Electronic Supplementary Information for:

# Conversion of haloform to carbonate by iridium *N*-heterocycle stabilized carbene complexes and silver(I) oxide

Andrew C. Marr,<sup>a</sup> Patrick J. Morgan,<sup>a</sup> Graham C. Saunders \*<sup>b</sup> and Hayden P. Thomas<sup>b</sup>

<sup>*a*</sup> School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, United Kingdom.

<sup>b</sup> School of Science, University of Waikato, Hamilton 3240, New Zealand.

E-mail: graham.saunders@waikato.ac.nz

# **Table of Contents**

| Experimental details                                                               | 2  |
|------------------------------------------------------------------------------------|----|
| Materials                                                                          | 2  |
| NMR tube reactions between silver(I) oxide and <b>1a</b> , <b>1b</b> and <b>1c</b> | 2  |
| Synthesis of <b>2a</b> , <b>2b</b> and <b>2c</b> using silver(I) carbonate         | 8  |
| Reaction between <b>1a</b> and haloform in deutero-dimethylsulphoxide              | 8  |
| X-ray crystallographic study                                                       | 20 |
| References                                                                         | 22 |

## **Experimental details**

## Materials

Complexes **1a**,<sup>1</sup> **1b**<sup>1</sup> and **1c**<sup>2</sup> were prepared as previously described. Silver(I) oxide (Aldrich), chloroform (Aldrich), bromoform (BDH) and iodoform (BDH) were used as supplied.

# NMR tube reactions between silver(I) oxide and 1a, 1b and 1c

Silver(I) oxide (*ca.* 0.025 g, 0.1 mmol) was added to a solution of **1a**, **1b** or **1c** (*ca.* 20 mg, 0.03 mmol) in deuterochloroform (*ca.* 1 cm<sup>3</sup>) in an NMR tube. The solution was monitored regularly over 7 to 10 days and by <sup>1</sup>H and <sup>19</sup>F NMR spectroscopy. Once the reaction had reached completion, the solution was diluted with CHCl<sub>3</sub> and filtered through Celite. The product was obtained as a brown-beige or yellow solid on slow evaporation of the solvent, or on precipitation by addition of petroleum ether (b.p. 60-80°C).

 $\eta^5$ -Pentamethylcyclopentadienyliridium(1-(2-chloro-6-fluorophenylmethyl)-3-methylimidazolin-2ylidene) carbonate (**2a**)

Calculated for  $C_{22}H_{25}CIFIrN_2O_3$ : C, 43.2; H, 4.1; N, 4.6. Found: C, 43.8; H, 5.3; N, 4.9%. Repeated recrystallization failed to give satisfactory analyses. Mass spectrometric analysis of **2a** did not produce a recognisable anion or cation.

<sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.36 (1H, d. t. J<sub>HF</sub> 5.8, J<sub>HH</sub> 8.1, C<sub>6</sub>H<sub>3</sub>ClF), 7.31 (1H, m, C<sub>6</sub>H<sub>3</sub>ClF), 7.07 (1H, m, C<sub>6</sub>H<sub>3</sub>ClF), 6.85 (1H, d, <sup>3</sup>J<sub>HH</sub> 2.0, *H*CCH), 6.37 (1H, d, <sup>3</sup>J<sub>HH</sub> 2.0, HCC*H*), 5.69 (1H, dd, <sup>2</sup>J<sub>HH</sub> 14.5, <sup>4</sup>J<sub>HF</sub> 1.7, NC*H*H), 5.34 (1H, dd, <sup>2</sup>J<sub>HH</sub> 14.5, <sup>4</sup>J<sub>HF</sub> 1.6, NCH*H*), 3.79 (3H, s, NCH<sub>3</sub>), 1.78 (15H, s, C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): δ 168.1 (CO<sub>3</sub>), 163.8 (Ir*C*<sub>carbene</sub>), 162.3 (d, <sup>1</sup>*J*<sub>CF</sub> 252, CF), 137.1 (d, *J*<sub>CF</sub> 5, C<sub>6</sub>H<sub>3</sub>ClF), 131.3 (d, *J*<sub>CF</sub> 10, C<sub>6</sub>H<sub>3</sub>ClF), 126.1 (d, *J*<sub>CF</sub> 3, C<sub>6</sub>H<sub>3</sub>ClF), 121.9 (NCH), 120.9 (d., *J*<sub>CF</sub> 17, C<sub>6</sub>H<sub>3</sub>ClF), 119.4 (NCH), 114.8 (d, *J*<sub>CF</sub> 22, Ph), 86.2 (*C*<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>), 45.2 (d, <sup>3</sup>*J*<sub>CF</sub> 3, NCH<sub>2</sub>), 37.8 (NCH<sub>3</sub>), 9.8 (C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>). <sup>19</sup>F NMR (CDCl<sub>3</sub>): δ -110.29 (1F, m).

