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Fig. S1 ORTEP view of the asymmetric unit in 1.  

 

Fig. S2 ORTEP view of the asymmetric unit in 2. 
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Table S1. Selected bond lengths (Å) and angles (°) for 1. 

Bond distances (Å) 

Cd1-O7 2.2541(19) Cd1-O4 2.2897(17) 

Cd1-N2 2.318(2) Cd1-N7 2.349(2) 

Cd1-N5 2.394(2) Cd1-O5 2.3992(19) 

Cd2-O5 2.2655(17) Cd2-N8 2.298(2) 

Cd2-N3 2.452(2) Cd2-O2 2.424(2) 

Cd2-O1 2.602(2) Cd2-O4 2.5454(19) 

Cd2-N1 2.314(2)   

 

Bond angles (°) 

 
O7-Cd1-O4 113.67(7) O7-Cd1-N2 95.04(7) 

O4-Cd1-N2 89.94(7) O7-Cd1-N7 87.11(7) 

O4-Cd1-N7 87.15(7) N2-Cd1-N7 176.90(8) 

O7-Cd1-N5 104.85(7) O4-Cd1-N5 141.18(7) 

N2-Cd1-N5 91.38(7) N7-Cd1-N5 90.23(7) 

O7-Cd1-O5 170.84(6) O4-Cd1-O5 72.30(6) 

N2-Cd1-O5 91.85(7) N7-Cd1-O5 86.26(7) 

N5-Cd1-O5 68.89(7) O5-Cd2-N8 91.45(7) 

O5-Cd2-N1 89.68(7) N8-Cd2-N1 174.22(8) 

O5-Cd2-O2 105.16(7) N8-Cd2-O2 93.97(8) 

N1-Cd2-O2 80.26(8) O5-Cd2-N3 134.49(7) 

N8-Cd2-N3 95.09(7) N1-Cd2-N3 88.15(7) 

O2-Cd2-N3 119.16(7) O5-Cd2-O4 69.95(6) 

N8-Cd2-O4 96.50(7) N1-Cd2-O4 89.22(7) 

O2-Cd2-O4 168.52(7) N3-Cd2-O4 64.57(6) 

O5-Cd2-O1 154.93(7) N8-Cd2-O1 81.03(7) 

N1-Cd2-O1 95.60(7) O2-Cd2-O1 52.13(7) 

N3-Cd2-O1 70.31(7) O4-Cd2-O1 134.42(6) 
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Table S2. Selected bond lengths (Å) and angles (°) for 2. 

Bond distances (Å) 

Cu1-O4 1.963(4) Cu1-O1 1.974(4) 

Cu1-N4 1.992(5) Cu1-N3 1.992(5) 

Cu1-N1 2.327(6)   

 

Bond angles (°) 

O4-Cu1-O1 167.7(2) O4-Cu1-N4 90.91(19) 

O1-Cu1-N4 88.2(2) O4-Cu1-N3 90.39(19) 

O1-Cu1-N3 90.1(2) N4-Cu1-N3 177.6(3) 

O4-Cu1-N1 113.3(2) O1-Cu1-N1 79.01(19) 

N4-Cu1-N1 94.1(2) N3-Cu1-N1 87.2(2) 
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Fig. S3 (a) Full and (b) expanded region of the FTIR spectrum of 1. 

(a) 

(b) 
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Fig. S4 (a) Full and (b) expanded region of the FTIR spectrum of 2.  

(a) 

(b) 
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Fig. S5 N2 adsorption isotherm of 1 at 77 K.  

 

Fig. S6 N2 adsorption isotherm of 2 at 77 K.  
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Calculation of isosteric heat of adsorption 

 

A virial-type expression consisting of the temperature dependent virial parameters ai and bi were 

employed to calculate the isosteric heat of absorption for CO2 at 263 K, 273 K and 298 K. The 

virial type expression is given below: 

ln(𝑃) = ln(𝑁) +
1

𝑇
 ∑ 𝑎𝑖  𝑁

𝑖  +  ∑ 𝑎𝑗  𝑁𝑗

𝑛

𝑗=0

 

𝑚

𝑖=0

 

where, P is the pressure expressed in Torr, N is the amount adsorbed in mmol/g, T is the 

temperature in K, ai and bi is the virial coefficients, and m, n represent the number of coefficients 

required to adequately describe the isotherms (m and n were gradually increased until the 

contribution of a and b coefficients added further were negligible towards the overall final fit, and 

the average value of the squared deviations from the experimental values was minimized). The 

values of the virial coefficient a0 to ai were taken to calculate the isosteric heat of adsorption using 

the following expression. 

