Supporting Information

Transformation of Hydride-Containing Dinitrosyl Iron Complex [(NO) ${ }_{2} \mathbf{F e}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{BH}_{4}\right)\right]^{-}$into $\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\boldsymbol{\eta}^{\mathbf{3}}-\mathrm{HCS}_{2}\right)\right]^{-}$via Reaction with CS_{2}
 Huang-Chia Huang, ${ }^{\text {a }}$ Wei-Min Ching, ${ }^{\text {b }}$ Yu-Ting Tseng, ${ }^{\text {a,c }}$ Chien-Hong Chen, ${ }^{* d}$ and Tsai-Te Lu*a,e

Affiliations:

${ }^{\text {a Department of Chemistry, Chung Yuan Christian University, Taoyuan, 32023, }}$ Taiwan.
${ }^{\text {b }}$ Instrumentation Center, National Taiwan Normal University, Taipei, 106, Taiwan
${ }^{\text {c Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan. }}$
${ }^{\text {d }}$ Department of Medical Applied Chemistry, Chung Shan Medical University and Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
${ }^{\mathrm{e}}$ Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
*To whom correspondence should be addressed

E-mail: cchwind@csmu.edu.tw (C.-H.C.); ttlu@mx.nthu.edu.tw (T.-T.L.)

Experimental Section.

Manipulations, reactions, and transfers were conducted under $\mathrm{N}_{2(\mathrm{~g})}$ according to Schlenk techniques or in a glovebox (under $\mathrm{N}_{2(\mathrm{~g})}$ atmosphere). Organic solvents were distilled under $\mathrm{N}_{2(\mathrm{~g})}$ from appropriate drying agents (acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ from CaH_{2}; n-hexane, diethyl ether, and tetrahydrofuran (THF) from sodium benzophenone) and stored in dried, N_{2}-filled flasks over $4 \AA$ molecular sieves. Nitrogen was purged through these solvents before use. Solvent was transferred to the reaction vessel via stainless cannula under positive pressure of N_{2}. Compounds $\left.\quad[\mathrm{PPN}]\left[{ }^{15} \mathrm{NO}_{2}\right], \quad\left[{ }^{15} \mathrm{NO}\right]\left[\mathrm{BF}_{4}\right],{ }^{1} \quad[\mathrm{PPN}][\mathrm{Fe}(\mathrm{CO}))_{3}\left({ }^{15} \mathrm{NO}\right)\right],{ }^{2}$ $\left[(\mathrm{NO})_{2} \mathrm{Fe}(\mathrm{TMEDA})\right](\mathrm{TMEDA}=$ tetramethylenediamine $),\left[\left({ }^{15} \mathrm{NO}\right)_{2} \mathrm{Fe}(\mathrm{TMEDA})\right],{ }^{3}$ and $\mathrm{NaS}_{2} \mathrm{CH}^{4}$ were prepared according to the reported procedures. The reagents 18 -crown-6-ether (Alfa Aesar), TMEDA (Alfa Aesar), sodium borohydride/borodeuteride (Alfa Aesar), ammonia borane (Sigma), 9-borabicyclononane (9-BBN) (ACROS), pinacolborane (Alfa Aesar), borane tetrahydrofuran complex solution (Aldrich), and carbon disulfide (Sigma) were used as received. Infrared spectra of the $v_{N O}$ and $v_{B-H / D}$ stretching frequencies were recorded on a JASCO FT/IR-4200 spectrometer with sealed solution cells ($0.1 \mathrm{~mm}, \mathrm{CaF}_{2}$ windows). UV-vis spectra were recorded on a JASCO V630 spectrometer. ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$ NMR spectra were obtained on a Bruker AVANCE 300 MHz and Varian Unity- 600 MHz spectrometer, whereas $\mathrm{BF}_{3}(\delta=0$ $\mathrm{ppm})$ and urea $(\delta=-298.73 \mathrm{ppm})$ were used as external standard for ${ }^{11} \mathrm{~B}$ and ${ }^{15} \mathrm{~N}$ NMR, respectively. All electrochemical measurements were performed in a three-electrode cell with a CHI model 611E potentiostat (CH Instrument) instrumentation. Cyclic voltammogram of dinitrosyl iron complex was obtained in O_{2}-free THF using 0.1 M $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as the supporting electrolyte. The potential was measured at 298 K vs $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode ($0.01 \mathrm{M} \mathrm{AgNO}_{3}$) using a glassy carbon working
electrode (surface area $=0.0707 \mathrm{~cm}^{2}$) and a platinum wire auxiliary electrode at a scan rate of $0.1 \mathrm{~V} / \mathrm{s}$. The potentials are reported against the ferrocenium $/$ ferrocene $\left(\mathrm{Fc}^{+} / \mathrm{Fc}\right)$ couple.

Abstract

Reaction of Complex [(NO) $\left.)_{2} \mathrm{Fe}(\mathrm{TMEDA})\right]$ (1) and $\mathrm{NH}_{3} \mathrm{BH}_{3}, \mathrm{BH}_{3} \bullet$ THF, 9 BBN (9-borabicyclononane), and HBPin (pinacolborane), respectively. Compounds [(NO) ${ }_{2} \mathrm{Fe}($ TMEDA $\left.)\right]$ (1) $(0.023 \mathrm{~g}, 0.1 \mathrm{mmol})$ and $\mathrm{NH}_{3} \mathrm{BH}_{3}(0.015 \mathrm{~g}, 0.5$ mmol) were dissolve in THF (5 mL) and then stirred under N_{2} at ambient temperature for 12 h . No change of indicative IR v_{NO} stretching frequencies of complex $\mathbf{1}$ at 1697 $\mathrm{s}, 1644 \mathrm{~s} \mathrm{~cm}^{-1}$ demonstrated that complex $\mathbf{1}$ is unreactive toward $\mathrm{NH}_{3} \mathrm{BH}_{3}$. Reactions of complexes $\mathbf{1}$ with $\mathrm{BH}_{3} \bullet$ THF, $9-\mathrm{BBN}$, and HBPin, respectively, as well as reactions of complex $\left[(\mathrm{NO})_{2} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ with $\mathrm{NH}_{3} \mathrm{BH}_{3} / \mathrm{BH}_{3} \bullet \mathrm{THF} / 9-\mathrm{BBN} / \mathrm{HBPin}$ were carried out in a similar fashion, while no reaction was observed.

