## **Electronic Supplementary Information**

## Rational design and green synthesis of 3D metal organic frameworks comprised of a rigid heterocyclic nitrogen-rich dicarboxylate: structural diversity, CO<sub>2</sub> sorption and selective sensing of 2,4,6-TNP in water<sup>†</sup>

Alisha Gogia and Sanjay K. Mandal\*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, INDIA

> \*Author for correspondence: Prof. Sanjay K. Mandal, E-mail: sanjaymandal@iisermohali.ac.in.

# **Table of Contents**

|              | Item                                                                   | Page No.   |
|--------------|------------------------------------------------------------------------|------------|
| Fig. S1      | ORTEP view of asymmetric unit of <b>1</b>                              | <b>S</b> 3 |
| Fig. S2      | ORTEP view of asymmetric unit of <b>2</b>                              | S3         |
| Table S1     | Selected bond lengths (Å) and bond angles (°) of <b>1</b>              | S4         |
| Table S2     | Selected bond lengths (Å) and bond angles (°) of $2$                   | S5         |
| Fig. S3      | FTIR spectrum of <b>1</b>                                              | <b>S</b> 6 |
| Fig. S4      | FTIR spectrum of <b>2</b>                                              | S7         |
| Fig. S5      | $N_2$ adsorption isotherm of <b>1</b>                                  | <b>S</b> 8 |
| Fig. S6      | $N_2$ adsorption isotherm of <b>2</b>                                  | <b>S</b> 8 |
| Fig. S7-S8   | Calculation of isosteric heat of adsorption of 1 and 2                 | S9-S10     |
| Fig. S9      | TGA profiles of <b>1</b> and <b>2</b>                                  | S10        |
| Fig. S10     | PXRD patterns of as-synthesized <b>1</b> and after immersing it in     | S11        |
|              | water                                                                  |            |
| Fig. S11     | Solid state reflectance spectra of $H_2tdz$ , 1, and 2                 | S11        |
| Fig. S12     | Excitation and emission spectra of H <sub>2</sub> tdz                  | S12        |
| Fig. S13     | Excitation and emission spectra of 1                                   | S12        |
| Fig. S14-21  | Fluorescence titration curves of <b>1</b> for different NAEs           | S13-S16    |
| Scheme S1    | Possible interactions between 1 and TNP                                | S17        |
| Fig. S22-S24 | Stern-Volmer plots of 1 for TNP, 2,4-DNP, and 4-NP                     | S18-S19    |
| Table S3     | Comparison with literature reports                                     | S20        |
| Fig. S25     | Calculation of detection limit of TNP                                  | S21        |
| Table S4     | Calculation of detection limit of TNP                                  | S21        |
| Table S5     | Lifetime measurement                                                   | S22        |
| Fig. S26     | Recyclability and stability of <b>1</b>                                | S22        |
| Fig. S27     | <sup>13</sup> C NMR spectrum of H <sub>2</sub> tdz in D <sub>2</sub> O | S23        |
| Fig. S28     | FTIR spectrum of H <sub>2</sub> tdz                                    | S24        |



Fig. S1 ORTEP view of the asymmetric unit in 1.



Fig. S2 ORTEP view of the asymmetric unit in 2.

Table S1. Selected bond lengths (Å) and angles (°) for 1.

Bond distances (Å)

| Cd1-O7 | 2.2541(19) | Cd1-O4 | 2.2897(17) |
|--------|------------|--------|------------|
| Cd1-N2 | 2.318(2)   | Cd1-N7 | 2.349(2)   |
| Cd1-N5 | 2.394(2)   | Cd1-O5 | 2.3992(19) |
| Cd2-O5 | 2.2655(17) | Cd2-N8 | 2.298(2)   |
| Cd2-N3 | 2.452(2)   | Cd2-O2 | 2.424(2)   |
| Cd2-O1 | 2.602(2)   | Cd2-O4 | 2.5454(19) |
| Cd2-N1 | 2.314(2)   |        |            |

