Electronic Supplementary Information (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2018

Supporting Information For

A water stable Europium–MOF as multifunctional luminescent

sensor for Trivalent metal ions (Fe³⁺,Cr³⁺,Al³⁺), PO₄³⁻ ions, and

nitroaromatic explosives

Zhiying Zhan, Xiaoyu Liang, Xiaolei Zhang, Yuejiao Jia, Ming Hu¹

(Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China) Tel.: +86-471-4992981.E-mail addresses:<u>hm988@126.com</u>

Formula		$C_{38}H_{22}N_2O_{16}Eu_2$		
Formula Weight	1066.50	$V(Å^3)$	1946.2(3)	
Crystal System	Triclinic	Density (Mg/m^3)	1.820	
Space Group	P Error!	μ (mm ⁻¹)	3.269	
$T(\mathbf{K})$	213(2)	F(000)	1036	
a (Å)	7.2685(5)	Rint	0.0312	
<i>b</i> (Å)	14.6954(11)	GOOF	1.084	
c (Å)	19.3575(17)	$R_1^a [I > 2\sigma(I)]$	0.0244	
α (°)	78.962(6)	$\omega R_2^{b}[I > 2\sigma(I)]$	0.0780	
$\beta(^{\circ})$	79.280(5)	R_1 (all data)	0.0277	
γ (°)	75.788(5)	$\omega R_2(\text{all data})$	0.0795	

Table S1	The	crystallogi	aphic	data	for	compound	1
I GOIC SI	1 110	er journogi	apine	uuuu	101	compound	-

¹Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China. Tel.: +86-471-4992981. *E-mail addresses*: <u>hm988@126.com</u>.

Compound 1					
Eu(1)-O(15)	2.374(3)	Eu(2)-O(16)	2.378(3)		
Eu(1)-O(8)#1	2.378(2)	Eu(2)-O(2)#2	2.382(2)		
Eu(1)-O(7)#1	2.390(2)	Eu(2)-O(3)#2	2.392(2)		
Eu(1)-O(14)	2.397(2)	Eu(2)-O(12)#2	2.393(2)		
Eu(1)-O(11)	2.419(2)	Eu(2)-O(13)	2.420(2)		
Eu(1)-O(1)	2.495(3)	Eu(2)-O(9)#1	2.497(3)		
Eu(1)-O(3)#2	2.543(3)	Eu(2)-O(7)	2.511(2)		
Eu(1)-O(4)#2	2.544(4)	Eu(2)-O(6)	2.545(3)		
Eu(1)-O(2)	2.570(2)	Eu(2)-O(8)#1	2.573(2)		
Eu(1)-Eu(2)	3.9500(3)	O(16)-Eu(2)-O(2)#2	129.14(9)		
O(15)-Eu(1)-O(8)#1	129.13(9)	O(16)-Eu(2)-O(3)#2	78.84(9)		
O(15)-Eu(1)-O(7)#1	78.69(10)	O(2)#2-Eu(2)-O(3)#2	72.02(8)		
O(8)#1-Eu(1)-O(7)#1	72.11(8)	O(16)-Eu(2)-O(12)#2	70.88(9)		
O(15)-Eu(1)-O(14)	70.91(9)	O(2)#2-Eu(2)-O(12)#2	71.94(9)		
O(8)#1-Eu(1)-O(14)	71.69(9)	O(3)#2-Eu(2)-O(12)#2	96.22(8)		
O(7)#1-Eu(1)-O(14)	95.77(8)	O(16)-Eu(2)-O(13)	142.08(8)		
O(15)-Eu(1)-O(11)	142.10(8)	O(2)#2-Eu(2)-O(13)	69.33(8)		
O(7)#1-Eu(1)-O(14)	95.79(13)	O(3)#2-Eu(2)-O(13)	77.47(8)		
O(15)-Eu(1)-O(11)	142.09(14)	O(12)#2-Eu(2)-O(13)	140.81(9)		
O(8)#1-Eu(1)-O(11)	69.54(8)	O(16)-Eu(2)-O(9)#1	91.02(10)		
O(7)#1-Eu(1)-O(11)	77.85(8)	O(2)#2-Eu(2)-O(9)#1	139.61(9)		
O(7)#1-Eu(1)-Eu(2)	140.79(9)	O(16)-Eu(2)-Eu(1)	77.50(7)		
O(15)-Eu(1)-O(1)	90.72(10)	O(2)#2-Eu(2)-Eu(1)	100.67(6)		
O(8)#1-Eu(1)-O(1)	139.93(9)	O(3)#2-Eu(2)-Eu(1)	37.35(5)		
O(7)#1-Eu(1)-O(1)	119.47(8)	O(12)#2-Eu(2)-Eu(1)	128.58(6)		
O(14)-Eu(1)-O(1)	136.55(10)	O(13)-Eu(2)-Eu(1)	65.71(6)		
O(11)-Eu(1)-O(1)	75.69(10)	Eu(2)#1-O(2)-Eu(1)	105.91(9)		
O(15)-Eu(1)-O(3)#2	139.03(9)	Eu(1)#2-O(7)-Eu(2)	107.52(9)		
Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 x+1,y,z					
		#3 -x,-y+1,-z	z+1 #4 -x+1,-y+2,-z		

