Supporting Information

Acceptorless Dehydrogenative Construction of C=N and C=C bond through Catalytic Aza-Wittig and Wittig Reaction in the Presence of Air-stable Ruthenium Pincer Complex

Nandita Biswas, Kalicharan Das, Bitan Sardar and Dipankar Srimani*

Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India. E-mail: dsrimani@iitg.ernet.in

List of contents

1	Characterization data of Ligands and the corresponding Ru-pincer complexes (1-3)	
2	¹ H and ¹³ C NMR spectra of Aza-Wittig and Wittig reaction products	14

1. Characterization data of Ligands and the corresponding Ru-pincer complexes (1-3):

Figure 1. Molecular structure of 1 with thermal ellipsoids at 50% probability.

Crystallographic data for complex 1:

Formula	C ₃₉ H ₃₉ Cl ₂ N ₂ P Ru S ₂
Mol. wt.	802.78
Crystal system	Triclinic
Space group	P -1

Temperature /K	296(2)		
Wavelength /Å	0.71073		
a /Å	9.7186(6)		
b /Å	11.8743(7)		
c /Å	18.0974(11)		
α/°	71.496(4)		
β/°	79.588(4)		
$\gamma/^{\circ}$	79.316(4)		
$V/Å^3$	1929.4(2)		
Ζ	2		
Density/Mgm ⁻³	1.382		
Abs. Coeff. /mm ⁻¹	0.724		
Abs. correction	MULTI-SCAN		
F(000)	824		
Total no. of reflections	18723		
Reflections, $I > 2\sigma(I)$	4342		
Max. 20/°	25.00		
Ranges (h, k, l)	$-11 \le h \le 11$		
	$-14 \le k \le 13$		
	$-21 \le 1 \le 20$		
Complete to 2θ (%)	98.9		
Refinement method	Full-matrix least-squares on F ²		
Goof (F ²)	1.033		
R indices $[I > 2\sigma(I)]$	0.0633		
R indices (all data)	0.0900		

 Table 1. Selected bond lengths and angles:

	Bond Distances [Å]		Bond angles [°]
Rul N1	12.561(5)	P1 Ru1 N1	170.02(12)
Ru1 P1	2.2587(16)	S1 Ru1 N1	89.53(12)
Ru1 S1	2.3394(16)	S2 Ru1 N1	90.43(12)
Ru1 S2	2.3210 (16)	Cl1 Ru1 N1	76.51(12)
Ru1 Cl1	2.3989(16)	Cl2 Ru1 N1	93.22(12)
Ru1 Cl2	2.4317(16)	Cl1 Ru1 Cl2	169.47(6)
		P1 Ru1 S1	92.60(6)
		S2 Ru1 S1	167.27(6)
		P1 Ru1 S2	89.63(6)
		P1 Ru1 Cl1	93.59(6)
		S2 Ru1 Cl1	98.06(6)
		S1 Ru1 Cl1	94.32(6)
		P1 Ru1 Cl2	96.72(6)
		S2 Ru1 Cl2	84.13(6)
		S1 Ru1 Cl2	83.16(6)

Figure 2. Molecular structure of 2 with thermal ellipsoids at 30% probability.

Crystallogra	aphic	data	for	complex 2:	
Journogi	·pm·		101	compres -	

Empirical formula	C68 H72 Cl4 N4 O P2 Ru2 S2 C68
Formula weight	1431.30
Temperature, T	293 K
Crystal system	Triclinic

Space group	P-1		
Unit cell dimensions	$a = 10.1370(4) \text{ Å}$ $\alpha = 73.196(2)^{\circ}$		
	b=11.4066(4) Å β =80.920(2)°		
	c= 16.0632(6) Å γ = 67.294(2)°		
Volume, V (Å ³)	1638.01(11)		
Ζ	1		
Density (calculated), Mg⋅m ⁻³	1.451		
Absorption coefficient, μ (mm ⁻¹)	0.782		
F(000)	734.0		
Crystal size, mm ³	0.32 imes 0.28 imes 0.19		
Theta range for data collection	0.997 to 24.75		
Index ranges	$-11 \le h \le 11, -12 \le k \le 13, -18 \le l \le 18$		
Reflections collected	4204		
Independent reflections	5581		
Completeness to theta	0.997		
Absorption correction	none		
Max. and min. transmission	0.862 to 0.779		
Refinement method	'SHELXL-97(Sheldrick, 1997)'		
Data / restraints / parameters	5581 / 6/388		
Goodness-of-fit on F ²	0.909		
Final R indices [I>2sigma(I)]	R1 = 0.0473(3792), wR=0.1146(5581)		
R indices (all data)	R1 = 0.0730, wR=0.0975		
Extinction coefficient	0.782		
Largest diff. peak and hole	1.089 and -0.549 e·Å ⁻³		

