

Supporting Information

Z-scheme $\text{Bi}_2\text{MoO}_6/\text{CdSe}$ -diethylenetriamine heterojunction for enhancing photocatalytic hydrogen production activity under visible light

Feifei Mei,^{‡a} Jinfeng Zhang,^{‡a} Kai Dai,^{*a} Guangping Zhu^a and Changhao Liang^{*b,c}

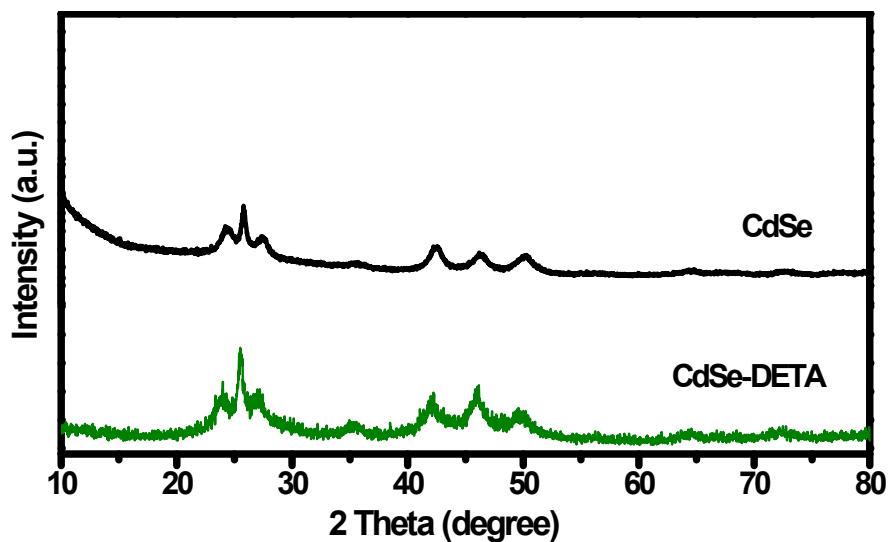
^{a.} *College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaipei Normal University, Huaipei, 235000, P. R. China.*

Email: daikai940@chnu.edu.cn

^{b.} *Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China. Email: chliang@issp.ac.cn*

^{c.} *Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.*

Characterization


Powder X-ray diffraction (XRD) of pure CdSe, CdSe-DETA, Bi₂MoO₆ and Bi₂MoO₆/CdSe-DETA composites were recorded by Rigaku D/MAX 24000 diffractometer. Scanning electron microscopy (SEM S4800) and high resolution transmission electron microscopy (HRTEM JEOL JEM 2010) were used to characterize the morphology and structure of the as-prepared samples. The X-ray photoelectron spectroscopy spectra (XPS) of Bi₂MoO₆/CdSe-DETA composites were recorded by Thermo ESCALAB 250 under room temperature. The Brunauer-Emmett-Teller (BET) specific surface areas were recorded by a Micromeritics ASAP 2040. The optical performance of the as-prepared samples was characterized by UV-Vis diffuse reflectance spectroscopy (PerkinElmer Lambda 950) and photoluminescence spectra (PL FLS920), respectively. Shanghai Chenhua CHI-660D electrochemical workstation with three electrodes was used to test the electrochemical properties of photocatalysts. Here, Pt wire, calomel electrode and 1 M Na₂SO₄ were utilized as counter electrode, reference electrode and electrolyte, respectively.

Photocatalytic H₂ evaluation

Photocatalytic H₂ evolution tests of Bi₂MoO₆, CdSe, CdSe-DETA and x%Bi₂MoO₆/CdSe-DETA(x=0.5, 1, 3, and 5) composites were carried out in a 250 mL standard three-mouth reaction vessel containing 100 mL DW. Photocatalyst(50mg), 0.35 M Na₂S and 0.25 M Na₂SO₃ were added into the reactor. Then, 300 μ L H₂PtCl₆ (1g/100mL) was injected into the mixed solution.

Disperse the samples by ultrasound and exclude air by N₂ before lighting. The excitation light source is 300 W Xenon lamp equipped with UV-cutoff filter (>420 nm). Keep the distance between the reactor and the light source at 20 cm. The gas chromatography (GC-7900) was used to detect the amount of H₂ production. The apparent quantum efficiency (QE) for H₂ evolution was measured under the same photocatalytic reaction condition. The intensity and number of photons of the light source at 420 nm were measured by an irradiate-meter. The QE was finally calculated according to equation (S1):

$$\begin{aligned} QE(\%) &= \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100\% \\ &= \frac{\text{number of evolved H}_2\text{ molecules} \times 2}{\text{number of incident photons}} \times 100\% \end{aligned} \quad (1)$$

Figure S1. XRD patterns of CdSe and CdSe-DETA.

Figure S2. The color of as-prepared samples.