Bond angles (°)

| O7-Cd1-O4 | 113.67(7) | O7-Cd1-N2 | 95.04(7)  |
|-----------|-----------|-----------|-----------|
| O4-Cd1-N2 | 89.94(7)  | O7-Cd1-N7 | 87.11(7)  |
| O4-Cd1-N7 | 87.15(7)  | N2-Cd1-N7 | 176.90(8) |
| O7-Cd1-N5 | 104.85(7) | O4-Cd1-N5 | 141.18(7) |
| N2-Cd1-N5 | 91.38(7)  | N7-Cd1-N5 | 90.23(7)  |
| O7-Cd1-O5 | 170.84(6) | O4-Cd1-O5 | 72.30(6)  |
| N2-Cd1-O5 | 91.85(7)  | N7-Cd1-O5 | 86.26(7)  |
| N5-Cd1-O5 | 68.89(7)  | O5-Cd2-N8 | 91.45(7)  |
| O5-Cd2-N1 | 89.68(7)  | N8-Cd2-N1 | 174.22(8) |
| O5-Cd2-O2 | 105.16(7) | N8-Cd2-O2 | 93.97(8)  |
| N1-Cd2-O2 | 80.26(8)  | O5-Cd2-N3 | 134.49(7) |
| N8-Cd2-N3 | 95.09(7)  | N1-Cd2-N3 | 88.15(7)  |
| O2-Cd2-N3 | 119.16(7) | O5-Cd2-O4 | 69.95(6)  |
| N8-Cd2-O4 | 96.50(7)  | N1-Cd2-O4 | 89.22(7)  |
| O2-Cd2-O4 | 168.52(7) | N3-Cd2-O4 | 64.57(6)  |
| O5-Cd2-O1 | 154.93(7) | N8-Cd2-O1 | 81.03(7)  |
| N1-Cd2-O1 | 95.60(7)  | O2-Cd2-O1 | 52.13(7)  |
| N3-Cd2-O1 | 70.31(7)  | O4-Cd2-O1 | 134.42(6) |

Table S2. Selected bond lengths (Å) and angles (°) for 2.

Bond distances (Å)

| Cu1-O4 | 1.963(4) | Cu1-01 | 1.974(4) |
|--------|----------|--------|----------|
| Cu1-N4 | 1.992(5) | Cu1-N3 | 1.992(5) |
| Cu1-N1 | 2.327(6) |        |          |

Bond angles (°)

| O4-Cu1-O1 | 167.7(2) | O4-Cu1-N4 | 90.91(19) |
|-----------|----------|-----------|-----------|
| O1-Cu1-N4 | 88.2(2)  | O4-Cu1-N3 | 90.39(19) |
| O1-Cu1-N3 | 90.1(2)  | N4-Cu1-N3 | 177.6(3)  |
| O4-Cu1-N1 | 113.3(2) | O1-Cu1-N1 | 79.01(19) |
| N4-Cu1-N1 | 94.1(2)  | N3-Cu1-N1 | 87.2(2)   |



Fig. S3 (a) Full and (b) expanded region of the FTIR spectrum of 1.



Fig. S4 (a) Full and (b) expanded region of the FTIR spectrum of 2.



Fig. S5 N<sub>2</sub> adsorption isotherm of 1 at 77 K.



Fig. S6 N<sub>2</sub> adsorption isotherm of 2 at 77 K.

#### Calculation of isosteric heat of adsorption

A virial-type expression consisting of the temperature dependent virial parameters ai and bi were employed to calculate the isosteric heat of absorption for  $CO_2$  at 263 K, 273 K and 298 K. The virial type expression is given below:

$$\ln(P) = \ln(N) + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} a_j N^j$$

where, P is the pressure expressed in Torr, N is the amount adsorbed in mmol/g, T is the temperature in K,  $a_i$  and  $b_i$  is the virial coefficients, and m, n represent the number of coefficients required to adequately describe the isotherms (m and n were gradually increased until the contribution of *a* and *b* coefficients added further were negligible towards the overall final fit, and the average value of the squared deviations from the experimental values was minimized). The values of the virial coefficient  $a_0$  to  $a_i$  were taken to calculate the isosteric heat of adsorption using the following expression.

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

 $Q_{st}$  is the coverage dependent isosteric heat of adsorption and R is the universal gas constant. At zero loading, the isosteric heat of adsorption ( $Q_{st}$ ) for **1** and **2** are found to be 29.1 kJmol<sup>-1</sup> and 23.4 kJmol<sup>-1</sup>, respectively.



**Fig. S7** Fitting (violet solid lines) of the CO<sub>2</sub> adsorption isotherms for **1** measured at 263 K (black circle), 273 K (red circle), and 298 K (blue circle) using the virial method to estimate the Q<sub>st</sub> value.



**Fig. S8** Fitting (violet solid lines) of the CO<sub>2</sub> adsorption isotherms for **2** measured at 263 K (black circle), 273 K (red circle), and 298 K (blue circle) using the virial method to estimate the  $Q_{st}$  value.



Fig. S9 TGA profiles of 1 and 2.



Fig. S10 PXRD patterns of as-synthesized 1 and after immersing it in water.



Fig. S11 Solid-state reflectance spectra of 1 and 2.