Selected bond length and bond angle:

Bond lengths [Å]	Bond angles [°]
Ru1 N1 2.078(4)	N1 Ru1 N2 78.49(16)
Ru1 N2 2.124(4)	N1 Ru1 P1 98.45(13)
Ru1 P1 2.2967(14)	N2 Ru1 P1 176.93(12
Ru1 S1 2.3214(15)	N1 Ru1 S1 162.58(13)
Ru1 Cl2 2.3935(15)	N2 Ru1 S1 84.42(12)
Ru1 Cl1 2.4227(15)	P1 Ru1 S1 98.65(5)
	N1 Ru1 Cl2 85.61(12)
	N2 Ru1 Cl2 84.37(12
	P1 Ru1 Cl2 95.20(5)

Figure 3. Molecular structure of 3 with thermal ellipsoids at 30% probability.

Crystallographic data for complex 3:

Empirical formula	C31 H36 Cl2 N P Ru S2		
Formula weight	689.67		
Temperature, T	293 K		
Crystal system	triclinic		
Space group	P -1		
Unit cell dimensions	$a = 10.7565(6) \text{ Å}$ $\alpha = 90.215(5) ^{\circ}$		
	b= 12.0194(7) Å β = 92.041(5) °		
	c= 12.7360(8) Å γ =107.252(5) °		
Volume, V (Å ³)	1571.34(16)		
Ζ	2		
Density (calculated), Mg·m ⁻³	1.458		
Absorption coefficient, μ (mm ⁻¹)	0.874		
F(000)	708.0		
Crystal size, mm ³	0.34 imes 0.30 imes 0.27		
Theta range for data collection	0.998 to 25.00		
Index ranges	$-10 \le h \le 12, -14 \le k \le 14, -15 \le l \le 13$		
Reflections collected	3007		
Independent reflections	5525		
Completeness to theta	0.998		
Absorption correction	multi-scan		
Max. and min. transmission	0.792 to 1.000		
Refinement method	'SHELXL-97(Sheldrick, 1997)'		
Data / restraints / parameters	5525 / 0/345		
Goodness-of-fit on F ²	0.977		
Final R indices [I>2sigma(I)]	R1 = 0.0492(4271), wR=0.1385(5525)		
R indices (all data)	R1 = 0.0705, wR=0.1196		
Extinction coefficient	0.874		
Largest diff. peak and hole	1.098and -0.566 e·Å ⁻³		

Selected bond length and bond angle:

Bond lengths [Å]	Bond angles [°]
Ru1 N1 2.179(4)	N1 Ru1 P1 175.43(10)
Ru1 P1 2.3110(14)	N1 Ru1 S2 84.13(10)
Ru1 S2 2.3506(13)	P1 Ru1 S2 91.32(5)
Ru1 S1 2.3646(13)	N1 Ru1 S1 90.08(10)
Ru1 Cl1 2.4107(13)	P1 Ru1 S1 94.41(5)
Ru1 Cl2 2.4299(13)	S2 Ru1 S1 171.28(5)
	N1 Ru1 Cl1 86.79(11)
	P1 Ru1 Cl1 93.86(5)
	S2 Ru1 Cl1 93.84(5)

2. ¹H and ¹³C NMR spectra of Aza-Wittig and Wittig reaction products:

Reaction mixture of 4-methylbenzyl alcohol and phenyl azide using dioxane as internal standard

Reaction mixture of 4-methylbenzyl alcohol and 4-methylbenzyl azide using Acetonitrile as internal standard

Reaction mixture of 4-phenoxybenzyl alcohol and phenyl azide using dioxane as internal standard

Reaction mixture of 1-Octanol and benzyl azide using dioxane as internal standard

Reaction mixture of 1-hexanol and hexyl azide using dioxane as internal standard