Preparation of $[$ Cation $]\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{BH}_{4}\right)\right]$ (2) (Cation $=\mathbf{N a}$-18-crown-6ether or PPN). A $25-\mathrm{mL}$ Schlenk tube was loaded with compounds $\left[(\mathrm{NO}){ }_{2} \mathrm{Fe}(\mathrm{TMEDA})\right](\mathbf{1})(0.278 \mathrm{~g}, 1.2 \mathrm{mmol}), \mathrm{NaBH}_{4}(0.038 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $18-$ crown-6-ether $(0.264 \mathrm{~g}, 1.0 \mathrm{mmol})$, and the contents in the tube were dissolved in THF $(5 \mathrm{~mL})$. The reaction solution was stirred at ambient temperature under $\mathrm{N}_{2(\mathrm{~g})}$ atmosphere for 1 h and then the mixture solution was filtered through Celite to remove the insoluble solid. Hexane was further added to the filtrate to precipitate the dark-brown solid. The dark-brown solid was washed with diethyl ether $(25 \mathrm{~mL})$ to remove the excess complex $\left[(\mathrm{NO})_{2} \mathrm{Fe}(\mathrm{TMEDA})\right]$ (1). After drying the resulting dark-brown solid under vacuum, the dark-brown complex [Na-18-crown-6-ether][(NO) $\left.)_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{BH}_{4}\right)\right]$ (2-Na) (yield 0.31 g, 73.5\%) was afforded. Recrystallization from THF solution of complex 2 layered with hexane at $-20{ }^{\circ} \mathrm{C}$ for a week led to dark-brown crystals suitable for X-ray crystallography. IR v_{NO} : $1708 \mathrm{~s}, 1654 \mathrm{~s} \mathrm{~cm}^{-1}$ (THF); $1714 \mathrm{~s}, 1651 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{KBr}) .{ }^{1} \mathrm{H}$

NMR (300 MHz, d-THF, 298 K) $\delta 3.62$ (s, 24H, 18-crown-6-ether), -2.13 (q, 4H, BH 4 , $\left.{ }^{1} J_{\mathrm{BH}}=84 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{15} \mathrm{~N}$ NMR (61 MHz , d-THF) $\delta 10.21 \mathrm{ppm}$. Absorption spectrum (THF) $\left[\lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right]: 327$ (890), 388 (785).

Complex $[\mathrm{PPN}]\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{BH}_{4}\right)\right]$ (2-PPN) was prepared in a similar manner through the reaction of complex 1 and $[\mathrm{PPN}]\left[\mathrm{BH}_{4}\right]$. IR $v_{\mathrm{NO}}: 1707 \mathrm{~s}, 1653 \mathrm{~s} \mathrm{~cm}^{-1}$ (THF); $1714 \mathrm{~s}, 1651 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}-\mathrm{THF}, 298 \mathrm{~K}$) $\delta 7.68$ (s, 6H, PPN), $7.59(\mathrm{~s}, 12 \mathrm{H}, \mathrm{PPN}), 7.51(\mathrm{~s}, 12 \mathrm{H}, \mathrm{PPN}),-2.08\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{BH}_{4},{ }^{1} J_{\mathrm{BH}}=84 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{1} \mathrm{H} \mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{d}-\mathrm{THF}, 213 \mathrm{~K}$) $\delta 7.68$ (s, 6H, PPN), 7.59 (s, 12H, PPN), 7.51 (s, 12H, PPN), $3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}-\mathrm{H}_{t}\right),-7.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}-\mathrm{H}_{b}\right) \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR $(192 \mathrm{MHz}, \mathrm{THF}) \delta 2.82\left(\mathrm{q},{ }^{1} J_{\mathrm{BH}}\right.$ $=84.5 \mathrm{~Hz}) \mathrm{ppm}$.

Deuterium-substituted complex [18-crown-6-ether][(NO) $\left.{ }_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{BD}_{4}\right)\right]$ (2-D) was prepared in a similar manner through the reaction of complex 1,18 -crown- 6 -ether, and NaBD_{4}.

Preparation of [18-crown-6-ether][(NO) $\left.{ }_{2} \mathrm{Fe}\left(\eta^{3}-\mathrm{HCS}_{2}\right)\right]$ (3). Method 1.