Fig. S12 Excitation and emission spectra of H<sub>2</sub>tdz in solid-state (left) and in water (right).



Fig. S13 Excitation and emission spectra of 1 in solid-state (left) and dispersed in water (right).



Fig. S14 Change in emission spectra of 1 dispersed in water upon incremental addition of 2,4-DNP solution (2 mM) in water.



Fig. S15 Change in emission spectra of 1 dispersed in water upon incremental addition of 4-NP solution (2 mM) in water.



Fig. S16 Change in emission spectra of 1 dispersed in water upon incremental addition of TNT solution (2 mM) in water.



Fig. S17 Change in emission spectra of 1 dispersed in water upon incremental addition of 2,6-DNT solution (2 mM) in water.



Fig. S18 Change in emission spectra of 1 dispersed in water upon incremental addition of 2,4-DNT solution (2 mM) in water.



Fig. S19 Change in emission spectra of 1 dispersed in water upon incremental addition of 1,3-DNB solution (2 mM) in water.



Fig. S20 Change in emission spectra of 1 dispersed in water upon incremental addition of NB solution (2 mM) in water.



Fig. S21 Change in emission spectra of 1 dispersed in water upon incremental addition of NM solution (2 mM) in water.



molecules.



**Fig. S22** Stern-Volmer (SV) plot of **1** for TNP. The relative fluorescence intensity is linear with TNP concentration in the lower region,  $I_0/I = 1 + 48602.32$ [TNP] (R<sup>2</sup> = 0.998).



**Fig. S23** Stern-Volmer (SV) plot of **1** for 2,4-DNP. The relative fluorescence intensity is linear with TNP concentration in the lower region,  $I_0/I = 1 + 24787.05[2,4-DNP]$  ( $R^2 = 0.998$ ).



**Fig. S24** Stern-Volmer (SV) plot of **1** for 4-NP. The relative fluorescence intensity is linear with TNP concentration in the lower region,  $I_0/I = 1 + 15496.34[4-NP]$  (R<sup>2</sup> = 0.991).

| MOF                                                                                            | K <sub>SV</sub> (M <sup>-1</sup> )                        | Detection Limit                    | Medium           | Reference                                               |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------|------------------|---------------------------------------------------------|
| ${[Cd_2(tdz)_2(4,4'-bpy)_2] \cdot 6.5H_2O_n(1)}$                                               | 4.86 x 10 <sup>4</sup>                                    | 6.3 x 10 <sup>-6</sup> M (1.4 ppm) | H <sub>2</sub> O | This work                                               |
| [Zr <sub>6</sub> O <sub>4</sub> (OH) <sub>4</sub> (BTDB) <sub>6</sub> ]·8H <sub>2</sub> O·6DMF | 2.49 x 10 <sup>4</sup>                                    | 1.63 x 10 <sup>-6</sup> M          | MeOH             | <i>CrystEngComm</i> , 2016, <b>18</b> , 3104–3113.      |
| ${[Cd(BIDPT)(oba)] \cdot 0.5H_2O}n(1)$<br>and                                                  | $2.33 \times 10^4$ and                                    | NA                                 | DMF              | Inorg. Chem. Commun.,<br>2016, <b>66</b> , 51-54.       |
| ${[Zn(BIDPT)(4,4'-sdb)] \cdot 2.25H_2O}_n$ (2)                                                 | 2.78 x 10 <sup>4</sup>                                    | NA                                 |                  |                                                         |
| [Zn4(DMF)(Ur)2(2,6-NDC)4]n                                                                     | 10.83 x 10 <sup>4</sup>                                   | NA<br>1.63 ppm                     | H <sub>2</sub> O | <i>Cryst. Growth Des.</i> , 2015, <b>15</b> , 4627–4634 |
| Zr6O4(OH)4(L)6                                                                                 | 2.9 x 10 <sup>4</sup>                                     | 2.6 x 10 <sup>-6</sup> M           | H <sub>2</sub> O | <i>Chem. Commun.</i> , 2014, <b>50</b> , 8915-8918.     |
| [Cd3(TPT)2(DMF)2]·0.5H2O]n                                                                     | 6.56 x 10 <sup>4</sup>                                    | NA                                 | EtOH             | Dalton Trans., 2015, <b>44</b> , 230-236.               |
| [Zn2(NDC)2(bpy)]·Gx                                                                            | 0.4 x 10 <sup>4</sup>                                     | NA                                 | EtOH             | J. Mater. Chem. C, 2014, 2,<br>10073-10081.             |
| ${Zn_2(tpbn)(2,6-NDC)_2}_n (1)$<br>and<br>${[Zn_2(tphn)(2,6-NDC)_2] \cdot 4H_2O}_n (2)$        | 5.907 x 10 <sup>3</sup><br>and<br>2.464 x 10 <sup>3</sup> | 11 ppm<br>and<br>19 ppm            | H <sub>2</sub> O | Inorg. Chem., 2017, <b>56</b> ,<br>14556–14566.         |
| [Zn2(L)2(dpyb)]n (MOF-1)<br>and<br>[Zn(L)(dipb)](H2O)2 (MOF-2)                                 | 2.40 x 10 <sup>4</sup><br>and<br>2.46 x 10 <sup>4</sup>   | NA                                 | DMA              | <i>Chem. Commun.</i> , 2015, <b>51</b> , 8300-8303.     |
| [Zr6O4(OH)6(L)6]n                                                                              | 5.8 x 10 <sup>4</sup>                                     | 0.4 ppm                            | H <sub>2</sub> O | Dalton Trans., 2015, <b>44</b> , 15175-15180.           |
| [Tb(1,3,5-BTC)]n                                                                               | 3.4 x 10 <sup>4</sup>                                     | 8.1 x 10 <sup>-8</sup> M           | EtOH             | J. Mater. Chem. A, 2013, 1,<br>8745-8752.               |
| [La(TPT)(DMSO)2]·H2O                                                                           | 9.89 x 10 <sup>4</sup>                                    | NA                                 | EtOH             | Dalton Trans., 2015, <b>44</b> , 13340-13346.           |

