Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Experimental details

1. Materials and measurements

All reagents were purchased commercially and used without further purification. Diffraction data sufficient for unit cell determination for compound **1** was determined on a Bruker Apex CCD diffractometer using Mo Kα radiation ($\lambda = 0.71073$ Å) at 296 K. The structure was solved by direct methods using the olex2.solve program and the refinement was performed against F² using Olex2. Anisotropic thermal parameters were used to refine all nonhydrogen atoms. All hydrogen atoms were located by ideal geometry and refined by a fixed isotropic displacement parameters. The CCDC data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. CCDC number 1866189 for **1**. XRD was performed on a Philips X'Pert-MPD instrument with Cu Kα radiation ($\lambda = 1.54056$ Å) in the range 2 $\theta = 5-50^{\circ}$ at 293 K. IR spectra were obtained with an Alpha Centaurt FT/IR spectrometer with KBr pellets in the range 400–4000 cm⁻¹. The UV-vis spectra were recorded with a 756 CRT spectrophotometer (Shanghai Optical Instrument Company, China). Quartz cuvettes with an optical path of 1.00 cm were used. Diffuse reflectance UV-vis spectra were measured from 200 to 800 nm on a Varian Cary 500 UV-vis NIR spectrometer equipped with a 110 mm diameter integrating sphere at room temperature. A barium sulfate (BaSO₄) pellet was used as the standard with 100% reflectance.

2.Ba-1 modified electrode

The modified electrode was prepared as follow: we reacted barium chloride with **1** to obtain the precipitation of Ba-**1**. The films were prepared with 0.2g of the Ba-**1** in ethanol (3 mL), and terpineol (1.0 g) in a porcelain mortar and the mixture was ground until it was about 2 mL. The paste was coated over fluorine-doped tinoxide (FTO) glass by doctor blade technique. After air drying, the prepared films were annealed at 573K for 6 hours.

3.Photocurrent measurement

In order to study the charge separation efficiency, we planed to measure the photocurrent response of Ba-1 at 0.3 v voltage. A 150 W high-pressure xenon lamp was used as the full-wavelength light source. The electrochemical experiments were performed by using a CHI 660 Electrochemical Workstation in a three-electrode system, with Ba-1/FTO as the working electrode with an effective area of 1 cm² (Φ = 0.7 cm), a saturated calomel electrode as reference electrode (SCE), and a Pt wire as counter electrode. All the photocurrent experiments were carried out at a constant bias of 0.3 V in a 0.50 mol·L⁻¹ Na₂SO₄ electrolyte solution under illumination (AM1.5, 100mW·cm⁻²) upon on–off cycling irradiation with xenon light (intervals of 25 s).

2. Synthesis

Compound $K_9[Ti_3O_4(O_2)_3 (C_7H_3O_4N)_3(OH_2)_2]Cl·4H_2O 1$ was synthesized by a conventional reaction method. 3.00 g (18 mmol) of 2,6-dipicolinic acid was dissolved in 75 ml of deionized water with stirring and an aqueous solution of titanium(IV) tetrachloride (15 mL, 15 mmol, 1.0 M solution) was slowly added

to the reaction mixture, and the mixture was left stirring for 30 min. In a second step, 30 mL of 30% H_2O_2 was dropwise introduced into the reaction mixture cooled in an ice bath. The solution underwent a color change from colorless to dark red under stirring. Next, an additional amount of 5.0 M KOH solution was added to adjust the pH value, followed by a color change to light yellow at pH values around 8.0-9.0. Slow evaporation of the solution afforded Light-yellow rhomboid crystal after approx. 7 d. Yied: 2.22g, 11% based on Ti. IR (2% KBr pellet, v/cm⁻¹): 1636(s), 1596(w), 1432(s), 1363(s), 1276(w), 1182(s), 1144(m), 1075(s), 1034(s), 923(m), 865(m), 758(w), 715(w), 674(w), 577(vw), 524(vw).

3. Ba-1 modified electrode

The modified electrode was prepared as follow: we reacted barium chloride with **1** to obtain precipitation (Ba-**1**). The films were prepared with 0.2g of the Ba-**1** in ethanol (3 mL), and terpineol (1.0 g) in a porcelain mortar and the mixture was ground until it was about 2 mL. The paste was coated over fluorine-doped tinoxide (FTO) glass by doctor blade technique. After air drying, the prepared films were annealed at 573K for 6 hours.

Fig. S1 The PXRD pattern and simulated pattern of 1.

Fig. S2 IR spectra of compound **1** and Ba-1.

Fig. S3 Influence of the pH values on the stability of **1**.

Fig. S4 The PXRD of compound **1** recrystalized from pH=8 and pH=10.

Fig. S5 Mott-Schottky plots for the Ba-1 film.

Fig. S6 SEM of cross section of the Ba-1/FTO film. The thickness of the Ba-1/FTO film was about 18 μ m.

Fig. S7 Comparative of dark current-time responses of the Ba-1/FTO film and FTO in a 0.5 M Na_2SO_4 electrolyte.