𝑄𝑠𝑡 =  −𝑅 ∑ 𝑎𝑖  𝑁
𝑖

𝑚

𝑖=0
 

Qst is the coverage dependent isosteric heat of adsorption and R is the universal gas constant. At 

zero loading, the isosteric heat of adsorption (Qst) for 1 and 2 are found to be 29.1 kJmol-1 and 23.4 

kJmol-1, respectively. 

 

 

Fig. S7 Fitting (violet solid lines) of the CO2 adsorption isotherms for 1 measured at 263 K 

(black circle), 273 K (red circle), and 298 K (blue circle) using the virial method to estimate the 

Qst value. 

 

(a) (b) 
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Fig. S8 Fitting (violet solid lines) of the CO2 adsorption isotherms for 2 measured at 263 K 

(black circle), 273 K (red circle), and 298 K (blue circle) using the virial method to estimate the 

Qst value. 

 

 

Fig. S9 TGA profiles of 1 and 2. 

(a) (b) 
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Fig. S10 PXRD patterns of as-synthesized 1 and after immersing it in water. 

 

 
 

   Fig. S11 Solid-state reflectance spectra of 1 and 2.  
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Fig. S12 Excitation and emission spectra of H2tdz in solid-state (left) and in water (right). 

 

 

 

 

  
 

Fig. S13 Excitation and emission spectra of 1 in solid-state (left) and dispersed in water (right). 
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Fig. S14 Change in emission spectra of 1 dispersed in water upon incremental addition of       

2,4-DNP solution (2 mM) in water. 

 

 

 
Fig. S15 Change in emission spectra of 1 dispersed in water upon incremental addition of 4-NP 

solution (2 mM) in water. 
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Fig. S16 Change in emission spectra of 1 dispersed in water upon incremental addition of TNT 

solution (2 mM) in water. 

 

 
Fig. S17 Change in emission spectra of 1 dispersed in water upon incremental addition of       

2,6-DNT solution (2 mM) in water. 
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Fig. S18 Change in emission spectra of 1 dispersed in water upon incremental addition of       

2,4-DNT solution (2 mM) in water. 

 

 
Fig. S19 Change in emission spectra of 1 dispersed in water upon incremental addition of       

1,3-DNB solution (2 mM) in water. 
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Fig. S20 Change in emission spectra of 1 dispersed in water upon incremental addition of NB 

solution (2 mM) in water. 

 

 
Fig. S21 Change in emission spectra of 1 dispersed in water upon incremental addition of NM 

solution (2 mM) in water. 
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Scheme S1 Possible H-bonding interactions between the thiadiazole moiety in 1 and TNP 

molecules. 
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Fig. S22 Stern-Volmer (SV) plot of 1 for TNP. The relative fluorescence intensity is linear with 

TNP concentration in the lower region, I0/I = 1 + 48602.32[TNP] (R2 = 0.998).  

KSV = 4.86 x 104 M-1 

(a) 

(b) 
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Fig. S23 Stern-Volmer (SV) plot of 1 for 2,4-DNP. The relative fluorescence intensity is linear with 

TNP concentration in the lower region, I0/I = 1 + 24787.05[2,4-DNP] (R2
 = 0.998). 

 

    

 

 
 

Fig. S24 Stern-Volmer (SV) plot of 1 for 4-NP. The relative fluorescence intensity is linear with 

TNP concentration in the lower region, I0/I = 1 + 15496.34[4-NP] (R2 = 0.991). 
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Table S3. Comparison of literature reports for MOFs as sensors of NAEs. 

 

MOF KSV (M-1) Detection Limit Medium Reference 
{[Cd2(tdz)2(4,4'-bpy)2]·6.5H2O}n (1) 4.86 x 104  6.3 x 10-6 M (1.4 ppm) H2O  

 
This work 

[Zr6O4(OH)4(BTDB)6]·8H2O·6DMF 2.49 x 104  1.63 x 10-6 M MeOH CrystEngComm, 2016, 18, 

3104–3113. 

