Supporting Information

Microwave-assisted synthesis: from a mononuclear $\left\{\mathrm{Co}^{\prime \prime}\right\}$ complex to $\left\{\mathrm{Co}^{\mathrm{II}}{ }_{9}\right\}$ solvomorphs.
Alexandra Collet, ${ }^{\text {a }}$ Claire Wilson ${ }^{\text {a }}$ and Mark Murrie *a
${ }^{a}$ WestCHEM, School of Chemistry, University of Glasgow, University Avenue,
Glasgow, G12 8QQ, UK. E-mail: mark.murrie@glasgow.ac.uk
Contents Page

1. Experimental section and physical measurements 2
2. Single-Crystal X-ray Diffraction 3
3. Dc and ac Magnetic Susceptibility 8
4. References 10

1. Experimental section and physical measurements

Solvothermal conditions

Mixture of complexes: $\left[\mathrm{Co}^{\prime \prime}\left(\mathrm{H}_{2} \mathrm{bic}\right) \mathrm{Cl}\right](\mathbf{1}),\left[\mathrm{Co}^{\prime \prime}{ }_{9}(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right](\mathbf{2})$ and $\left[\mathrm{Co}^{\prime \prime}{ }_{9}(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right)$
Into a solution of bicine ($\mathrm{H}_{3} \mathrm{bic}, \mathrm{N}, \mathrm{N}$ - $\mathrm{Bis}(2$-hydroxyethyl)glycine) ($0.5 \mathrm{mmol}, 82 \mathrm{mg}$) in $\mathrm{EtOH}(2 \mathrm{ml})$ was added a solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 238 \mathrm{mg})$ in $\mathrm{EtOH}(5 \mathrm{ml})$ and the solution was stirred for 5 minutes at room temperature. Then, $\mathrm{NEt}_{3}(0.13 \mathrm{mmol}, 0.02 \mathrm{ml})$ was added and the solution stirred for another 15 minutes. The dark blue solution was placed in a Teflon lined autoclave and heated to $140{ }^{\circ} \mathrm{C}$, at a rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$. The temperature was held at $140{ }^{\circ} \mathrm{C}$ for 3 days and then the solution was allowed to cool to room temperature at a rate of $0.1^{\circ} \mathrm{C} / \mathrm{min}$ yielding three kinds of crystals: pink and blue block-like crystals and blue needle-like crystals.

Single-crystal X-ray diffraction revealed that the unit cell of the pink block-like crystals corresponds to the previously reported [Co" $\left.\left(\mathrm{H}_{2} \mathrm{bic}\right) \mathrm{Cl}\right]$ (1) ${ }^{1}$ and the blue block-like crystals correspond to complex $\left[\mathrm{Co}^{\prime \prime} 9(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right](2)$. Single-crystal X-ray diffraction for the blue needle-like crystals revealed a solvomorph of 2, complex $\left[\mathrm{Co}^{\mathrm{I}}{ }_{9}(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right)$.

Microwave-mediated conditions

Microwave reactor model: Discover LabMate (model no. 908010), Matthews. NC, made in USA by CEM Corporation.

[Co" $\left.{ }^{11}\left(\mathrm{H}_{2} \mathrm{bic}\right) \mathrm{Cl}\right](1)$

A solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 238 \mathrm{mg})$, bicine ($0.5 \mathrm{mmol}, 82 \mathrm{mg}$) and $\mathrm{NEt}_{3}(0.13 \mathrm{mmol}, 0.02 \mathrm{ml})$ in EtOH (7 ml) was placed in a glass tube sealed with a cap (suitable glass tube and cap designed for microwave reaction), which was then inserted into the cavity of a microwave reactor. The reaction mixture was held at $140{ }^{\circ} \mathrm{C}$, power: 150 W and pressure: 300 PSI for a total of 15 min . Then the solution was allowed to cool naturally to room temperature to give a dark blue solution with pink crystalline precipitate which was collected by filtration and dried in air before characterising with powder X-ray diffraction and elemental analysis ($\sim 18 \%$ yield). Elemental analysis calcd(\%) for $\mathrm{C}_{6} \mathrm{H}_{12.5} \mathrm{CoNO}_{4.25} \mathrm{Cl}: \mathrm{C} 27.61 \%, \mathrm{H} 4.83 \%, \mathrm{~N} 5.37 \%$, found: C 27.49\%, $\mathrm{H} 4.69 \%, \mathrm{~N} 5.26 \%$, which corresponds to $\left[\mathrm{Co}^{11}\left(\mathrm{H}_{2} \mathrm{bic}\right) \mathrm{Cl}\right] \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\left(1 \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right)$.