 Complex 2-Na ($0.125 \mathrm{~g}, 0.3 \mathrm{mmol}$) was dissolve in THF (5 mL) before $\mathrm{CS}_{2}(18 \mu \mathrm{l}, 0.3$ mmol) was added in a dropwise manner to this THF solution. The reaction solution was then stirred under $\mathrm{N}_{2(\mathrm{~g})}$ at ambient temperature for 2 h and monitored with FTIR. Shift of IR v_{NO} stretching frequencies from 1708 s and $1654 \mathrm{vs} \mathrm{cm}^{-1}$ to 1717 s and 1648 s cm^{-1} was observed. Subsequent addition of diethyl ether to this THF solution led to the precipitation of [Na-18-crown-6-ether][(NO) $\left.{ }_{2} \mathrm{Fe}\left(\eta^{3}-\mathrm{HCS}_{2}\right)\right]$ (3) (yield: $0.063 \mathrm{~g}, 43.5 \%$)Method 2. A $25-\mathrm{mL}$ Schlenk tube was loaded with 18 -crown-6-ether $(0.264 \mathrm{~g}$, $1.0 \mathrm{mmol})$) and $\mathrm{NaS}_{2} \mathrm{CH}(0.100 \mathrm{~g}, 1.0 \mathrm{mmol})$ and the contents in the tube were dissolved in THF (5 mL). The mixture solution was stirred for 1 h and then transferred by cannula under positive N_{2} pressure to another $25-\mathrm{mL}$ Schlenk tube loaded with
complex $1(0.232 \mathrm{~g}, 1.0 \mathrm{mmol})$. The reaction solution was stirred for 4 h and then monitored by FTIR spectroscopy, which indicated the formation of [Na-18-crown-6ether $]\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\eta^{3}-\mathrm{HCS}_{2}\right)\right]$. The mixture was filtered through Celite to remove the insoluble solid before hexane was added to precipitate the dark-brown solid of [Na-18-crown-6-ether $]\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\eta^{3}-\mathrm{HCS}_{2}\right)\right]$ (3) (yield: $0.351 \mathrm{~g}, 73.2 \%$). Recrystallization from THF solution of complex 3 layered with hexane at $-20^{\circ} \mathrm{C}$ for a week led to dark-brown crystals suitable for X-ray crystallography. IR $v_{\mathrm{NO}}: 1717 \mathrm{~s}, 1648 \mathrm{~s} \mathrm{~cm}^{-1}$ (THF); 1717 s , $1639 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{KBr}) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{d}-\mathrm{THF}, 298 \mathrm{~K}$) $\delta 7.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HCS}_{2}\right), \delta 3.61(\mathrm{~s}$, $24 \mathrm{H}, 18$-crown-6-ether). ${ }^{15} \mathrm{~N}$ NMR (61 MHz , d-THF) $\delta 74.71 \mathrm{ppm}$. Absorption spectrum (THF) $\left[\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right]: 334$ (4650), 366 (3770), 418 (2150).

Reaction of Complex 2 and CO_{2}. To a $5-\mathrm{mL}$ THF solution of complex 2-PPN $(0.067 \mathrm{~g}, 0.1 \mathrm{mmol})$, dry CO_{2} was purged for 5 min before this reaction solution was monitored by with FTIR. Disappearance of the IR v_{NO} stretching frequencies at 1708 and $1654 \mathrm{~cm}^{-1}$ indicated the decomposition of complex $\mathbf{2}$. Solvent was then removed under vacuum, whereas the crude solid was extracted with $\mathrm{CD}_{3} \mathrm{CN}$. The singlet ${ }^{1} \mathrm{H}$ NMR signal observed at 8.29 ppm as well as the ${ }^{13} \mathrm{C}$ NMR signal observed at 164.47 ppm indicated the formation of $\left[\mathrm{HB}(\mathrm{HCOO})_{3}\right]^{-}$(yield 66.8% using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an internal standard).

Conversion of Complex 2 into Complex 1 via Reaction with CO_{2} in the

 presence of TMEDA. Dry CO_{2} was purged through a $5-\mathrm{mL}$ THF solution of complex $2(0.042 \mathrm{~g}, 0.1 \mathrm{mmol})$ and TMEDA $(1.7 \mu \mathrm{l}, 0.1 \mathrm{mmol})$ for 5 min . The reaction solution was stirred for an additional 1 h and a significant change in color of the reaction solution from red to deep green was observed. The reaction was then monitored with FTIR. Shift of IR v_{NO} stretching frequencies from 1708 s and $1654 \mathrm{vs} \mathrm{cm}^{-1}$ to 1697 s and 1644 s cm^{-1} was assigned to the conversion of complex $\mathbf{2}$ into complex $\mathbf{1}$.Crystallography. Dark-brown crystals of complexes [Na-18-crown-6ether $]\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{BH}_{4}\right)\right](\mathbf{2 - N a})$ and $[\mathrm{Na}-18$-crown-6-ether $]\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\eta^{3}-\mathrm{HCS}_{2}\right)\right]$ (3) suitable for single-crystal X-ray diffraction were mounted, respectively, on a glass fiber and quickly coated in epoxy resin. Unit cell parameters were obtained by least-squares refinement. Diffraction measurement for complexes 2-Na and $\mathbf{3}$ were carried out on a SMART Apex CCD diffractometer with graphite monochromated Mo K α radiation ($\lambda=$ $0.71073 \AA$) and between 2.52° and 27.47° for complex 2-Na, and between 2.37° and 24.95° for complexes 3. Least-squares refinement of the positional and anisotropic thermal parameters of all non-hydrogen atoms and fixed hydrogen atoms was based on F^{2}. A SADABS absorption correction was made. ${ }^{5}$ The SHELXTL structure refinement program was employed. ${ }^{6}$ Crystallographic data of DNICs 2-Na (CCDC 1881645) and 3 (CCDC 1881646) were deposited in Cambridge Crystallographic Data Centre.

Computational methods. Geometry optimization of complexes 1, 2, and 3, directly adopted from single-crystal structures, was achieved using Gaussian 09 program with PB86/TZVP and B3LYP/TZVP levels. ${ }^{7}$ The geometry-optimized structures with BP86 method are consistent with the single-crystal structures (Table S2), whereas no imaginary frequencies were observed. Extended transition state nature orbital for the chemical valence (ETS-NOCV) analysis ${ }^{8-13}$ were performed with BP86/TZVP method using Amsterdam Density Function (ADF) software package ${ }^{14}$. The deformation density plots of all results were plotted with Chimera program. ${ }^{15}$

Figure S1. IR spectra of DNIC 1 in THF (black) and its reaction with five equiv. of (A) $\mathrm{NH}_{3} \mathrm{BH}_{3}$, (B) $\mathrm{BH}_{3} \bullet$ THF, (C) 9-BBN, and (D) HBPin, respectively, for 12 h (red).

