Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Copper(II)) self-assembled clusters of bis((pyridin-2-yl)-1,2,4-triazol-3-yl)alkanes. Unusual rearrangement of ligand upon reaction condition.

Parameter/Complex	1	2	3	4*
Molecular formula	[Cu ₂ (H ₂ L1)Cl ₂]Cl ₂ ·6.5 MeOH	[Cu ₄ L1 ₄]·6H ₂ O·2.8 MeOH	$[Cu(H_2L2)(ClO_4)_2]$	$[Cu_3(OH)Na_2(L')_6]\cdot(ClO_4)$ $11H_2O$
Formula	C36.5H50Cl4Cu2N16O6.5	C _{62.8} H _{57.6} Cu ₄ N ₃₂ O _{8.8}	$C_{16}H_{14}Cl_2CuN_4O_8$	C ₇₂ H ₇₀ ClCu ₃ N ₃₀ Na ₂ O ₁₆
Crystal system	Monoclinic	Tetragonal	Monoclinic	Triclinic
Space group	C2/c	$I\overline{4}$	C2/c	$P\overline{1}$
<i>a</i> , Å	19.725(3)	13.1705(9)	13.0990(11)	15.506(3)
b, Å	18.998(3)	13.1705(9)	11.6970(7)	16.160(3)
<i>c</i> , Å	12.833(2)	19.6437(14)	14.5274(12)	20.311(4)
α°	90	90	90.0	86.840(3)
β°	95.971(5)	90	112.745(10)	89.884(3)
γ ^o	90	90	90.0	61.689(3)
V, Å ³	4783.0(14)	3407.4(5)	2052.8(3)	4472.5(16)
Z	4	2	4	2
$\mu_{\rm Mo}$. mm ⁻¹	1.175	1.314	1.392	0.824
Parameters	328	254	159	1124
No. unique	5761	4536	1819	14633
No. $I > 2\sigma(I)$	4107	3931	1595	4410
GOF	1.017	1.058	1.084	0.713
$R(I > 2\sigma(I))$	0.0531	0.0371	0.0250	0.0658
wR_2	0.1544	0.0939	0.0695	0.1459

Table S1. Crystal data and structure refinements for 1-4.

* the formula does not include masked solvent

Scheme S1. Proposed mechanism for the rearrangement of the ligand H_2L2 to afford the 3,5-bis-(pyridin-2-yl)-1,2,4-triazole

Figure.S1. Copper-copper distances in tetranuclear core of complex 2.

Figure S2. TG curve of 4.

Figure S3. Structure of trinuclear Cu₃OH core in complex 4.

Figure S4. XRPD curve of **4**.

Figure S5. *Top*: Temperature dependence of the effective magnetic moment (calculated from magnetization at B = 0.5 T) of 4 with the low-temperature region expanded in the inset and the isothermal magnetization data measured at T = 2, 3 and 5 K. Circles are experimental points, blue lines are calculated using the best-fit parameters: J = -213 cm⁻¹ and g = 2.02, red lines = calculated using the best-fit parameters: $J_{12} = -218$ cm⁻¹, $J_{13} = J_{23} = -231$ cm⁻¹, g = 2.05

and $|d_z| = 16.7 \text{ cm}^{-1}$. Bottom: the calculated energy levels in magnetic field using $J = -213 \text{ cm}^{-1}$ and g = 2.02 (blue color) and $J_{12} = -218 \text{ cm}^{-1}$, $J_{13} = J_{23} = -231 \text{ cm}^{-1}$, g = 2.05 and $|d_z| = 16.7 \text{ cm}^{-1}$ (red color).

Figure S6. Experimental and simulated X-Band EPR spectra of a polycrystalline sample of complex 1 at 50 K

Figure S7. Experimental X-Band EPR spectra of a polycrystalline sample of complex 4 at 294 K