$\left[\mathrm{Co}_{9}{ }_{9}(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right](2)$

A solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 238 \mathrm{mg})$, bicine ($0.5 \mathrm{mmol}, 82 \mathrm{mg}$) and $\mathrm{NEt}_{3}(0.5 \mathrm{mmol}, 0.075 \mathrm{ml})$ in EtOH (7 ml) was placed in a sealed glass tube, which was then inserted into the cavity of a microwave reactor. The reaction mixture was held at $140{ }^{\circ} \mathrm{C}$, power: 150 W and pressure: 300 PSI for a total of 15 min . Then the solution was allowed to cool naturally to room temperature to give a dark blue solution with blue crystalline precipitate which was collected by filtration and dried under a nitrogen atmosphere before characterising with powder X-ray diffraction and elemental analysis ($\sim 17 \%$ yield). Elemental analysis calcd(\%) for $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{Co}_{9} \mathrm{~N}_{6} \mathrm{O}_{24} \mathrm{Cl}_{4}$: $\mathrm{C} 26.41 \%, \mathrm{H}$ 3.94\%, N 5.13\%, found: C 26.27\%, H 4.12\%, N 4.91\%.

$\left[\mathrm{Co}^{\prime \prime}{ }_{9}(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right] \cdot \mathbf{1 2} \mathrm{H}_{\mathbf{2}} \mathrm{O}\left(\mathbf{2} \cdot \mathbf{1 2} \mathrm{H}_{2} \mathrm{O}\right)$

A solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 238 \mathrm{mg})$, bicine ($0.5 \mathrm{mmol}, 82 \mathrm{mg}$) and $\mathrm{NEt}_{3}\left(0.5 \mathrm{mmol}^{2} 0.075 \mathrm{ml}\right)$ in EtOH (7 ml) was placed in a sealed glass tube, which was then inserted into the cavity of a microwave reactor. The reaction mixture was held at $140{ }^{\circ} \mathrm{C}$, power: 150 W and pressure: 300 PSI for a total of 15 min . Then the solution was allowed to cool naturally to room temperature to give a dark blue solution with blue crystalline precipitate which was collected by filtration and dried in air before characterising with powder X-ray diffraction and elemental analysis ($\sim 17 \%$ yield). Elemental analysis calcd(\%) for $\mathrm{C}_{36} \mathrm{H}_{86} \mathrm{Co}_{9} \mathrm{~N}_{6} \mathrm{O}_{35} \mathrm{Cl}_{4}$: C $23.56 \%, \mathrm{H} 4.72 \%, \mathrm{~N} 4.58 \%$, found: C $24.06 \%, \mathrm{H} 4.39 \%, \mathrm{~N} 4.52 \%$ which corresponds to $\left[\mathrm{Co}^{1{ }_{9}}(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right] \cdot 11 \mathrm{H}_{2} \mathrm{O}$ (one molecule of water is lost).

Single-Crystal X-ray Diffraction: Crystallographic data were collected at 100 K using $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $\quad \lambda=$ 0.710735 Å) using a Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HG Saturn 724+ detector.

Powder X-Ray Diffraction (PXRD): PXRD measurements were carried out at 298 K using a PANalytical X'Pert PRO diffractometer $\left(\lambda(C u K \alpha)=1.4505 \AA\right.$) on a mounted bracket sample stage over the range of $3^{\circ}<2 \vartheta<40^{\circ}$ (for complex 1) and $3^{\circ}<\mathbf{2 \vartheta}<30^{\circ}$ (for complexes $\mathbf{2}$ and $\mathbf{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$) using a step size of 0.0334°.

Magnetic Susceptibility Measurements: Variable-temperature direct current (dc) and alternating current (ac) magnetic susceptibility data were collected on a Quantum Design MPMS-XL SQUID magnetometer equipped with a 5 T magnet operating in the 290-2 K range. Polycrystalline samples were embedded in eicosane, to prevent torquing. Magnetic data have been corrected for diamagnetism (Pascal's constants and corrections for the sample holder).

Microanalysis: Elemental analyses (C, H, and N) were performed in-house in the School of Chemistry at the University of Glasgow.