(B)

V_{3}
symmetric $\mathrm{B}-\mathrm{H}$ stretching

symmetric $\mathrm{B}-\mathrm{H}$ bending
v_{5}
symmetric $\mathrm{B}-\mathrm{H}$ bending

Figure S2. (A) IR spectra of DNICs [Na-18-crown-6-ether][(NO) $\left.)_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{BH}_{4}\right)\right]$ (2) (red), [$\mathrm{Na}-18$-crown-6-ether][(NO) $\left.)_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{BD}_{4}\right)\right]$ (2-D) (blue), and [Na-18-crown-6ether $]\left[\left({ }^{15} \mathrm{NO}\right)_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{BH}_{4}\right)\right]$ (black) in THF. The comparison of the IR spectra of DNICs 2 (red), 2-D (blue) in the range between $1100-1550 \mathrm{~cm}^{-1}$ is shown in the inset. (B) Vibrational modes of the $\left[\mathrm{BH}_{4}\right]^{-}$ligand in DNIC 2 identified by isotope-labeling experiment and theoretical calculation.

Figure S3. UV-vis spectrum DNIC 2 in THF.

Figure S4. Cyclic voltammogram of 2-mM solution of DNIC $\mathbf{2}$ in THF with 0.1 M of $\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ electrolyte indicate the oxidation of DNIC 2 at $\mathrm{E}_{\mathrm{pa}}=-0.48 \mathrm{~V}$ versus $\mathrm{Fc} / \mathrm{Fc}^{+}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of DNICs 2-PPN (red), 2 (blue), and compound [Na-18-crown-6-ether][$\left.\mathrm{BH}_{4}\right]$ (black) in d-THF at 298 K .

Figure S6. ${ }^{11}$ B NMR spectra of DNIC 2 (blue) and compound [Na-18-crown-6ether $]\left[\mathrm{BH}_{4}\right]$ (black) in d-THF at 298 K .

Figure S7. IR spectra of DNIC 2 in THF (black), its reaction with five equiv. of TMEDA for 12 h (red), its reaction with $\mathrm{CO}_{2(\mathrm{~g})}$ (blue), and its reaction with $\mathrm{CO}_{2(\mathrm{~g})}$ in the presence of one equiv. of TMEDA (magenta).

Figure S8. (A) ${ }^{1} \mathrm{H}$ NMR and (B) ${ }^{13} \mathrm{C}$ NMR NMR spectra for the $\mathrm{CD}_{3} \mathrm{CN}$ solution of complex 2-PPN purged with $\mathrm{CO}_{2(\mathrm{~g})}$ for 10 min at 298 K .

Figure S9. (A) ${ }^{11} \mathrm{~B}$ NMR, and (B) ${ }^{11} \mathrm{~B}\{\mathrm{H}\}$ NMR spectra for the $\mathrm{CD}_{3} \mathrm{CN}$ solution of complex 2-PPN purged with $\mathrm{CO}_{2(\mathrm{~g})}$ for 10 min at 298 K .

Figure S10. UV-vis spectrum DNIC 3 in THF.

Figure S11. (A) ${ }^{1} \mathrm{H}$ NMR and (B) ${ }^{13} \mathrm{C}$ NMR spectra of DNIC 3 in d-THF at 298 K.

Table S1. Experimental and Calculated Vibrational Frequencies for Different Vibrational Modes of the $\left[\mathrm{BH}_{4}\right]^{-}$ligand in DNIC 2.

Vibrational Modes	Vibrational Frequency (cm^{-1})			
	Experimental (in THF)		Calculated ${ }^{\text {b }}$	
	${ }^{1} \mathrm{H}$	${ }^{2} \mathrm{D}$	${ }^{1} \mathrm{H}$	${ }^{2} \mathrm{D}$
${ }^{a}$ asym. B- H_{t} stretching (v_{1})	2410	1818	2475	1845
${ }^{\text {s sym. B- }} \mathrm{H}_{t}$ stretching (v_{2})	2382	1754	2443	1799
${ }^{\text {asym. }}$. B- H_{b} stretching (v_{3})	1865	1382	1979	1424
${ }^{\text {a asym. }}$ B- H_{b} stretching (v_{4})	1847	1358	1937	1431
$\mathrm{B}-\mathrm{H}_{b}$ bending (v_{5})	1391	-	1450	1048
B- H_{t} bending (V_{6})	1141	-	1179	873

${ }^{a}$ asym. $=$ asymmetric; sym. $=$ symmetric. ${ }^{b}$ with BP86/TZVP level.

Table S2. Selected Bond Distances, Bond Angle, and IR v_{NO} Stretching Frequencies for DNICs 1, 2, and $\mathbf{3}$ Obtained from Single-crystal Structure and Geometry Optimization.