Shifts for the carbonate complex obtained in the NMR tube reaction between 1a,  $Ag_2O$  and a drop of chloroform in deutero-dimethylsulphoxide:

<sup>1</sup>H NMR ((CD<sub>3</sub>)<sub>2</sub>SO):  $\delta$  7.56 (1H, d. t. J<sub>HF</sub> 6.1, J<sub>HH</sub> 8.2, C<sub>6</sub>H<sub>3</sub>ClF), 7.48 (1H, m, C<sub>6</sub>H<sub>3</sub>ClF), 7.35\* (1H, m, C<sub>6</sub>H<sub>3</sub>ClF), 7.35\* (1H, d, <sup>3</sup>J<sub>HH</sub> 2.0, HCCH), 6.62 (1H, d, <sup>3</sup>J<sub>HH</sub> 2.0, HCCH), 5.48 (1H, d. d, <sup>2</sup>J<sub>HH</sub> 14.9, <sup>4</sup>J<sub>HF</sub> 1.2, NCHH), 5.18 (1H, d. d, <sup>2</sup>J<sub>HH</sub> 14.9, <sup>4</sup>J<sub>HF</sub> 1.2, NCHH), 3.70 (3H, s, NCH<sub>3</sub>), 1.70 (15H, s, C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>).

\*These resonances are coincident.

<sup>19</sup>F NMR ((CD<sub>3</sub>)<sub>2</sub>SO): δ -111.77 (1F, m).

Figure S1. <sup>1</sup>H NMR spectrum of 2a in CDCl<sub>3</sub>



Figure S2. <sup>19</sup>F NMR spectrum of 2a in CDCl<sub>3</sub>





 $\eta^{5}$ -Pentamethylcyclopentadienyliridium(1-(2,6-difluorophenylmethyl)-3-methylimidazolin-2-ylidene) carbonate (**2b**)

Calculated for  $C_{22}H_{25}F_2IrN_2O_3$ : C, 44.4; H, 4.2; N, 4.7. Found: C, 44.0; H, 5.2; N, 5.0%. Repeated recrystallization failed to give satisfactory analyses. Mass spectrometric analysis of **2b** did not produce an recognisable anion or cation.

<sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.38 (1H, m, H<sub>para</sub>), 6.97 (2H, m, H<sub>meta</sub>), 6.89 (1H, d, <sup>3</sup>J<sub>HH</sub> 2.1, *H*CCH), 6.47 (1H, d, <sup>3</sup>J<sub>HH</sub> 2.0, HCC*H*), 5.46 (1H, d, <sup>2</sup>J<sub>HH</sub> 15.2, NC*H*H), 5.26 (1H, d, <sup>2</sup>J<sub>HH</sub> 15.2, NCH*H*), 4.78 (3H, s, NCH<sub>3</sub>), 1.77 (15H, s, C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  168.1 (CO<sub>3</sub>), 164.3 (Ir*C*<sub>carbene</sub>), 162.1 (dd, <sup>1</sup>*J*<sub>CF</sub> 251, <sup>3</sup>*J*<sub>CF</sub> 8, CF), 131.3 (t, *J*<sub>CF</sub> 10, C<sub>6</sub>H<sub>3</sub>F<sub>2</sub>), 122.2 (NCH), 119.5 (NCH), 112.0 (dm, *J*<sub>CF</sub> 25, C<sub>6</sub>H<sub>3</sub>F<sub>2</sub>), 111.2 (t, *J*<sub>CF</sub> 25, C<sub>6</sub>H<sub>3</sub>F<sub>2</sub>), 86.3 (*C*<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>), 42.1 (NCH<sub>2</sub>), 37.8 (NCH<sub>3</sub>), 9.7 (C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>).

<sup>19</sup>F NMR (CDCl<sub>3</sub>): δ -112.46 (2F, br t, *J* 6.7, F).