2. Single-Crystal X-ray Diffraction

Due to a region of poorly defined and disordered molecules of solvent in $\mathbf{2} \cdot \mathbf{1 2} \mathrm{H}_{2} \mathrm{O}$, only two molecules of water were able to be modelled. The programme SQUEEZE (in PLATON) ${ }^{2}$ was used to identify the solvent voids and account for the electron density within them, calculated to contain $886 \mathrm{e}^{-}$per unit cell, corresponding to approximately $98 \mathrm{e}^{-}$per molecule. Approximately 10 molecules of water solvent correspond to $\sim 98 \mathrm{e}^{-}$, therefore in total there are 12 molecules of co-crystallised water per complex. This is also in agreement with the elemental analysis (see experimental procedure of $\left[\mathrm{Co}^{\prime \prime}{ }_{9}(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}\left(\mathbf{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right)$.
Solvent Accessible Volume $=3665 \AA^{3}$
Electrons Found in S.A.V. $=886$

Data collection: CrysAlisPro 1.171.39.9g (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlisPro 1.171.39.9g (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlisPro 1.171.39.9g (Rigaku Oxford Diffraction, 2015); program used to solve structure: SheIXT; ${ }^{3}$ program used to refine structure: SHELXL; ${ }^{3}$ molecular graphics: Olex2; ${ }^{4}$ software used to prepare material for publication: Olex2. ${ }^{4}$

Table S1. Data collection and crystallographic parameters for complexes $\mathbf{2}$ and $\mathbf{2} \cdot \mathbf{1 2} \mathrm{H}_{2} \mathrm{O}$.

Chemical formula	$\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{Cl}_{4} \mathrm{Co}_{9} \mathrm{~N}_{6} \mathrm{O}_{24}$ (2)	$\mathrm{C}_{36} \mathrm{H}_{88} \mathrm{Cl}_{4} \mathrm{Co}_{9} \mathrm{~N}_{6} \mathrm{O}_{36}\left(\mathbf{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right)$
Mr	1637.10	1853.29
Crystal system, space group	Monoclinic, $P 2_{1} / n$	Trigonal, R-3
Temperature (K)	100	100
a, b, c (Å)	$\begin{gathered} 14.7276(4), 11.8295(3), \\ 15.6451(5) \end{gathered}$	$\begin{gathered} 39.2116 \text { (8), } 39.2116 \text { (8), } \\ 11.7240(3) \end{gathered}$
$\alpha, 6, \gamma\left({ }^{\circ}\right)$	90, 94.809, 90	90, 90, 120
$v\left(\AA^{3}\right)$	2716.10 (13)	15611.2 (8)
Z	2	9
Radiation type	Mo Ka radiation, $\lambda=$ 0.71073 Å	Mo Ka radiation, $\lambda=$ $0.71073 \AA$
$\mu\left(\mathrm{mm}^{-1}\right)$	2.96	2.34
Crystal size (mm)	$0.08 \times 0.07 \times 0.04$	$0.26 \times 0.03 \times 0.03$
Diffractometer	Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HG Saturn 724+ detector diffractometer	Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HG Saturn 724+ detector diffractometer
$T_{\text {min }}, T_{\text {max }}$	0.874, 1.000	0.555, 1.000
No. of measured, independent and observed [I> 2б(I)] reflections	34254, 6234, 5718	38042, 7930, 6410
$R_{\text {int }}$	0.028	0.061
$R\left[F^{2}>\mathbf{2 \sigma}\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.023, 0.055, 1.03	0.054, 0.139, 1.00
No. of reflections	6234	7930
No. of parameters	364	368
No. of restraints	6	483
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta>\max , \Delta>\min \left(\mathrm{e} \AA^{-3}\right)$	1.25, -0.66	2.11, -1.63

Table S2. The CShMs values calculated with the program SHAPE ${ }^{5}$ for each geometry for the five-coordinate Co" in complex 1.

Geometry	Value
Pentagon	34.70
Vacant octahedron	6.75
Trigonal bipyramid	1.42
Spherical square pyramid	5.53
Johnson trigonal bipyramid	2.63

Figure S1. The closest reference polyhedron for TBP geometry calculated with SHAPE ${ }^{5}$ for Co" of complex 1. Colour code: Co": violet, Cl: green, O: red, N: blue, bonds: grey.