Single-Crystal Structures	$\mathrm{Fe}-\mathrm{NO}$ (Å)	$\mathrm{N}-\mathrm{O}$ (Å)	$\angle \mathrm{Fe}-\mathrm{N}-\mathrm{O}$	$\mathrm{Fe}-\mathrm{N}$ (\AA)	$\mathrm{Fe}-\mathrm{B}$ (Å)	$\mathrm{Fe}-\mathrm{C}$ (\AA)	Fe-S (\AA	$\begin{aligned} & \text { IR } v_{\mathrm{NO}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$
1	1.638	1.197	166.8	2.110	-	-	-	1697
	1.639	1.188	169.8	2.117				1644
2	1.627	1.149	170.8	-	2.194	-	-	1708
	1.661	1.180	174.8					1654
3	1.677	1.189	155.1	-	-	2.070	2.297	1717
	1.641	1.190	177.2				2.294	1648
BP86/TZVP	$\mathrm{Fe}-\mathrm{NO}$	$\mathrm{N}-\mathrm{O}$	$\angle \mathrm{Fe}-\mathrm{N}-\mathrm{O}$	$\mathrm{Fe}-\mathrm{N}$ (\AA)	$\mathrm{Fe}-\mathrm{B}$ (\AA)	$\mathrm{Fe}-\mathrm{C}$ (\AA)	Fe-S (\AA	$\begin{aligned} & \text { IR } v_{\mathrm{NO}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$
	(\AA)	(\AA)						
1	1.644	1.198	169.3	2.146	-	-	-	1727
	1.644	1.198	169.3	2.145				1678
2	1.641	1.204	168.4	-	2.159	-		1707
	1.641	1.204	168.4					1655
3	1.673	1.204	149.7	-	-	2.070	$\begin{aligned} & 2.332 \\ & 2.332 \end{aligned}$	1732
	1.642	1.194	176.6					1634
B3LYP/TZVP	$\mathrm{Fe}-\mathrm{NO}$ (\AA)	$\mathrm{N}-\mathrm{O}$ (\AA)	$\angle \mathrm{Fe}-\mathrm{N}-\mathrm{O}$	$\mathrm{Fe}-\mathrm{N}$ (\AA)	$\mathrm{Fe}-\mathrm{B}$ (Å)	$\mathrm{Fe}-\mathrm{C}$ (\AA)	Fe-S (Å)	$\begin{aligned} & \text { IR } v_{\mathrm{NO}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$
1	1.631	1.185	170.0	2.160	-	-	-	1794
	1.631	1.185	170.0	2.159				1725
2	1.625	1.190	168.1	-	2.183	-	-	1773
	1.625	1.190	168.1					1700
3	1.647	1.188	154.0	-	-	2.094	2.364	1794
	1.624	1.180	179.8				2.364	1701

Table S3. Selected Bond Distances, Bond Angle, and IR v_{NO} Stretching Frequencies for Neutral $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}{ }^{10}$ DNICs Containing CO/Carbene Ligands and (Di)Anionic $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}^{10}$ DNICs.

Complex	$\mathrm{Fe}-\mathrm{NO}$ (\AA)	$\mathrm{N}-\mathrm{O}$ (Å)	$\angle \mathrm{Fe}-\mathrm{N}-\mathrm{O}$	$\mathrm{Fe}-\mathrm{N}$ (\AA)	$\mathrm{Fe}-\mathrm{B}$ (\AA)	$\mathrm{Fe}-\mathrm{C}$ (\AA)	$\mathrm{Fe}-\mathrm{S}$ (\AA)	$\begin{aligned} & \text { IR } v_{\mathrm{NO}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Ref.
1	1.639	1.193	168.3	2.114	-	-	-	1697	This
								1644	work
2	1.644	1.165	172.8	-	2.194	-	-	1708	This
								1654	work
3	1.677	1.189	155.1	-	-	2.070	2.296	1717	This
	1.641	1.190	177.2					1648	work
Neutral $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}^{10}$ DNICs Containing CO/Carbene Ligands									
Complex	$\mathrm{Fe}-\mathrm{NO}^{c}$ (\AA)	$\mathrm{N}-\mathrm{O}^{d}$ (A)	$\angle \mathrm{Fe}-\mathrm{N}-\mathrm{O}$	$\mathrm{Fe}-\mathrm{CO}$ (Å)	$\mathrm{Fe}-\mathrm{P}$ (A)	$\mathrm{Fe}-\mathrm{C}^{e}$ (A)		$\begin{aligned} & \hline \text { IR } v_{\mathrm{NO}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Ref.
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{L}_{1}\right)(\mathrm{NO})_{4}(\mathrm{CO})_{2}\right]^{a}$	1.682	1.173	176.2	1.763	2.262	-		1760	16
								1702	
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{L}_{2}\right)(\mathrm{NO})_{4}(\mathrm{CO})_{2}\right]^{a}$	1.707	1.166	177.0	1.778	2.270	-		1767	16
								1716	
$\left[(\mathrm{IMes})(\mathrm{CO}) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{a}$	1.676	1.174	175.2	1.777	-	1.989		1744	17
								1702	
$\left[(\mathrm{NHC}-\mathrm{Me})(\mathrm{CO}) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{a}$	1.727	1.176	173.2	1.729	-	2.025		1740	18
								1697	
$\left[(\mathrm{NHC}-\mathrm{iPr})(\mathrm{CO}) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{a}$	1.676	1.181	175.8	1.784	-	2.005		1738	18
								1696	
$\left[(\mathrm{MeMes}-\mathrm{NHC})(\mathrm{CO}) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{a}$	1.661	1.179	174.8	1.834	-	1.990		1743	19
								1690	
$\left[(\mathrm{sIMes})(\mathrm{CO}) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{a}$	1.683	1.169	172.6	1.771	-	1.998		1747	20
								1705	
$\left[(\mathrm{MeMes}-\mathrm{NHC})_{2} \mathrm{Fe}(\mathrm{NO})_{2}\right]^{a}$	1.651	1.204	172.2	-	-	1.989		1675	19
								1634	
$\left[(\mathrm{NHC}-\mathrm{Me})_{2} \mathrm{Fe}(\mathrm{NO})_{2}\right]^{a}$	1.660	1.202	174.0	-	-	1.973		1667	18
								1624	
$\left[(\mathrm{NHC}-\mathrm{iPr})_{2} \mathrm{Fe}(\mathrm{NO})_{2}\right]^{a}$	1.643	1.204	173.8	-	-	2.015		1664	18
								1619	
(Di)Anionic $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}^{10}$ DNICs									
	$\mathrm{Fe}-\mathrm{NO}^{c}$ (Å)	$\mathrm{N}-\mathrm{O}^{d}$ (£)	$\angle \mathrm{Fe}-\mathrm{N}-\mathrm{O}$	$\mathrm{Fe}-\mathrm{N}$ (\AA)	$\mathrm{Fe}-\mathrm{O}$ (\AA)	$\mathrm{Fe}-\mathrm{P}$ (\AA)	$\mathrm{Fe}-\mathrm{S}^{f}$ (\AA)	$\begin{aligned} & \text { IR } v_{\mathrm{NO}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Ref.
$\left[\left(\mathrm{NO}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{-}$	1.657	1.206	171.9	2.025	-	2.248	-	1693	21
								1642	
$\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\mathrm{NC}_{9} \mathrm{H}_{6}-\mathrm{NH}\right)\right]^{-b}$	1.622	1.183	168.8	2.048	-	-	-	1655	22
								1603	
$\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\mathrm{NC}_{9} \mathrm{H}_{6}-\mathrm{O}\right)\right]^{-b}$	1.620	1.231	169.7	2.045	2.021	-	${ }^{-}$	1674	22
								1619	
$\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\mathrm{NC}_{9} \mathrm{H}_{6}-\mathrm{S}\right)\right]^{-b}$	1.652	1.209	170.2	2.067	-	-	2.316	1660	22
								1612	
$\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\mathrm{SC}_{6} \mathrm{H}_{4}-o-\mathrm{NH}_{2}\right)\right]^{-b}$	1.647	1.200	168.6	2.085	-	-	2.327	1657	22
								1607	
$\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\mathrm{SC}_{2} \mathrm{H}_{5}\right)\right]^{2-b}$	1.642	1.205	167.8	-	-	-	2.324	1614	23
								1571	
$\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\mathrm{S}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\right)\right]^{2-b}$	1.650	1.217	168.7	-	-	-	2.331	1600	13
								1552	
$\left[(\mathrm{NO})_{2} \mathrm{Fe}\left(\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}\right)\right]^{2-b}$	1.650	1.218	= 167.4	-)acety	(dpp	2.329	1600	13
								1559	
${ }^{a} \mathrm{~L}_{1}=$ bis(diphenylphosphino)methane (dppm); $\mathrm{L}_{2}=$ bis(diphenylphosphino)acetylene (dppa); IMes $=1,3-\mathrm{bis}(2,4,6-$									