Figure S4. <sup>1</sup>H NMR spectrum of **2b** in CDCl<sub>3</sub>



Figure S5. <sup>19</sup>F NMR spectrum of  $\mathbf{2b}$  in CDCl<sub>3</sub>



Figure S6. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 2b in CDCl<sub>3</sub>



 $\eta^{5}$ -Pentamethylcyclopentadienyliridium(1-(2,6-dimethylphenylmethyl)-3-methylimidazolin-2-ylidene) carbonate (**2c**)

Calculated for  $C_{24}H_{31}IrN_2O_3$ : C, 49.05; H, 5.3; N, 4.8. Found: C, 48.8; H, 6.2; N, 3.9%. Repeated recrystallization failed to give satisfactory analyses. Mass spectrometric analysis of **2c** did not produce a recognisable anion or cation.

<sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.19 (1H, m, H<sub>para</sub>), 7.08 (2H, m, H<sub>meta</sub>), 6.79 (1H, d. J<sub>HH</sub> 2.0, *H*CCH), 6.22 (1H, d. J<sub>HH</sub> 2.0, HCC*H*), 5.78 (1H, d, <sup>2</sup>J<sub>HH</sub> 14.0, NC*H*H), 4.89 (1H, d, <sup>2</sup>J<sub>HH</sub> 14.0, NC*HH*), 3.78 (3H, s, NCH<sub>3</sub>), 2.27 (6H, s, C<sub>6</sub>CH<sub>3</sub>), 1.78 (15H, s, C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  167.9 (CO<sub>3</sub>), 163.1 (IrC<sub>carbene</sub>), 130.6 (C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>), 129.8 (C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>), 129.1 (C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>), 128.8 (C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>), 121.5 (NCH), 119.3 (NCH), 86.0 (C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>), 47.9 (NCH<sub>2</sub>), 37.6 (NCH<sub>3</sub>), 19.8 (C<sub>6</sub>(CH<sub>3</sub>)<sub>2</sub>), 9.9 (C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>).

Figure S7. <sup>1</sup>H NMR spectrum of **2c** in CDCl<sub>3</sub>



## Synthesis of 2a, 2b and 2c using silver(I) carbonate

Complexes **2a**, **2b** and **2c** were generated in NMR tubes by the reaction of **1a**, **1b** and **1c** with silver(I) carbonate in deutero-chloroform. The NMR data are identical to those obtained by the reaction of **1a**, **1b** and **1c** with silver(I) carbonate in deutero-chloroform.

# Synthesis of n<sup>5</sup>-pentamethylcyclopentadienylrhodium(1-(2,6-difluorophenylmethyl)-3methylimidazolin-2-ylidene) carbonate

The rhodium analogue of complex **2a** was generated in an NMR tube by the reaction of **1a** with silver(I) carbonate in deutero-chloroform.

<sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.36 (1H, d. t. *J*<sub>HF</sub> 5.8, *J*<sub>HH</sub> 8.1, C<sub>6</sub>H<sub>3</sub>ClF), 7.28 (1H, m, C<sub>6</sub>H<sub>3</sub>ClF), 7.05 (1H, m, C<sub>6</sub>H<sub>3</sub>ClF), 6.91 (1H, d, <sup>3</sup>*J*<sub>HH</sub> 2.0, *H*CCH), 6.38 (1H, d, <sup>3</sup>*J*<sub>HH</sub> 2.0, HCC*H*), 5.67 (1H, dd, <sup>2</sup>*J*<sub>HH</sub> 14.5, <sup>4</sup>*J*<sub>HF</sub> 1.7, NC*H*H), 5.34 (1H, dd, <sup>2</sup>*J*<sub>HH</sub> 14.5, <sup>4</sup>*J*<sub>HF</sub> 1.4, NCH*H*), 3.80 (3H, s, NCH<sub>3</sub>), 1.75 (15H, s, C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): δ 174.8 (d, <sup>1</sup>*J*<sub>RhC</sub> 60, Rh*C*<sub>carbene</sub>), 166.4 (CO<sub>3</sub>), 162.3 (d, <sup>1</sup>*J*<sub>CF</sub> 253, CF), 137.0 (d, *J*<sub>CF</sub> 5, C<sub>6</sub>H<sub>3</sub>ClF), 131.3 (d, *J*<sub>CF</sub> 10, C<sub>6</sub>H<sub>3</sub>ClF), 126.1 (s, C<sub>6</sub>H<sub>3</sub>ClF), 122.7 (NCH), 120.8 (d., *J*<sub>CF</sub> 17, C<sub>6</sub>H<sub>3</sub>ClF), 120.0 (NCH), 114.8 (d, *J*<sub>CF</sub> 22, Ph), 93.7 (*C*<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>), 45.5 (d, <sup>3</sup>*J*<sub>CF</sub> 3, NCH<sub>2</sub>), 37.9 (NCH<sub>3</sub>), 9.6 (C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>). <sup>19</sup>F NMR (CDCl<sub>3</sub>): δ -110.17 (1F, m).

