Supporting Information

to the manuscript

POCN Ni(II) pincer complexes: synthesis, characterization and evaluation of catalytic hydrosilylation and hydroboration activity

by Kristina A. Gudun,^a Medet Segizbayev,^a Assyl Adamov,^a Philipp N. Plessow,^b Konstantin A. Lyssenko,^{c,d} Mannix P. Balanay,^a and Andrey Y. Khalimon^{*,a,e}

- ^a Department of Chemistry, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
- ^b Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- ^c Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.
- ^d Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russia.
- ^e The Environment & Resource Efficiency Cluster, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan

E-mail: andrey.khalimon@nu.edu.kz

Table of Contents:

Experimental details	2-22
X-ray diffraction analysis	23-26
Computational details	27-98
References	99-100
	Experimental details X-ray diffraction analysis Computational details References

Experimental details

All manipulations were carried out using conventional inert atmosphere glove-box and Schlenk techniques. All protonated and deuterated solvents were dried by distillation from appropriate drying agents. NMR spectra were obtained with a Bruker Avance 300, 400 and 600 MHz and JEOL ECA-500 MHz instruments (¹H: 300, 400, 500 and 600 MHz; ¹³C: 75.5, 125.8 and 151 MHz; ³¹P: 121.5, 202.5 and 243 MHz; ²⁹Si: 99.4 and 119.2 MHz). ¹H and ¹³C chemical shifts were referenced to residual proton and naturally abundant ¹³C resonance of the deuterated solvent, respectively. ³¹P NMR spectra were referenced to 85% H₃PO₄ externally. NMR analysis was done at room temperature unless specified. IR spectra were measured on an Nicolet iS10 FT-IR spectrometer. Elemental analyses were performed in the "Nazarbayev University Core Facilities" laboratories using Perkin Elmer 2400 Series II CHNS/O Elemental Analyzer. The preparation of iminophosphinite pincer ligands and the corresponding POCN bromide complexes of Ni(II), 1-^tBu, 1-Ph, 1-Ar', and 1-Ar was performed according to the literature procedures for analogous compounds.¹ Ni(COD)₂, 3-hydroxybenzaldehyde, LiBHEt₃ (1.0 M solution in THF), BF₃*Et₂O (45% in Et₂O), AgBF₄, NaBPh₄, LiB(C₆F₅)₄*Et₂O, L-Selectride (1.0 M solution in THF), MeLi (1.6 M solution in Et₂O), LiBH₄ (2.0 M solution in THF), PhSiH₃, PhMeSiH₂, Et₃SiH, tetramethylsilane, Si(SiMe₃)₄, HBPin, styrene, 1-octene, allylbenzene, benzaldehyde, acetone, cyclohexanone, acetophenone, benzophenone, EOAc, DMF, N-methylsuccinimide, acetamide, N-phenylpropionamide, trans-2-octene, cyclohexene, 4-octyne, 1-hexyne, nitrobenzene, and diisopropylamine were purchased from Sigma-Aldrich and used without further purification unless specified. Benzaldehyde, acetone, acetophenone, ethyl acetate, DMF were additionally dried over 3Å molecular sieves. N,Ndiisopropylbenzamide was synthesized using literature procedure.² All catalytic reactions were done under nitrogen or argon atmosphere using NMR tubes equipped with Teflon valves. The yields for products and conversions of the substrates were determined by ¹H-NMR against tetrakis(trimethylsilyl)silane as an internal standard. Small amounts of Ph₂SiH₂, produced *via* redistribution of substituents in PhSiH₃, were observed in hydrosilvlation reactions with PhSiH₃.³