{[Cd(BIDPT)(oba)]·0.5H2O}n (1) 

and 

{[Zn(BIDPT)(4,4′-sdb)]·2.25H2O}n 

(2) 

2.33 x 104
 

and 

2.78 x 104 

NA 

 

NA 

DMF Inorg. Chem. Commun., 

2016, 66, 51-54. 

[Zn4(DMF)(Ur)2(2,6-NDC)4]n 

 

10.83 x 104 NA 

1.63 ppm 

H2O  

 

Cryst. Growth Des., 2015, 

15, 4627−4634 

Zr6O4(OH)4(L)6 2.9 x 104  2.6 x 10-6 M H2O  

 

Chem. Commun., 2014, 50, 

8915-8918. 

[Cd3(TPT)2(DMF)2]·0.5H2O]n 6.56 x 104  NA EtOH Dalton Trans., 2015, 44, 

230-236. 

[Zn2(NDC)2(bpy)]·Gx 0.4 x 104  NA EtOH J. Mater. Chem. C, 2014, 2, 

10073-10081. 

{Zn2(tpbn)(2,6-NDC)2}n (1) 

and 

{[Zn2(tphn)(2,6-NDC)2]·4H2O}n (2) 

5.907 x 103  

and 

2.464 x 103  

11 ppm 

and 

19 ppm 

H2O  

 

Inorg. Chem., 2017, 56, 

14556–14566. 

[Zn2(L)2(dpyb)]n (MOF-1) 

and 

[Zn(L)(dipb)](H2O)2 (MOF-2) 

2.40 x 104  

and 

2.46 x 104  

NA DMA Chem. Commun., 2015, 51, 

8300-8303. 

[Zr6O4(OH)6(L)6]n 5.8 x 104  0.4 ppm H2O  

 

Dalton Trans., 2015, 44, 

15175-15180. 

[Tb(1,3,5-BTC)]n 3.4 x 104 8.1 x 10-8 M EtOH J. Mater. Chem. A, 2013, 1, 

8745-8752. 

[La(TPT)(DMSO)2]·H2O 9.89 x 104 NA EtOH Dalton Trans., 2015, 44, 

13340-13346. 

NA: Not applicable/not mentioned in the reports. 
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Calculation of detection limit 

 

 
Fig. S25 Linear region of fluorescence intensity of probe upon addition of TNP to 1  

at em = 410 nm (λex = 310 nm) (R2 = 0.995). 

 

Table S4. Calculation of standard deviation and detection limit. 

Blank Readings (1) Emission Intensity 

Reading 1 1.81 x 107 

Reading 2 1.72 x 107 

Reading 3 1.75 x 107 

Reading 4 1.90 x 107 

Standard Deviation () 0.0798 x 107 

 
  

Slope from Graph (m) 3.7856 x 1011 M-1 

Detection Limit (3/m) 6.3 M (1.4 ppm) 

 

Detection limit was calculated using the following equation: 

Detection limit = 3σ/m 

Where ‘σ’ is the calculated standard deviation from four blank measurements and ‘m’ is the slope 

obtained from the plot of fluorescence emission with increasing concentration of TNP. 
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Table S5. Average lifetime () calculated for 1 before and after TNP addition. 

 

 
1 1 + 20 L TNP 1 + 60 L TNP 

χ2 value 1.27 1.10 1.18 

1 (ns) 0.187 0.169 0.572 

1 0.368 0.376 0.150 

2 (ns) 0.714 0.736 0.269 

2 0.246 0.259 0.208 

3 (ns) 0.098 0.096 0.159 

3 0.865 0.814 0.464 

Average ns) 0.43 0.41 0.27 

 

 

 

Fig. S26 Recyclability and stability of 1. (a) The upper dots represent the initial fluorescence 

intensities, and the lower dots represent the intensities upon addition of 330 L of the aqueous 

solution of TNP; (b) PXRD patterns of 1 before and after immersing in aqueous TNP solution, 

and FESEM images (c, d) of 1 before and after immersing in 2 mM aqueous TNP solution, 

respectively. 
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Fig. S27 13C NMR spectrum of H2tdz in D2O. 
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Fig. S28 FTIR spectrum of H2tdz. 

Selected FTIR Peaks (KBr, cm-1): 1735 (C=O stretch), 1631 (C=N stretch), 1312 (C-C stretch), 872 (N-S 

stretch), 807 (C-S stretch). 

 