Table S2. Selected bond lengths $[\text{\AA}]$ and angles $[^\circ]$ for 1

Compound 1					
D-H	d (D-H)	d (H··A)	<dha< td=""><td>d (D··A)</td><td>А</td></dha<>	d (D··A)	А
O15-H15A	0.850	2.264	114.11	2.724	02
O15-H15A	0.850	2.274	129.78	2.892	013
O15-H15C	0.850	2.031	130.62	2.664	N1_b
O15-H15C	0.850	2.075	136.14	2.752	N1_a
O16-H16A	0.850	1.934	146.80	2.686	N2'_b
O16-H16A	0.850	1.964	154.68	2.756	N2_a

Table S3. Hydrogen bonds with $H \cdot A < r(A) + 2.000$ Angstroms and $\langle DHA \rangle = 110$ deg.

Table S4 Fluorescent quantum yield data of compound 1

Compound 1					
$v_{00} (\text{cm}^{-1})$	16892	A ₀₀	48.286		
v_{01} (cm ⁻¹)	16313	A ₀₁	50		
v_{02} (cm ⁻¹)	16155	A ₀₂	212.710		
v_{03} (cm ⁻¹)	14598	A ₀₃	195.448		
v_{04} (cm ⁻¹)	14327	A ₀₄	19.243		
$I_{01}(a.u)$	15030	Ar	525.687		
$I_{02}(a.u)$	63320	$\tau(ms)$	0.513		
I_{02}/I_{01}	4.213	1/τ	1.949		
	η%		26.97		

The luminescence quantum yield η of the ${}^{5}D_{0}$ emission lever in the ternary Eu(III) complex could be calculated based on the measurements: Eq. (1) is a means to determine the η values from experimental spectroscopic data,

where Ar and Anr are radiative and non-radiative transition rates, respectively. The denominator in Eq. (1) is calculated from the lifetime of the emitting level $(1/\tau = Ar + Anr)$, where τ stands for fluorescence lifetime).

In the case of europium luminescence, value of Ar could be obtained from the Eq. (2),

$$Ar = \sum A_{0J} = A_{00} + A_{01} + A_{02} + A_{03} + A_{04} \qquad \text{Eq. (2)}$$

where J represents the final ${}^{7}F_{0.4}$ levers. The values of A_{0J} could be calculated by the Eq. (3) and Eq. (4),

$A_{0J} = A_{01}(I_{0J}/I_{01})(v_{01}/v_{0J})$	Eq. (3)
$v_{0J} = 1/\lambda_J$	Eq. (4)

Where λ stands for wavelength correspondingly, A₀₁ is the Einstein coefficient of spontaneous emission between the ⁵D₀ and the ⁷F₁ Stark levels, which may be used as a reference for the whole spectrum in vacuum, A₀₁ = 50 s⁻¹. The needed calculated responding data are shown in Table S3.

Samula	E1	AN	unn.	C norm.	C Atom.
Sample		AN	[wt.%]	[wt.%]	[at.%]
	С	6	45.25	51.17	65.99
	0	8	29.11	32.92	31.87
1@Al ³⁺	Eu	63	13.10	14.81	1.51
	Al	13	0.97	1.10	0.63
	Total:		88.43	100.00	100.00
	С	6	53.30	52.09	65.50
1@Cr ³⁺	0	8	35.98	35.16	33.19
	Eu	63	12.81	12.52	1.24
	Cr	24	0.24	0.23	0.07
	Total:		102.33	100.00	100.00
	С	6	30.69	44.85	69.18
	0	8	21.55	31.50	3.84
1@Fe ³⁺	Eu	63	15.85	23.16	26.82
	Fe	26	0.33	0.48	0.16
	To	tal:	68.42	100.00	100.00

Table S5 The EDS analyses for 1

Fig. S1 The coordination mode of ligands (a) $\rm H_2ppda$ and (b) $\rm H_2npdc.$

Fig. S2 3D supramolecular framework of 1 and the hydrogen bonds in it, the yellow dotted lines represent N…H-O, and the pink dotted lines represent O…H-O.

