Supporting information

Anilido-Oxazoline-Ligated Rare-Earth Metal Complexes: Synthesis,

Characterization and Highly cis-1,4-Selective Polymerization of

Isoprene

Yu Pan,^a Wenqiang Li,^a Ning-Ning Wei,^b Yat-Ming So,^c Yang Li,*^a Kang Jiang^a and Gaohong He*^a

^{*a*} State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China.

^b School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China.

^c Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

*To whom correspondence should be addressed: E-mail: <u>chyangli@dlut.edu.cn</u>, <u>hgaohong@dlut.edu.cn</u>

Fig. S1. UV-Vis spectrum of L¹Sc(CH₂SiMe₃)₂THF (1) at 25 °C in hexane.

Fig. S2. UV-Vis spectrum of $L^2Sc(CH_2SiMe_3)_2$ (2) at 25 °C in hexane.

Fig. S3. UV-Vis spectrum of L¹Y(CH₂SiMe₃)₂THF (3) at 25 °C in hexane.

Fig. S4. UV-Vis spectrum of L²Y(CH₂SiMe₃)₂THF (4) at 25 °C in hexane.

Fig. S5. Fluorescence emission spectra of complexes 1–4 at 25 °C in hexane.

Fig. S6. ¹H NMR spectra (500 MHz, C₆D₅Br, 25 °C) of a) 4; b) 4/[Ph₃C][B(C₆F₅)₄].

Fig. S7. ¹H-¹H COSY NMR spectrum of $4/[Ph_3C][B(C_6F_5)_4]$ in C_6D_5Br .

Fig. S8. ¹⁹F NMR spectrum (470 MHz, C₆D₅Br, 25 °C) of 4/[Ph₃C][B(C₆F₅)₄].

Fig. S9 Geometric structure of **7** (CCDC: 1880488). Hydrogen atoms are omitted for clarity. The ellipsoids are drawn at 30% probability level. Selected bond lengths (Å) and angles (°): Y-N(1) 2.3979, Y-N(2) 2.3152, Y-O(2) 2.2673, Y-O(3) 2.3519, Y-O(4) 2.4888, Y-O(5) 2.3871, Y-O(6) 2.4043, N(1)-C(7) 1.2896, N(2)-C(4) 1.3623, O(2)-Y-O(3) 56.396, O(2)-Y-C(24) 93.401, O(3)-Y-C(24) 90.389,N(2)-Y-O(4) 118.994,N(1)-Y-N(2) 77.517, O(2)-C(24)-O(3) 118.30, N(1)-Y-O(5) 92.960.

Fig. S10. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L¹Sc(CH₂SiMe₃)₂THF (1).

Fig. S11. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L²Sc(CH₂SiMe₃)₂ (2).

Fig. S12. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L¹Y(CH₂SiMe₃)₂THF (**3**).

Fig. S13. ¹H NMR spectrum (500 MHz, C_6D_6 , 25°C) of L²Y(CH₂SiMe₃)₂THF (4).

Fig. S14. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L³Y(CH₂SiMe₃)₂THF (**5**).

Fig. S15. ¹H NMR spectrum (500 MHz, C_6D_6 , 25°C) of L⁴Y(CH₂SiMe₃)₂THF (6).

Fig. S16. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L¹Sc(CH₂SiMe₃)₂THF (1).

Fig. S17. ${}^{13}C$ NMR spectrum (125 MHz, C_6D_6 , 25°C) of $L^2Sc(CH_2SiMe_3)_2$ (2).

Fig. S18. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L¹Y(CH₂SiMe₃)₂THF (3).

Fig. S19. ¹³C NMR spectrum (125 MHz, C_6D_6 , 25°C) of L²Y(CH₂SiMe₃)₂THF (4).

Fig. S20. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L³Y(CH₂SiMe₃)₂THF (5).

Fig. S21. ¹³C NMR spectrum (125 MHz, C_6D_6 , 25°C) of L⁴Y(CH₂SiMe₃)₂THF (6).

Fig. S22. ¹³C NMR spectrum (125 MHz, CDCl₃, 25°C) of the resultant PIP (Table 4, run 1).