Figure S2. Left: The crystal packing of 1 along the c axis. Right: The crystal packing of 1 along the b axis. Colour code: Co": violet, Cl : green, O : red, N : blue, C : grey, H : white. Light blue lines: illustration of the 2D network formed by the H -bonds.

Figure S3. Top: The molecular structure of $\left[\mathrm{CO}^{\prime \prime}{ }_{9}(\mathrm{Hbic})_{4}(\mathrm{bic})_{2} \mathrm{Cl}_{4}\right]$. Bottom: The plane that five $\mathrm{Co}{ }^{\prime \prime}$ ($\mathrm{Co} 1, \mathrm{Co} 2, \mathrm{Co2}$ ', $\mathrm{Co3}, \mathrm{Co3}$ ') centres define, with $\mathrm{Co4}, \mathrm{Co4'}$, $\mathrm{Co5}$ and $\mathrm{Co5}$ ' located outside this plane. Colour code: Co"': violet, Cl : green, O: red, N: blue, C: grey. Hydrogen atoms are omitted for clarity.

Figure S4. Illustration of the intramolecular and intermolecular interactions through the hydrogen bonds (light blue dashed lines) for complex $\mathbf{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$. Only the modelled $\mathrm{H}_{2} \mathrm{O}$ sites are shown here, however further water molecules are present in the channels and were accounted for using SQUEEZE. ${ }^{6}$

Table S3. The CShMs values calculated with the program SHAPE ${ }^{7}$ for each Co" centre in complex 2.

Co	Octahedron	Trigonal prism	Tetrahedron
Co1	1.3	-	-
Co2	3.3	-	-
$\operatorname{Co3}$	4.5	5.3	-
$\operatorname{Co4}$	4.8	5.4	-
$\operatorname{Co5}$	-	-	0.8

Table S4. The CShMs values calculated with the program SHAPE ${ }^{7}$ for each Co" centre in complex $\mathbf{2 \cdot 1 2} \mathrm{H}_{2} \mathrm{O}$.

Co	Octahedron	Trigonal prism	Tetrahedron
Co1	1.3	-	-
Co2	3.7	-	-
$\operatorname{Co3}$	3.8	-	-
$\operatorname{Co4}$	4.7	5.3	-
$\operatorname{Co5}$	-	-	0.7

3. Dc and ac magnetic susceptibility

Field (T)

Figure S5. Magnetisation versus Field plot at temperatures 2, 4 and 6 K for complexes $\mathbf{2}$ (spheres) and $\mathbf{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (triangles).

Figure S6. Top: Temperature dependence of the in-phase (left) and out-of-phase (right) susceptibility in zero dc field for complex $\mathbf{2}$ with ac frequencies of $1-1488 \mathrm{~Hz}$. Bottom: Temperature dependence of the in-phase (left) and out-of-phase (right) susceptibility in a 2000 Oe dc field for complex 2 with ac frequencies of $1-1488 \mathrm{~Hz}$. Note that the optimum additional dc field was not determined.

Figure S7. Top: Temperature dependence of the in-phase (left) and out-of-phase (right) susceptibility in zero dc field for complex $\mathbf{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ with ac frequencies of $1-1488 \mathrm{~Hz}$. Bottom: Temperature dependence of the in-phase (left) and out-of-phase (right) susceptibility in a 2000 Oe dc field for complex $\mathbf{2 \cdot 1 2} \mathrm{H}_{2} \mathrm{O}$ with ac frequencies of $1-1488 \mathrm{~Hz}$.

4. References

1. Y. Zhou, X. Liu, Q. Wang, L. Wang and B. Song, Acta Crystallographica Section E, 2016, 72, 1463.
2. A. Spek, Acta Crystallographica Section D, 2009, 65, 148.
3. G. M. Sheldrick, Acta crystallographica. Section C, Structural chemistry, 2015, 71, 3.
4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
5. M. Pinsky and D. Avnir, Inorg. Chem., 1998, 37, 5575; S. Alvarez and M. Llunell, J. Chem. Soc., Dalton Trans., 2000, 3288.
6. A. Spek, Acta Crystallographica Section C, 2015, 71, 9.
7. S. Alvarez, D. Avnir, M. Llunell and M. Pinsky, New J. Chem., 2002, 26, 996; C. Jordi, A. Pere and A. Santiago, Chemistry - A European Journal, 2004, 10, 190.