Fig. S3 The PL spectra of H₂ppda (solid line) and H₂npdc ligand (dotted line).

Fig. S4 The decay curves and fit curves for compound 1 and 1 after adding $PO_4^{3-}(10^{-2}M)$.

Fig. S5 (a) Emission spectra of **1** dispersed in the various concentrations of Cr^{3+} ions at the excitation of 314nm. (b) Linear Stern-Volmer curves in low concentration range of Cr^{3+} ions. (Inset: Nonlinear Stern-Volmer curves of Cr^{3+})

Fig. S6 Fluorescence intensity for 1 exposed to single ion (a for Al^{3+} , b for Cr^{3+} , c for Fe^{3+} and d for PO_4^{3-}) and mixed ions in aqueous solutions.

Fig. S7 (a) Recovery test of **1** in aqueous solution for (a) Al^{3+} : The red columns represent the initial relative luminescent intensity and the purple columns represent the relative intensity on addition of Al^{3+} ; (c) Cr^{3+} and (e) Fe^{3+} : The blue columns represent the initial relative luminescent intensity of **1** and the red columns represent the relative intensity on addition of Cr^{3+} or Fe^{3+} ; (b, d, f) PXRD patterns of **1**@Al^{3+}, **1**@ Cr^{3+} and **1**@ Fe^{3+} after 5 runs.

Fig. S8 (a) The XPS spectra for the O 1 s region of Cr³⁺-incorporated@1; (b) The XPS spectra for the O 1 s region of Al³⁺-incorporated@1.

Fig. S9 (a) Recovery test of 1 in aqueous solution. The orange columns represent the initial relative luminescent intensity and the black columns represent the relative intensity on addition of PO_4^{3-} , (b) PXRD patterns of PO_4^{3-} . (a) after 5 runs.

Fig. S10 The UV-Vis adsorption spectra of 1, PO₄³⁻, 1 soaked in Na₃PO₄ solutions and excitation spectrum of 1.

Fig. S11 The UV-Vis adsorption spectra of 1, 1 after adding various nitro aromatics and excitation spectrum of 1.

MOF	K _{SV} (M ⁻¹)	Detection Limit	Medium	Ref.
[Eu ₂ (ppda) ₂ (npdc)(H ₂ O)]·H ₂ O (1)	1.98×10^{6}	6.17 × 10 ⁻⁵ M (61.7μM)	H ₂ O	This work
Tb-BTC films	/	10 ⁻⁴ mM (0.11ppb)	H ₂ O	27 (a)
${[Eu(HL)(H_2O)_3] \cdot H_2O}n(1)$	2.1×10^{4}	/	H ₂ O	27 (b)
(Tb ³⁺)@Cd-MOF	1.81× 10 ⁵	7.5 × 10 ⁻⁸ M (0.075μM)	EtOH	15
$Tb^{3+} \subset [Y(DPA)_3]$	3.04×10^{4}	/	DMF	27 (c)
$[Zn(L)(H_2O)] \cdot H_2O(1)$	3.64×10^{4}	$2.44 \times 10^{-6} \text{ M}$ (2.44 μ M)	H ₂ O	27 (d)
${[Zn_2(\mu_3-OH)(cpta)(4,4 -bipy)] \cdot H_2O_n(1)}$	9.47×10^{3}	5.55 × 10 ⁻⁶ M (5.55μM)	H ₂ O	27 (e)