Fig. S23. ¹³C NMR spectrum (125 MHz, CDCl₃, 25°C) of the resultant PIP (Table 4, run 2).

Fig. S24. ¹³C NMR spectrum (125 MHz, CDCl₃, 25°C) of the resultant PIP (Table 4, run 3).

Fig. S25 ¹³C NMR spectrum (125 MHz, CDCl₃, 25°C) of the resultant PIP (Table 4, run 4).

Fig. S26. ¹³C NMR spectrum (125 MHz, CDCl₃, 25°C) of the resultant PIP (Table 4, run 9).

Fig. S27. ¹³C NMR spectrum (125 MHz, CDCl₃, 25°C) of the resultant PIP (Table 4, run 10).

Table S1 Calculated electronic excitation energies (EEE) (eV) and corresponds oscillator strengths (OS) for complex **1** in the low-lying excited states.

States	EEE/eV	λ_{cal}/nm	OS	OT
S_1	3.454	359	0.1066	HOMO→LUMO
S_2	3.780	328	0.0162	HOMO-1→LUMO
S_3	4.105	302	0.0177	HOMO→LUMO+1
S_4	4.150	299	0.0087	HOMO-2→LUMO+1
S_5	4.250	292	0.0000	HOMO-1→LUMO+1

Table S2 Calculated electronic excitation energies (EEE) (eV) and corresponds oscillator strengths (OS) for complex **2** in the low-lying excited states.

States	EEE/eV	λ_{cal}/nm	OS	ОТ
\mathbf{S}_1	3.271	379	0.1023	HOMO→LUMO
S_2	3.519	352	0.0163	HOMO-1→LUMO
S_3	3.861	321	0.0003	HOMO-2→LUMO+1
\mathbf{S}_4	3.986	311	0.0039	HOMO→LUMO+1
				HOMO-1→LUMO+1

S_5	4.167	298	0.0013	HOMO-3→LUMO
~ 5	1.10/		0.0015	1101110 2 201110

States	EEE/eV	$\lambda_{\rm cal}/{\rm nm}$	OS	ОТ
S_1	3.407	364	0.1167	HOMO→LUMO
S_2	3.770	329	0.0218	HOMO-1→LUMO
S_3	4.056	306	0.0143	HOMO→LUMO+1
\mathbf{S}_4	4.086	303	0.0094	HOMO-2→LUMO
S_5	4.441	279	0.0060	HOMO→LUMO+3

Table S3 Calculated electronic excitation energies (EEE) (eV) and corresponds oscillator strengths (OS) for complex **3** in the low-lying excited states.

Table S4 Calculated electronic excitation energies (EEE) (eV) and corresponds oscillator strengths (OS) for complex **4** in the low-lying excited states.

States	EEE/eV	λ_{cal}/nm	OS	ОТ
\mathbf{S}_1	3.385	366	0.1080	HOMO→LUMO
S_2	3.736	332	0.0251	HOMO-1→LUMO
S_3	4.063	305	0.0151	HOMO-2→LUMO
				HOMO→LUMO+1
S_4	4.071	304	0.0163	HOMO-2→LUMO
				HOMO→LUMO+1
				HOMO→LUMO+2
S_5	4.326	287	0.0144	HOMO→LUMO+1
				HOMO→LUMO+2

 Table S5 Crystallographic data and refinement details for complexes 7.

	$7 \cdot \text{THF}_2$
Formula	$C_{64}H_{85}BN_2O_6SiY\cdot(C_4H_8O)_2$
formula weight	1250.41
Cryst. system	Monoclinic
Space group	P21/c
<i>a</i> (Å)	19.8165(19)
<i>b</i> (Å)	18.9374(19)
<i>c</i> (Å)	18.2758(18)
$\alpha(\text{deg})$	90
β (deg)	96.434(4)
γ(deg)	90
$V(Å^3)$	6815.2(12)
Ζ	4
$R_{\rm int}$	0.0858
R_1	0.0839

wR_2	0.2636
Goof	1.0620