Electronic Supplementary Information (ESI) for

Hexavacant γ -Dawson-type phosphotungstates supporting an edge-sharing bis(square-pyramidal) {O₂M(μ_3 -O)₂(μ -OAc)MO₂} core (M = Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, or Zn²⁺)⁺

Kosuke Suzuki,* ^{a,b} Takuo Minato,^a Naoto Tominaga,^a Ichiro Okumo,^a Kentaro Yonesato,^a Noritaka Mizuno^a and Kazuya Yamaguchi* ^a

^aDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

E-mail: ksuzuki@appchem.t.u-tokyo.ac.jp, kyama@appchem.t.u-tokyo.ac.jp

^bPrecursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

		~ -		~ -	-	
	Mn2	Co2	Ni2	Cu2	Zn2	
M1	2.08	1.96	1.95	2.09	2.05	
P1	4.81	4.91	4.78	4.82	4.83	
W1	5.98	6.73	6.12	5.93	6.21	
W2	6.44	7.08	5.69	6.35	6.26	
W3	6.18	5.71	7.66	6.63	6.61	
W4	6.23	5.84	6.34	6.42	6.25	
W5	5.97	6.63	5.75	6.31	6.44	
W6	6.45	6.01	6.87	6.20	6.62	
01	1.85	2.06	1.95	2.02	1.89	
O2	1.98	1.81	1.94	1.97	2.03	
O3	1.97	1.95	1.94	2.00	1.95	
O4	1.67	2.09	1.86	1.72	1.75	
O5	1.84	1.87	1.65	1.48	1.88	
O6	1.61	1.50	1.79	2.10	1.60	
O7	1.81	1.48	1.56	1.70	1.69	
08	2.10	2.18	2.20	2.13	2.17	
09	2.00	2.00	2.01	2.00	2.03	
O10	1.99	2.04	2.08	2.05	2.01	
O11	2.04	2.13	2.05	2.12	2.09	
O12	1.89	1.90	1.91	1.91	1.91	
O13	1.86	1.82	1.77	1.92	1.79	
O14	1.74	1.90	1.86	1.80	1.88	
O15	1.94	1.97	1.96	2.02	2.00	
O16	2.16	2.19	1.98	2.23	2.09	
O17	2.02	2.04	2.52	2.10	2.08	
O18	1.99	2.07	2.01	1.97	1.93	
O19	2.19	2.23	2.22	2.19	2.23	
O20	2.10	2.10	2.12	2.08	2.11	
O21	1.60	1.97	1.46	1.80	1.70	
O22	2.00	1.73	2.31	1.80	2.09	

Table S1. BVS values of metal atoms and metal atoms for Mn2, Co2, Ni2, Cu2, and Zn2

Fig. S1 Positive-ion CSI-mass spectra of (a) the reaction solution of I, $Mn(OAc)_2$, and TBAOH in acetonitrile, and (b) the reaction solution of I and $Mn(OAc)_2$ in dichloromethane.

Fig. S2 ORTEP representations of the anion part of (a) Mn2, (b) Co2, (c) Ni2, (d) Cu2, and (e) Zn2 with thermal ellipsoids drawn at the 50% probability level.

Fig. S3 UV-vis spectra of (a) Mn2 $(2.0 \times 10^{-5} \text{ M}, \text{ Inset: } 8.2 \times 10^{-4} \text{ M})$, (b) Co2 $(2.5 \times 10^{-5} \text{ M}, \text{ Inset: } 1.0 \times 10^{-3} \text{ M})$, (c) Ni2 $(3.6 \times 10^{-5} \text{ M}, \text{ Inset: } 1.8 \times 10^{-3} \text{ M})$, (d) Cu2 $(1.9 \times 10^{-5} \text{ M}, \text{ Inset: } 5.4 \times 10^{-3} \text{ M})$, and (e) Zn2 $(4.0 \times 10^{-5} \text{ M}, \text{ Inset: } 2.0 \times 10^{-3} \text{ M})$ in acetonitrile.

Fig. S4 Positive-ion CSI-mass spectra of (a) Co2, (b) Ni2, (c) Cu2, and (d) Zn2 in acetonitrile.

Fig. S5 ³¹P NMR spectrum of **Zn2** in dichloromethane- d_2 .

Fig. S6 Cyclic voltammogram of (a) Mn2, (b) Co2, (c) Ni2, (d) Cu2, and (e) Zn2.

Fig. S7 ¹H NMR spectrum of **Zn2** in dimethyl sulfoxide- d_6 .

Fig. S8 IR spectra of (a) Mn2, (b) Co2, (c) Ni2, (d) Cu2, and (e) Zn2.