Table S6 Comparison of literature reports for MOFs as sensors of Cr³⁺

Table S7 Comparison of literature reports for MOFs as sensors of Al^{3+}

MOF	K _{SV} (M ⁻¹)	Detection Limit	Medium	Ref.
[Eu ₂ (ppda) ₂ (npdc)(H ₂ O)]·H ₂ O (1)	8.68×10^{5}	1.09 × 10 ⁻⁴ M (109μM)	H ₂ O	This work
$[\{Cd_2(syn-dftpmcp)(1,3-BDC)_2\} \cdot 0.5DMF \cdot H_2O]_n$ (2)	/	183ppb	CH ₃ CN	28 (a)
$[Cd_2(bptc)(HCOO)] \cdot NH_2(CH_3)_2 \cdot 3H_2O (1)$	7.3 × 10 ⁴	/	H ₂ O	28 (b)
Eu-MOF	$3.79 imes 10^4$	/	DMF	11
[Cd(PAM)(4-bpdb) _{1.5}]·DMF (Cd-MOF)	2.3×10^{4}	5.6 x 10 ⁻⁷ М (0.56µМ)	H ₂ O	28 (c)
{ $(Me_2NH_2)[Tb(OBA)_2] \cdot (Hatz) \cdot (H_2O)_{1.5}_n (1)$	3.4×10^{4}	/	H ₂ O	14
[Zn ₂ (HL) ₃] ⁺ @MOF-5	7.478×10^{4}	/	DMF	28 (d)

MOF	K _{SV} (M ⁻¹)	Detection Limit	Medium	Ref.
[Eu ₂ (ppda) ₂ (npdc)(H ₂ O)]·H ₂ O (1)	1.8×10^{5}	1.42 × 10 ⁻⁵ M (14.2μM)	H ₂ O	This work
$[Eu(BTB)(phen)(H_2O)_2]_n(1)$	3.97×10^{3}	4 × 10 ⁻⁵ M (40μM)	H ₂ O	41 (a)
activated $\{Eu_2L_3(DMF)\} \cdot 2DMF(1)$	4×10^4	$6.62 \times 10^{-6} \text{ M}$ (6.62 μ M)	H ₂ O	41 (b)
${[Eu_{1.5}(BTB)_{1.5}(H_2O)] \cdot 3DMF}n(1)$	7.97×10^{3}	1 × 10 ⁻⁵ M (10µM)	H ₂ O	5
Tb@Zn-MOF	4.07×10^{3}	1.29 × 10 ⁻⁶ M (0.1ppm)	H ₂ O	41 (c)
[Tb(H ₂ O)(BTB)] (2).	/	3.5 × 10 ⁻⁵ M (35µM)	DMF	41 (d)
CDs–Eu ³⁺	1.3 × 10 ⁵	5.1 × 10 ⁻⁸ M (0.051μM)	H ₂ O	41 (e)

Table S8 Comparison of literature reports for MOFs as sensors of PO₄³⁻

Table S9 Comparison of literature reports for MOFs as sensors of TNP

MOF	K _{SV} (M ⁻¹)	Detection Limit	Medium	Ref
[Eu ₂ (ppda) ₂ (npdc)(H ₂ O)]·H ₂ O (1)	3.44×10^{5}	2.97 × 10 ⁻⁶ M (2.97μM)	H ₂ O:MeOH	This work
Eu4L3	2.001×10^{3}	1 × 10 ⁻⁵ M (10μM)	DMF	46 (a)
{Cd(INA)(pytpy)(OH)·2H ₂ O} _n (1)	4.3×10^{4}	$2.41 \times 10^{-3} \text{ mM}$ (2.41 μ M)	DMF	46 (b)
$[Eu_{3}(bpydb)_{3}(HCOO)(\mu_{3}\text{-}OH)_{2}(DMF)] \cdot (DMF)_{3}$ $(H_{2}O)_{2} (1)$	1.5×10^{4}	/	DMF	46 (c)
{[Eu ₂ (TDC) ₃ (CH ₃ OH) ₂]·CH ₃ OH} thin film	1.1 × 10 ⁴	9.5 × 10 ⁻⁶ M (9.5μM)	МеОН	46 (d)
RBH@Eu(BTC)	3.15 × 10 ⁵	1 × 10 ⁻⁵ M (10µM)	EtOH	46 (e)
$(C_2H_6NH_2)_2[Tb_2(ptptc)_2(DMF)(H_2O)] \bullet DMF \bullet 6H_2O \text{ (complex 1)}$	3.89 × 10 ⁴	/	МеОН	46 (f)
$[Zn_{24}(BDPO)_{12}(DMF)_{12}]$ ·6DMF·52H ₂ O (1)	$1.6 imes 10^{4}$	/	DMF	46 (g)
$Zn_2(H_2L)_2(Bpy)_2(H_2O)_3 \cdot H_2O \text{ (MOF-2)}.$	1.36×10^{4}	0.49µМ (110ppb)	H_2O	46 (h)