Supplementary Materials for

Development and characterization of Lanthanide-HPDO3A-C16 based micelles as MRI contrast agents.

Giuseppe Ferrauto,^a Frederik Beauprez, ^{a,b} Enza Di Gregorio,^a Carla Carrera,^a Silvio Aime,^a Enzo Terreno,^a and Daniela Delli Castelli^{a,*}

Keywords

PARACEST agents; micelles; MRI; lanthanide; paramagnetic complex

^{a.} Molecular Imaging Center, Department of Molecular Biotechnologies and Heanlth Sciences, University of Torino- Via Nizza 52, 10126 Torino (IT).

^{b.} Laboratory of General Biochemistry and Physical Pharmacy Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium

High resolution ¹H- and ¹³C-NMR spectra of the HPDO3A-C16 ligand.

Fig.S1: ¹H- and ¹³C- NMR spectra (B₀= 14.1 T) in MeOD of HPDO3A-C16 ligand.

High resolution ¹H spectra of the YbHPDO3A-C16 complex in CDCl₃ or D₂O.

The high resolution proton spectra of Eu- and Yb- HPDO3A complexes have been acquired at 14T both for YbHPDO3A-C16 in chloroform (CDCl₃) and in water (D_2O) in order to have the spectra of free complex and of the complex in micelle. The obtained spectra are quite similar to those obtained for Yb-HPDO3A without the hydrophobic chain. These results suggest that the presence of the additional C16 chain does not change the structure of the chelate.

Fig.S2 ¹H-spectra (B_0 = 14.1T) of Yb-HPDO3A-C16 10mM in CDCl₃ (*left*) or in D₂O (*right*), pH 7.0, 298K.

Fig.S3 MALDI-TOF spectrum of HPDO3A-C16 ligand

Evaluation of CMC and hydrodynamic size.

Hydrodynamic size and CMC have been evaluated by using Dynamic Light Scattering (pH 7.2, 25°C, in Saline Phosphate Buffer 1mM phosphate, 150mM NaCl).

Fig.S4 Mean hydrodynamic diameter for Gd-Micelles and Mixed-Gd-micelles as evaluated by Dynamic Light Scattering (Mean ± SEM).

Fig.S5 Critical micellar concentration (CMC) evaluated by Dynamic Light Scattering (DLS) for Gd-micelles (A) and mixed Gd-micelles (B). (C) comparison between cmc evaluated by DLS and by relaxometric measurements.

Fig.S6 Titration of micelles with BSA for GdHPDO3A-C16-micelles and mixed-Gd-micelles.

Fig.S7 (A) ¹H-NMRD profiles of Gd-HPDO3A-C16 micelles in PBS (1 mM of Gd-complex), pH 7.0, 25°C; (B) Relaxivity at variable temperature for 1 mM Gd-HPDO3A-C16 micelles in PBS or human serum; (C) Transverse ¹⁷O NMR relaxation rates as a function of temperature for Gd-HPDO3A-C16 micelles recorded at 14.1 T. Data were analyzed with a model that considered the presence of two q = 1 isomers for the Gd-complex. The red and blue lines represent the calculated contributions of the predominant (> 90%, slow exchanging water) and the minority (< 5 %, intermediate exchange water) isomers; (D) Relaxivity of Gd-HPDO3A-C16 micelles at variable pH values.

Hemolysis experiments

Fig.S8 Haemolysis experiment: (A) Percentage of Hemoglobin released in the RBCs' suspencion after incubation with Gd-micelles or mixed Gd-micelles (50%-50%); (B) Representative tubes containing RBCs' pellet and surnatant with released Heamoglobin (left: incubated in presence of Gd-micelles, right: incubated in presence of mixed Gd-micelles)