rimethylphenyl)imidazol-2-ylidene; $\mathrm{NHC}-\mathrm{Me}=1,3$-dimethylimidazol-2-ylidene; NHC - $\mathrm{iPr}=1,3$-diisopropylimidazol-2-ylidene; MeMes -$\mathrm{NHC}=1$-methel-3-(2,4,6-trimethylphenyl)imidazol-2-ylidene; sIMes $=1,3$-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene. ${ }^{b}$ The counteraction is [K-18-crown-6-ether]. ${ }^{c}$ The average $\mathrm{Fe}-\mathrm{NO}$ bond distance of neutral $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}^{10}$ DNICs lies in the range of 1.638-1.727 \AA, whereas that of (di)anionic $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}^{10} \mathrm{DNICs}$ lies in the range of $1.620-1.657 \AA .{ }^{24} d \mathrm{The}$ average $\mathrm{N}-\mathrm{O}$ bond distance of $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}^{10}$ DNICs without π-acceptor CO ligands lies in the range of 1.183-1.231 \AA. ${ }^{e}$ The average $\mathrm{Fe}-\mathrm{C}$ (carbine) bond distance of neutral $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}^{10}$ DNICs lies in the range of 1.973-2.025 \AA. ${ }^{.}$The average $\mathrm{Fe}-\mathrm{S}$ bond distance of (di) anionic $\left\{\mathrm{Fe}(\mathrm{NO})_{2}\right\}^{10} \mathrm{DNICs}$ lies in the range of 2.3162.331 Å.

Table S4. Selected Bond Distances, Bond Angle, and ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR Signals for [Fe-$\left.\left(\eta^{2}-\mathrm{HCS}_{2}\right)\right]$ and $\left[\mathrm{M}-\left(\eta^{3}-\mathrm{HCS}_{2}\right)\right]$ Complexes. ${ }^{a}$

Complex	M-S (\AA)	$\mathrm{M}-\mathrm{C}^{c}$ (\AA)	$\mathrm{C}-\mathrm{S}$ (A)	$\angle \mathrm{S}-\mathrm{C}-\mathrm{S}$	$\begin{gathered} { }^{1} \mathrm{H} \text { NMR } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C} \text { NMR } \\ (\mathrm{ppm}) \end{gathered}$	Ref.
3	2.294	2.070	1.716	123.6	7.93	137.3	This work
	2.297		1.699				
$\left[\left(\mathrm{L}_{1}\right) \mathrm{Fe}\left(\eta^{2}-\mathrm{HCS}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{b}$	2.355	2.764	1.666	114.74	11.67	-	25
	2.314		1.657				
$\left[\left(\mathrm{L}_{2}\right) \mathrm{Fe}\left(\eta^{2}-\mathrm{HCS}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{b}$	2.356	2.689	1.675	118.75	11.52	205.6	25
	2.310		1.624				
$\left[(\text { depe })_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{S}_{2} \mathrm{CH}\right)\right]^{+b}$	2.326	2.830	1.691	110.0	-	-	26
	2.312		1.662				
$\left[(\mathrm{dppm})_{2} \mathrm{Fe}\left(\eta^{2}-\mathrm{S}_{2} \mathrm{CH}\right)\right]^{+b}$	2.303	2.760	1.661	113.4	-	-	27
	2.318		1.657				
$\left[\mathrm{Mn}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{S}_{2} \mathrm{CH}\right)\right]^{-}$	2.359	2.015	1.717	107.1	6.07	99.8	28
	2.318		1.718				
$\left[\left(\mathrm{Cp}^{*}\right) \mathrm{Mo}\left(\eta^{2}-\mathrm{S}_{2} \mathrm{CH}_{2}\right)\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CH}\right)\right]$	2.402	2.223	1.720	121.8	5.90	67.8	29
	2.391		1.719				
$\left[\left(\mathrm{Cp}^{*}\right) \mathrm{W}\left(\eta^{2}-\mathrm{S}_{2} \mathrm{CH}_{2}\right)\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CH}\right)\right]$	2.394	2.200	1.726	121.4	5.30	61.4	29
	2.384		1.726				

