Cu-Co-M arrays on Ni foam as monolithic structured catalysts for

water splitting: effects of co-doped S-P

Xiaoqiang Du ${ }^{\mathrm{a}^{*}}$, Qizhao Shao ${ }^{\text {a }}$ and Xiaoshuang Zhang ${ }^{b^{*}}$

Fig. S1 CV C_{S} of $\mathrm{Cu}-\mathrm{Co}-\mathrm{O}, \mathrm{Cu}-\mathrm{Co}-\mathrm{S}, \mathrm{Cu}-\mathrm{Co}-\mathrm{P}, \mathrm{Cu}-\mathrm{Co}-\mathrm{Se}, \mathrm{Cu}-\mathrm{Co}-\mathrm{S}-\mathrm{P}$ and $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}-\mathrm{S}$ with different scan rates $\left(10-50 \mathrm{mV} \mathrm{s}^{-1}\right)$ in the region of $1.02-1.12 \mathrm{~V} v s$ RHE.

Fig. S2Electrocatalytic efficiency of O_{2} production over $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}-\mathrm{S}$ at a potential of ca. 1.50 V , measured for 60 min .

Fig. S3 CV C_{S} of $\mathrm{Cu}-\mathrm{Co}-\mathrm{O}, \mathrm{Cu}-\mathrm{Co}-\mathrm{S}, \mathrm{Cu}-\mathrm{Co}-\mathrm{P}, \mathrm{Cu}-\mathrm{Co}-\mathrm{Se}, \mathrm{Cu}-\mathrm{Co}-\mathrm{S}-\mathrm{P}$ and $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}-\mathrm{S}$ with different scan rates $\left(10-50 \mathrm{mV} \mathrm{s}^{-1}\right)$ in the region of $-0.06-0 \mathrm{~V} v s$ RHE.

Fig. S4 Electrocatalytic efficiency of H_{2} production over $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}-\mathrm{S}$ at a potential of ca. -0.2 V , measured for 60 min .

Fig. S5 The polarization curves for the Cu -Co-P-S before and after 1000 cycles of the accelerated stability test.

Fig. S6 SEM of the $\mathrm{Cu}-\mathrm{Co}-\mathrm{S}$.

Fig. S7 SEM of the Cu-Co-P.

Fig. S8 SEM of the $\mathrm{Cu}-\mathrm{Co}-\mathrm{Se}$.

Fig. S9SEM of the $\mathrm{Cu}-\mathrm{Co}-\mathrm{O}$.

Fig. S10SEM of the Cu-Co-S-P.

Fig. S11SEM of the $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}-\mathrm{S}$.

Fig. S12 LSV of Cu-Co-P-S in 80 mM sodium borate buffer solution at a potential sweep rate of $100 \mathrm{mV} \mathrm{s}^{-1}$ (1.30-1.80 V vs RHE).

Fig. S13 Polarization curve of the RuO_{2} and Pt for water splitting with a scan rate of $5 \mathrm{mV} \mathrm{s}^{-1}$ in 1 M KOH.

Fig. S14 A photograph showing generation of O_{2} bubbles on the $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}-\mathrm{S}$ electrodes.

Fig. S15Tafel plots of RuO_{2} derived from the OER voltammograms.

Fig. S16Tafel plots of Pt / C derived from the HER voltammograms.

Fig. S17 TEM of fresh catalyst (a)and recovered catalyst(b).
-1 4 - Adsorption

Fig. S18 Nitrogen adsorption isotherms of the porous $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}$.

Fig. S19 Nitrogen adsorption isotherms of the porous $\mathrm{Cu}-\mathrm{Co}-\mathrm{S}-\mathrm{P}$.

Fig. S20 Nitrogen adsorption isotherms of the porous $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}-\mathrm{S}$.

Fig. S21 Processed digital photos of the hydrophilic property test for pure NF (a) and Cu-Co-P-S (b).

Fig. S22 XPS survey of $\mathrm{Cu}-\mathrm{Co}-\mathrm{O}, \mathrm{Cu}-\mathrm{Co}-\mathrm{S}, \mathrm{Cu}-\mathrm{Co}-\mathrm{P}, \mathrm{Cu}-\mathrm{Co}-\mathrm{Se}, \mathrm{Cu}-\mathrm{Co}-\mathrm{S}-\mathrm{P}$ and $\mathrm{Cu}-\mathrm{Co}-\mathrm{P}-\mathrm{S}$.