### Reaction between 1a and haloform in deutero-dimethylsulphoxide

Silver(I) oxide (*ca.* 0.025 g, 0.1 mmol) was added to a solution of **1a** (*ca.* 20 mg, 0.03 mmol) in deutero-dimethylsulphoxide (*ca.* 1 cm<sup>3</sup>) in an NMR tube. A drop of chloroform or bromoform or a few crystals of iodoform (*ca.* 25 mg, 0.06 mmol) was added. Integration of appropriate NMR resonances was used to determine the ratio of **1a** to haloform, and the amount of haloform adjusted to achieve a ratio close to 1:1. The reaction was monitored regularly over several days by <sup>1</sup>H and <sup>19</sup>F NMR spectroscopy.

Shifts for the carbonate complex obtained in the NMR tube reaction between 1a,  $Ag_2O$  and a drop of chloroform in deutero-dimethylsulphoxide:

<sup>1</sup>H NMR ((CD<sub>3</sub>)<sub>2</sub>SO):  $\delta$  7.56 (1H, d. t.  $J_{HF}$  6.1,  $J_{HH}$  8.2,  $C_6H_3CIF$ ), 7.48 (1H, m,  $C_6H_3CIF$ ), 7.35\* (1H, m,  $C_6H_3CIF$ ), 7.35\* (1H, d,  ${}^3J_{HH}$  2.0, HCCH), 6.62 (1H, d,  ${}^3J_{HH}$  2.0, HCCH), 5.48 (1H, d. d,  ${}^2J_{HH}$  14.9,  ${}^4J_{HF}$  1.2, NCHH), 5.18 (1H, d. d,  ${}^2J_{HH}$  14.9,  ${}^4J_{HF}$  1.2, NCHH), 5.18 (1H, d. d,  ${}^2J_{HH}$  14.9,  ${}^4J_{HF}$  1.2, NCHH), 3.70 (3H, s, NCH<sub>3</sub>), 1.70 (15H, s,  $C_5(CH_3)_5$ ).

\*These resonances are coincident.

<sup>19</sup>F NMR ((CD<sub>3</sub>)<sub>2</sub>SO): δ -111.77 (1F, m).

**Figure S9**. <sup>1</sup>H NMR spectra of the reaction between **1a**, silver oxide and  $CHCl_3$  in  $(CD_3)_2SO$ .

a) 0 hours









**Figure S11**. <sup>1</sup>H NMR spectra of the reaction between **1a**, silver oxide and CHBr<sub>3</sub> in (CD<sub>3</sub>)<sub>2</sub>SO. **a)** 0 hours









**Figure S12**. Variation of the concentrations of **1a**, **2b** and CHBr<sub>3</sub> (relative to the initial concentration of **1a**) with time the reaction between **1a**, silver oxide and CHBr<sub>3</sub> in  $(CD_3)_2SO$ .

Figure S13. <sup>1</sup>H NMR spectra of the reaction between 1a, silver oxide and  $CHI_3$  in  $(CD_3)_2SO$ .

a) 0 hours







**Figure S14**. Variation of the concentrations of **1a**, **2b** and  $CHI_3$  (relative to the initial concentration of **1a**) with time the reaction between **1a**, silver oxide and  $CHI_3$  in  $(CD_3)_2SO$ .

## Identification of silver and silver chloride in the residue of the reaction between 1a and chloroform

The black solid residue (Fig. S15a) remaining after the reaction between **1a**, chloroform and silver oxide in deutero-dimethylsulphoxide was treated with dilute (2M) aqueous ammonia, in which both silver chloride and silver oxide are soluble. Most of the material dissolved to produce a colourless solution leaving a small amount of black solid (Fig. S15b). Nitric acid added was added to the decanted solution resulting in a white precipitate (Fig. S15c).<sup>3</sup> The observations are consistent with the presence of silver chloride. The black solid was found to dissolve in nitric acid (Fig. S15d), which is consistent with elemental silver. **[CARE:** While no adverse incidents occurred during these experiments, dissolution of silver(I) oxide in aqueous ammonia can lead to the formation of explosive and shock sensitive silver nitride (fulminating silver). Dilute (2 M) aqueous ammonia was used, and the samples were treated with acid immediately after each experiment had been completed to prevent the formation of the nitride.]

