Zn1-N14	Zn1–N11	Zn1	C103 -0.206(7)		60.8
	2.073(3)	2.155(3)	0.383(2)	C108 0.137(7)		78.0
	Zn1-N13			$C120\ 0.203(7)$		
	2.070(3)			(1240.270(7))		
	Zn1-N12					
	2.086(3)					
	Zn1-N15					
	2.074(3)					
CP ₆ _sq	Zn11–N14	Zn11–N11	Zn11	C102 0.233(25)	85.4	80.6
	2.045(14)	2.137(11)	0.293(6)	C108 0.050(25)	(por 1-2)	60.6
	Zn11-N12			C1190.251(23) C1240121(25)		
	2.062(15)			C124 - 0.121(23)	47.7	
	Zn11–N13				(por 1-3)	
	2.097(13)					
	l í í					

		1			(2.2.2	
	Zn11–N15				63.3	
	2.074(13)				(por 2-3)	
	Zn21–N25 2.051(16) Zn21–N23 2.043(14) Zn21–N22	Zn21–N21 2.136(11)	Zn21 0.282(7)	C202 -0.151(25) C208 -0.008(26) C219 0.030(31) C225 -0.042(27)		72.1 68.6
	2.036(15) Zn21–N24 2.068(16)			C302 0.114(30)		
	Zn31–N34 2.073(18) Zn31–N32 2.044(15) Zn31–N33 2.037(17) Zn31–N35 2.057(15)	Zn31–N31 2.152(13)	Zn31 0.312(8)	C307 -0.236(33) C319 0.154(51) C325 -0.065(30)		69.6 61.8
CP₆_sq Zn porphyrin not bonded with cluster	Zn41–N43 2.055(12) Zn41–N42 2.064(11) Zn41–N41 2.084(13) Zn41–N44 2.085(12)	Zn41– O41 ¹ 2.081(8)	Zn41 0.348(6)	C402 0.113(27) C408 0.058(23) C419 0.177(23) C425 0.230(23)		58.3 66.2

 $^{1}\text{H}_{2}\text{O}$ molecule axially coordinated to Zn(II) porphyrin not bonded with cluster

² Dihedral angles between symmetrically independent porphyrin molecules.

3. Powder X-ray diffraction analysis (PXRD)

Fig. S9 PXRD pattern of CP_2 -bulk a) Comparison of PXRD pattern of CP_2 -bulk (red) with theoretical powder pattern calculated in Mercury from single crystal data for CP_2 (blue), b) The result of the Le-bail fit of CP_2 -bulk.

Fig. S10 PXRD pattern of CP_6 . a) PXRD pattern of CP_6 sample from single crystal synthesis (red) compared with theoretical powder pattern for CP_6 single crystal data (blue) and theoretical powder pattern for **ZnDTolP** single crystal (green), b) comparison of PXRD pattern of CP_6 -bulk (red) with theoretical powder pattern calculated in Mercury from single crystal data for CP_6 (blue). The main phase is CP_6 but it is not pure.

4. NMR spectroscopy

4.1. DOSY Experiments

Fig. S11 DOSY ¹H NMR spectra (in CDCl₃ at 303 K) of **ZnDTolP**, **PyMoC** and their mixtures at different molar ratios (C : P = 1:2 - 1:10): (A) the porphyrin spectral range and (B) the range of the N-CH₂ group of Bu₄N⁺ (see Fig. 4).

Table S8 (Left) Experimental diffusion coefficients (*Ds*) of **ZnDTolP**, **PyMoC** and their mixtures at different molar ratios (C : P = 1:2 - 1:10) according DOSY-NMR data. (Right) Changes of *Ds* at the different molar ratios (C : P = 1:2 - 1:10) in CDCl₃.

C:P ratio	$D_{\rm s},{\rm m^{2}/s}$	$D_{\rm s},{\rm m^2/s}$	
	Porph/Py*	Bu ₄ N ⁺ **	8.9 -
0:1 (ZnDTolP)	8.88 × 10 ⁻¹⁰		୍ଟ୍ 6.2 - ୁକ୍ *
1:0 (PyMoC)	4.63 × 10 ⁻¹⁰	4.65 × 10 ⁻¹⁰	(s) 5.0 - (s) 2 E S C
1:2	4.11 × 10 ⁻¹⁰	4.11 × 10 ⁻¹⁰	- 4.46 -
1:4	4.46×10^{-10}	4.05×10^{-10}	4.11 -
1:6	5.0×10^{-10}	3.84 × 10 ⁻¹⁰	Py-Mo cluster C:P=1:2 C:P=1:4 C:P=1:6 C:P=1:10 ZnDToIP
1:10	6.2 × 10 ⁻¹⁰	3.83×10^{-10}	XznDToIP

* The average of the D_s values determined for the five signal of the porphyrin core.

** The D_s value determined for the N-CH₂ signal of the Bu₄N⁺ cation.

4.2. Low-temperature NMR Experiments

Fig. S12 Low-temperature ¹H NMR spectra (in CDCl₃ at 233 K) of mixtures of **ZnDTolP** and **PyMoC** at different cluster : porphyrin molar ratios (C : P = 1:2 - 1:6).

5. UV-Vis spectroscopy

Fig. S13 (A) UV-Vis spectral changes at 298 K of **ZnDTolP** (90μ M) in CH₂Cl₂ upon titration with **PyMoC** solution (0.034 equiv each addition). (B) Species concentration plot of **ZnDTolP** (black), hybrid complex **CP**₂ (aquamarine) and hybrid complex **CP**₆ (blue) upon the addition of **PyMoC**. (C) Absorbance changes of **ZnDTolP** at 537 nm upon the addition of **PyMoC**.