${ }^{a}$ All the crystallographically-characterized $\left[\mathrm{Fe}-\left(\eta^{2}-\mathrm{HCS}_{2}\right)\right]$ and $\left[\mathrm{M}-\left(\eta^{3}-\mathrm{HCS}_{2}\right)\right]$ complexes available on CCDC are included. $\quad{ }^{b} \mathrm{~L}_{1}=2,6-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{C}(=\mathrm{NH})-\mathrm{C}_{6} \mathrm{H}_{3}-4-\mathrm{Cl}, \quad \mathrm{L}_{2} \quad=\quad \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}(=\mathrm{NH})-\mathrm{C}_{6} \mathrm{H}_{3}-4-\mathrm{OMe}$, depe $\quad=$ bis(diethylphosphino)ethane, dppm = bis(diphenylphosphino)methane. ${ }^{c}$ The average $\mathrm{Fe}-\mathrm{C}$ bond distance of $\left[\mathrm{Fe}-\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{HCS}_{2}\right)\right]$ complex lies in the range of 2.689-2.830 \AA, whereas that of $\left[\mathrm{M}-\left(\eta^{3}-\mathrm{HCS}_{2}\right)\right]$ complex lies in the range of 2.0152.223 A.

Table S5. Coordinates of Geometry-Optimized DNIC 1 with B3LYP/TZVP level.

Fe	0.70958300	0.03066400	-0.00096600
O	2.36893400	0.14952400	2.25839400
O	2.37703900	0.01160500	-2.25725700
N	1.57600300	0.10098000	1.37952300
N	1.58053900	0.01810700	-1.38032200
N	-0.96017400	1.40033600	-0.03022500
N	-0.84546600	-1.46669000	0.02985300
C	-2.15917400	0.58793800	-0.34319300
C	-2.09748500	-0.75286000	0.37049700
C	-1.10208700	2.06260600	1.28493400
C	-0.75910000	2.43888700	-1.06235400
C	-0.54878000	-2.49783400	1.04621200
C	-0.95422000	-2.12341200	-1.29084900
H	-3.08160000	1.11939600	-0.07154600
H	-2.18288200	0.43541000	-1.42239300
H	-2.98103700	-1.35598100	0.11949400
H	-2.10782500	-0.60100500	1.44994900
H	-1.94821100	2.76407300	1.28003200
H	-0.18599400	2.60350000	1.51049800
H	-1.25409800	1.32498800	2.06928300
H	-1.61462100	3.12730500	-1.10523200
H	-0.62113400	1.96723200	-2.03280800
H	0.14120700	3.00265200	-0.82775900
H	-1.34562400	-3.25346700	1.08989200
H	-0.43786300	-2.02887300	2.02134900
H	0.39114300	-2.98420400	0.79455700
H	-1.74044200	-2.89133900	-1.28234100
H	-0.00056900	-2.58465100	-1.53642300
H	-1.17862700	-1.39243000	-2.06383500

Table S6. Coordinates of Geometry-Optimized DNIC 1 with BP86/TZVP level.

Fe	0.69836300	-0.04137400	0.00121700
O	2.40127300	-0.05888000	2.26175000
O	2.39567400	-0.15302900	-2.26087600
N	1.58138700	-0.05260800	1.38796400
N	1.57773000	-0.10615400	-1.38648500
N	-0.82528600	1.46762100	-0.02187500
N	-0.97855300	-1.37960600	0.02178400
C	-2.09920200	0.78343700	-0.37685900
C	-2.18393800	-0.56103100	0.33381500
C	-0.93049100	2.11236300	1.31168600
C	-0.50963200	2.51296400	-1.02634000
C	-0.79534700	-2.43262000	1.05113500
C	-1.12320700	-2.03598500	-1.30303600
H	-2.97935100	1.40950900	-0.12692200
H	-2.10198300	0.63592900	-1.46693600
H	-3.11634100	-1.09039100	0.05282300
H	-2.20958100	-0.41232300	1.42351900
H	-1.70814700	2.90261200	1.30767500
H	0.04097300	2.55080300	1.56816000
H	-1.17494700	1.36731400	2.07806300
H	-1.30240700	3.28730000	-1.06149600
H	-0.40075100	2.04828200	-2.01373500
H	0.44569700	2.98151700	-0.76116600
H	-1.66705300	-3.11679000	1.08428600
H	-0.65413500	-1.96175700	2.03164400
H	0.10851500	-3.00624900	0.81310100
H	-1.98287900	-2.73624300	-1.30394300
H	-0.20094700	-2.58451700	-1.52802600
H	-1.26571800	-1.28354800	-2.08782500

Table S7. Coordinates of Geometry-Optimized DNIC 2 with B3LYP/TZVP level.

Fe	-0.00002000	0.31134600	0.00003900
N	1.36887300	-0.56476400	0.00002400
N	-1.36876100	-0.56498500	-0.00002600
O	2.21743000	-1.39931700	-0.00004100
O	-2.21723700	-1.39962200	-0.00003000
B	-0.00026800	2.49458400	-0.00000100
H	-0.00018200	1.71432100	1.02431700
H	0.00062000	1.71398100	-1.02424700
H	1.01433900	3.15210200	0.00001300
H	-1.01525300	3.15142500	-0.00051700

Table S8. Coordinates of Geometry-Optimized DNIC 2 with BP86/TZVP level.

Fe	-0.00000100	0.31487300	0.00000200
N	1.38693600	-0.56135900	0.00009300
N	-1.38692600	-0.56137600	-0.00014500
O	-2.25372300	-1.39649400	-0.00020100
O	2.25373300	-1.39647700	0.00012200
B	-0.00001400	2.47379100	0.00010500
H	0.00008000	1.68732600	-1.04227600
H	-0.00010700	1.68721900	1.04241000
H	-1.02315200	3.13635100	0.00004700
H	1.02311900	3.13635600	0.00023800

Table S9. Coordinates of Geometry-Optimized DNIC 3 with B3LYP/TZVP level.