**Table S3.** Comparison of literature reports for MOFs as sensors of NAEs.

NA: Not applicable/not mentioned in the reports.

### **Calculation of detection limit**



Fig. S25 Linear region of fluorescence intensity of probe upon addition of TNP to 1 at  $\lambda_{em} = 410 \text{ nm} (\lambda_{ex} = 310 \text{ nm}) (R^2 = 0.995).$ 

| Table S4. | Calculation | of standard | deviation | and detection | limit. |
|-----------|-------------|-------------|-----------|---------------|--------|
|-----------|-------------|-------------|-----------|---------------|--------|

| Blank Readings (1)              | Emission Intensity     |
|---------------------------------|------------------------|
| Reading 1                       | $1.81 \ge 10^7$        |
| Reading 2                       | $1.72 \text{ x } 10^7$ |
| Reading 3                       | $1.75 \times 10^7$     |
| Reading 4                       | $1.90 \ge 10^7$        |
| Standard Deviation ( $\sigma$ ) | $0.0798 \ge 10^7$      |

| Slope from Graph (m)          | 3.7856 x 10 <sup>11</sup> M <sup>-1</sup> |
|-------------------------------|-------------------------------------------|
| Detection Limit $(3\sigma/m)$ | 6.3 μM ( <b>1.4 ppm</b> )                 |

Detection limit was calculated using the following equation:

Detection limit =  $3\sigma/m$ 

Where ' $\sigma$ ' is the calculated standard deviation from four blank measurements and 'm' is the slope obtained from the plot of fluorescence emission with increasing concentration of TNP.

|                     | 1     | 1 + 20 µL TNP | 1 + 60 µL TNP |
|---------------------|-------|---------------|---------------|
|                     |       |               |               |
| $\chi^2$ value      | 1.27  | 1.10          | 1.18          |
| <b>τ1 (ns)</b>      | 0.187 | 0.169         | 0.572         |
| α1                  | 0.368 | 0.376         | 0.150         |
| τ2 (ns)             | 0.714 | 0.736         | 0.269         |
| α2                  | 0.246 | 0.259         | 0.208         |
| τ3 (ns)             | 0.098 | 0.096         | 0.159         |
| α3                  | 0.865 | 0.814         | 0.464         |
| Average $\tau$ (ns) | 0.43  | 0.41          | 0.27          |

**Table S5.** Average lifetime  $(\tau)$  calculated for **1** before and after TNP addition.



Fig. S26 Recyclability and stability of 1. (a) The upper dots represent the initial fluorescence intensities, and the lower dots represent the intensities upon addition of 330  $\mu$ L of the aqueous solution of TNP; (b) PXRD patterns of 1 before and after immersing in aqueous TNP solution, and FESEM images (c, d) of 1 before and after immersing in 2 mM aqueous TNP solution, respectively.



Fig. S27  $^{13}$ C NMR spectrum of H<sub>2</sub>tdz in D<sub>2</sub>O.





Selected FTIR Peaks (KBr, cm<sup>-1</sup>): 1735 (C=O stretch), 1631 (C=N stretch), 1312 (C-C stretch), 872 (N-S stretch), 807 (C-S stretch).