Figure S15. Analysis of the residue from the reaction between 1a, silver oxide and CHCl<sub>3</sub> in (CD<sub>3</sub>)<sub>2</sub>SO.

a Black residue



 ${f b}$  Addition of NH<sub>3</sub>(aq)



 $\mathbf{c}$  Addition of HNO<sub>3</sub> to ammoniacal solution



**d** Addition of  $HNO_3$  to insoluble solid



## X-ray crystallographic study

Crystals of **2a** were obtained by vapour diffusion of pentane into a chloroform solution. Crystal data are listed in Table S1. Diffraction data were collected on an Agilent SuperNova, single source at offset, Atlas diffractometer with graphite-monochromated Cu—K<sub>a</sub> radiation. The structure was solved using Olex2<sup>5</sup> and refined with the olex2.refine<sup>6</sup> refinement package using Gauss-Newton minimization. The non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atom positions were added in idealized positions and a riding model with fixed thermal parameters (Uij = 1.2Ueq for the atom to which they are bonded (1.5 for CH<sub>3</sub>)) was used for subsequent refinements. The function minimized was  $\Sigma[w(|F_o|^2 - |F_c|^2)]$  with reflection weights  $w^{-1} = [\sigma^2 |F_o|^2 + (g1P)^2 + (g2P)]$  where  $P = [max |F_o|^2 + 2|F_c|^2]/3$ .

CCDC 1864957 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.





| Formula                                     | $C_{22}H_{25}CIFIrN_2O_3.2H_2O$                                                         |
|---------------------------------------------|-----------------------------------------------------------------------------------------|
| Formula weight                              | 648.15                                                                                  |
| Crystal system                              | orthorhombic                                                                            |
| Space group                                 | Pbcn                                                                                    |
| <i>a,</i> Å                                 | 24.4133(4)                                                                              |
| <i>b,</i> Å                                 | 15.2016(2)                                                                              |
| <i>c</i> , Å                                | 12.9342(2)                                                                              |
| <i>V</i> , Å <sup>3</sup>                   | 4800.18(13)                                                                             |
| Ζ                                           | 8                                                                                       |
| <i>D</i> <sub>c</sub> (g cm <sup>-3</sup> ) | 1.7936                                                                                  |
| Crystal size (mm <sup>3</sup> )             | $0.097 \times 0.051 \times 0.023$                                                       |
| μ (mm <sup>-1</sup> )                       | 12.166                                                                                  |
| hetarange (°)                               | 3.42 - 73.99                                                                            |
| Total reflections                           | 18,286                                                                                  |
| Unique reflections (R <sub>int</sub> )      | 4,708 (0.0504)                                                                          |
| Observed reflections $[l > 2\sigma(l)]$     | 3,682                                                                                   |
| Parameters                                  | 301                                                                                     |
| Final R indices $[l > 2\sigma(l)]$          | $R_1 = 0.0409$ , w $R_2 = 0.1101$                                                       |
| R indices (all data)                        | $R_1 = 0.0545$ , w $R_2 = 0.12.59$                                                      |
| Weighting scheme                            | $w = 1/[\sigma^2(F_o)^2 + \{0.0720 (F_o^2 + 2F_c^2)/3\}^2 + 9.8380 (F_o^2 + 2F_c^2)/3]$ |
| Max., min. $\Delta ho$ (eÅ-3)               | 2.303, -1.466                                                                           |
| Goodness of fit on <i>F</i> <sup>2</sup>    | 1.0599                                                                                  |
|                                             |                                                                                         |

Table S1. Crystallographic data for  $[(\eta^5-C_5Me_5)Ir(\kappa^2O-CO_3)(\kappa C-MeNC_3H_2NCH_2C_6H_3F-2-CI-6)]$ .2H<sub>2</sub>O (**2a**.2H<sub>2</sub>O).

# References

- 1. A. C. Marr, G. C. Saunders, H. P. Thomas and Y.-M. Wang, Inorg. Chim. Acta, 2019, 486, 1.
- 2. Y. Ma, Y. Wang, P. Morgan, R. E. Jackson, X. Liu, G. C. Saunders, F. Lorenzini and A. C. Marr, *Catalysis Today*, 2018, **307**, 248.
- 3. A. I. Vogel, *Textbook of macro and semimicro qualitative inorganic analysis*, Longmans, Green & Co., London 1937.
- 4. H. P. Thomas, Y.-M. Wang, F. Lorenzini, S. J. Coles, P. N. Horton, A. C. Marr and G. C. Saunders, *Organometallics*, 2017, **36**, 960.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339.
- L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Cryst.*, 2015, A71, 59.