Fe	0.32418800	-0.02655800	-0.00009000
N	1.19872700	-1.42251700	0.00032600
N	1.27365200	1.29152100	-0.00043100
O	2.20618600	-2.05139600	0.00039600
O	1.96095100	2.25102000	-0.00053400
C	-1.68734400	-0.60994400	0.00034400
S	-1.46976900	0.16638700	-1.52739000
S	-1.46935200	0.16742800	1.52747600
H	-1.92262700	-1.67089300	0.00073900

Table S10. Coordinates of Geometry-Optimized DNIC 3 with BP86/TZVP level.

Fe	0.29863200	-0.03759200	-0.00005000
N	1.19662000	-1.44881700	0.00013700
N	1.25426100	1.29766300	-0.00041500
O	2.26760400	-1.99917900	0.00041800
O	1.88973400	2.30870500	-0.00050800
C	-1.68540100	-0.62664700	0.00033100
S	-1.44163700	0.15605100	-1.53992200
S	-1.44121900	0.15717100	1.53999500
H	-1.94121300	-1.69241100	0.00080700

Reference

1. R. Wedmann, A. Zahl, T. E. Shubina, M. Durr, F. W. Heinemann, B. E. Bugenhagen, P. Burger, I. Ivanovic-Burmazovic and M. R. Filipovic, Inorg. Chem., 2015, 54, 9367-9380.
2. R. E. Stevens and W. L. Gladfelter, Inorg. Chem., 1983, 22, 2034-2042.
3. M.-C. Hung, M.-C. Tsai, G.-H. Lee and W.-F. Liaw, Inorg. Chem., 2006, 45, 6041-6047.
4. S. J. Schauer, D. P. Eyman, R. J. Bernhardt, M. A. Wolff and L. M. Mallis, Inorg. Chem., 1991, 30, 570-572.
5. G. M. Sheldrick and SADABS, University of Gottingen: Gottingen, Germany, 1996.
6. G. M. Sheldrick and SHELXTL, Siemens Analytical X-ray InstrumentsInc.: Madison, WI,, 1994.
7. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, J. R. C. M. A. Robb, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox and R. D. Gaussian 09, Gaussian, Inc., Wallingford CT,, 2009.
8. Mariusz Mitoraj and A. Michalak, J. Mol. Model, 2007, 13, 347-355.
9. M. P. Mitoraj, M. Parafiniuk, M. Srebro, M. Handzlik, A. Buczek and A. Michalak, J. Mol. Model, 2011, 17, 2337-2352.
10. A. Michalak, M. Mitoraj and T. Ziegler, J. Phys. Chem. A, 2008, 112, 19331939.
11. M. P. Mitoraj, A. Michalak and T. Ziegler, J. Chem. Theory Comput., 2009, 5, 962-975.
12. T. Ziegler and A. Rauk, Theor. Chim. acta, 1977, 46, 1-10.
13. S.-W. Yeh, C.-W. Lin, B.-H. Liu, C.-C. Tsou, M.-L. Tsai and W.-F. Liaw, Chem. Eur. J., 2015, 21, 16035-16046.
14. T. Z. E.J. Baerends, A.J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, C. Daul, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A. Goez, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, Z. Hu, C.R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J.W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J.S.

Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev, ADF2018, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
15. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605-1612.
16. L. J. Li, N. Reginato, M. Urschey, M. Stradiotto and J. D. Liarakos, Can J Chem, 2003, 81, 468-475.
17. C.-H. Hsieh and M. Y. Darensbourg, J. Am. Chem. Soc., 2010, 132, 1411814125.
18. J. L. Hess, C.-H. Hsieh, J. H. Reibenspies and M. Y. Darensbourg, Inorg. Chem., 2011, 50, 8541-8552.
19. C.-H. Hsieh, R. Pulukkody and M. Y. Darensbourg, Chem. Comm., 2013, 49, 9326-9328.
20. R. Pulukkody, S. J. Kyran, R. D. Bethel, C.-H. Hsieh, M. B. Hall, D. J. Darensbourg and M. Y. Darensbourg, J. Am. Chem. Soc., 2013, 135, 84238430.
21. F.-T. Tsai, P.-L. Chen and W.-F. Liaw, J. Am. Chem. Soc., 2010, 132, 52905299.
22. F.-C. Lo, Y.-C. Ho, P.-Y. Chang, G.-H. Lee, T.-S. Kuo, J.-L. Chen and C.-H. Chen, Eur. J. Inorg. Chem., 2014, 3499-3509.
23. S.-W. Yeh, C.-W. Lin, Y.-W. Li, I.-J. Hsu, C.-H. Chen, L.-Y. Jang, J.-F. Lee and W.-F. Liaw, Inorg. Chem., 2012, 51, 4076-4087.
24. M.-C. Hung, M.-C. Tsai, G.-H. Lee and W.-F. Liaw, Inorg. Chem., 2006, 45, 6041-6047.
25. L. Wang, H. Sun, Z. Zuo, X. Li, W. Xu, R. Langer, O. Fuhr and D. Fenske, Eur. J. Inorg. Chem., 2016, 5205-5214.
26. C. Bianchini, P. Innocenti, A. Meli, A. Orlandini and G. Scapacci, J. Organomet. Chem., 1982, 233, 233-246.
27. Y. Gao, D. G. Holah, A. N. Hughes, G. J. Spivak, M. D. Havighurst, V. R. Magnuson and V. Polyakov, Polyhedron, 1997, 1997, 2797-2807.
28. B. Alvarez, S. García-Granda, Y. Jeannin, D. Miguel, J. A. Miguel and V. Riera, Organometallics, 1991, 10, 3005-3007.
29. C. E. Rao, S. K. Barik, K. Yuvaraj, K. Bakthavachalam, T. Roisnel, V. Dorcet, J.-F. Halet and S. Ghosh, Eur. J. Inorg. Chem., 2016, 4913-4920.