Characterization of alcohol precursors to iminophosphinite POCN pincer ligands

1-(HO)-3-(CH=N^tBu)-C₆H₄:⁴

¹H-NMR (500 MHz; CDCl₃; δ , ppm): 1.37 (s, 9H, 3 CH₃ of N^{*t*}Bu); 6.88 (m, 1H, C*H*); 7.21 (t, ³*J*_{H-H} = 7.9 Hz, 1H, C*H*); 7.28 (m, 1H, C*H*); 8.24 (s, 1H, C*H*=N^{*t*}Bu); 8.58 (br s, O*H*). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 29.7 (s, 3 CH₃ of N^{*t*}Bu); 57.3 (s, C_q of N^{*t*}Bu); 114.3 (s); 117.8 (s); 121.4 (s); 129.8 (s); 139.2 (s); 154.8 (s); 156.9 (s). NMR data are consistent with the previously published data.⁴

1-(HO)-3-(CH=NPh)-C₆H₄:⁴

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 4.41 (br s, 1H, O*H*); 6.62 (br d, ³*J*_{H-H} = 7.9 Hz, 1H); 6.99 (t, ³*J*_{H-H} = 7.8 Hz, 1H); 7.04 (t, ³*J*_{H-H} = 7.1 Hz, 1H); 7.17 (m, 4H); 7.26 (d, ³*J*_{H-H} = 7.5 Hz, 1H); 7.3 (s, 1H); 8.07 (s, 1H, C*H*=NPh). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 114.8 (s); 118.8 (s); 121.4 (s); 122.3 (s); 126.2 (s); 128.0 (s); 128.4 (s); 129.4 (s); 130.0 (s); 138.4 (s); 152.6 (s); 156.8 (s); 160.0 (s). NMR data are consistent with the previously published data.⁴

1-(HO)-3-(CH=NAr')-C₆H₄:

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 2.12 (s, 6H, 2 CH₃, N*Ar'*); 4.22 (br s, O*H*); 6.61 (br d, ³*J*_{H-H} = 8.4 Hz, 1H); 6.98 (m, 2H); 7.04 (m, 2H); 7.19 (d, ³*J*_{H-H} = 7.6 Hz, 1H); 7.27 (s, 1H); 7.74 (s, C*H*=NAr'). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 18.5 (s, 2 *CH*₃, N*Ar'*); 114.3 (s); 118.8 (s); 122.0 (s); 124.1 (s); 127.2 (s); 128.0 (s); 128.4 (s); 128.5 (s); 130.1 (s); 138.2 (s); 151.9 (s); 156.8 (s); 162.5 (s).

1-(HO)-3-(CH=NAr)-C₆H₄:

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 1.18 (d, ³*J*_{H-H} = 6.8 Hz, 12H, 4 CH₃, N*Ar*); 3.13 (sept, ³*J*_{H-H} = 6.8 Hz, 2H, 2 CH, N*Ar*); 4.21 (br s, O*H*); 6.61 (br d, ³*J*_{H-H} = 8.2 Hz, 1H); 6.98 (t, ³*J*_{H-H} = 7.8 Hz, 1H); 7.13-7.19 (m, 3H); 7.24 (d, ³*J*_{H-H} = 7.5 Hz, 1H); 7.26 (s, 1H); 7.95 (s, C*H*=NAr). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 23.6 (s, 4 *CH*₃, N*Ar*); 28.5 (s, 2 *CH*, N*Ar*); 114.4 (s); 118.9 (s); 121.9 (s); 122.5 (s); 124.7 (s); 128.0 (s); 128.4 (s); 130.3 (s); 137.8 (s); 138.1 (s); 150.0 (s); 156.9 (s); 162.1 (s).

Characterization of iminophosphinite POCN pincer ligands

$1-({}^{i}Pr_{2}PO)-3-(CH=N{}^{t}Bu)-C_{6}H_{4}$:

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 0.95 (dd, J = 7.3 and 15.6 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.11 (dd, J = 7.1 and 10.7 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.21 (s, 9H, 3 CH₃ of N^{*t*}Bu); 1.75 (m, 2H, 2CH of ^{*i*}Pr₂P); 7.11 (t, ³J_{H-H} = 7.8 Hz, 1H, CH); 7.30 (br d, ³J_{H-H} = 8.1 Hz, 1H, CH); 7.45 (br d, ³J_{H-H} = 7.5 Hz, 1H, CH); 7.99 (br s, 1H, CH); 8.13 (s, CH=NPh). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 17.1 (d, J = 8.6 Hz, 2 CH₃ of ^{*i*}Pr₂P); 17.8 (d, J = 20.5 Hz, 2 CH₃ of ^{*i*}Pr₂P); 28.6 (d, J = 18.7 Hz, 2 CH of ^{*i*}Pr₂P); 29.8 (s, 3 CH₃ of N^{*t*}Bu); 57.3 (s, C_q of N^{*t*}Bu); 118.1 (d, J = 10.2 Hz); 120.5 (d, J = 10.7 Hz); 122.2 (s); 129.7 (s); 139.6 (s, C); 154.3 (s); 160.3 (d, J = 8.6 Hz). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 147.7(s, OP^{*i*}Pr₂).

1-(ⁱPr₂PO)-3-(CH=NPh)-C₆H₄:

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 0.97 (dd, J = 7.2 and 16 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.13 (dd, J = 7.0 and 10.7 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.76 (m, 2H, 2CH of ^{*i*}Pr₂P); 7.03 (m, 1H, CH); 7.09 (t, ³J_{H-H} = 7.8 Hz, 1H, CH); 7.13 (m, 3H, 3CH); 7.17 (m, 1H, CH); 7.29 (br d, ³J_{H-H} = 7.8 Hz, 1H, CH); 7.43 (d, ³J_{H-H} = 7.5 Hz, 1H, CH); 8.06 (br s, 1H, CH); 8.10 (s, CH=NPh). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 17.1 (d, J = 8.5 Hz, 2 CH₃ of ^{*i*}Pr₂P); 17.8 (d, J = 20.6 Hz, 2 CH₃ of ^{*i*}Pr₂P); 28.6 (d, J = 17.6 Hz, 2 CH of ^{*i*}Pr₂P); 118.5 (d, J = 11.6 Hz); 121.4 (s, 2 C); 121.8 (d, J = 11.1 Hz); 122.1 (s); 126.1 (s); 129.3 (s, 2C); 130.0 (s); 138.6 (s); 152.8 (s); 159.8 (s); 160.4 (d, J = 9.3 Hz). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 149.1 (s, OP^{*i*}Pr₂).

1-(ⁱPr₂PO)-3-(CH=NAr')-C₆H₄:

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 0.97 (dd, J = 7.2 and 16 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.12 (dd, J = 6.9 and 10.5 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.76 (m, 2H, 2CH of ^{*i*}Pr₂P); 2.08 (s, 6H, 2 CH₃ of NAr'); 6.95 (m, 1H, CH); 7.01 (m, 2H, 2 CH); 7.09 (t, ³J_{H-H} = 7.8 Hz, 1H, CH); 7.32 (br d, ³J_{H-H} = 8.1 Hz, 1H, CH); 7.4 (br d, ³J_{H-H} = 7.5 Hz, 1H, CH); 7.76 (s, 1H, CH); 8.01 (s, CH=NPh). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 17.1 (d, J = 8.5 Hz, 2 CH₃ of ^{*i*}Pr₂P); 17.8 (d, J = 20.4 Hz, 2 CH₃ of ^{*i*}Pr₂P); 18.5 (s, 2 CH₃ of NAr'); 28.6 (d, J = 18.2 Hz, 2 CH of ^{*i*}Pr₂P); 118.2 (d, J = 18.2 Hz, 2 CH of ^{*i*}P 10.9 Hz); 121.8 (d, J = 11.1 Hz); 122.6 (s); 124.0 (s); 127.2 (s); 128.0 (s); 128.35 (s); 128.42 (s); 130.0 (s); 138.4 (s); 152.0 (s); 160.4 (d, J = 8.9 Hz); 162.3 (s). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 149.0 (s, OPⁱPr₂).

1-(ⁱPr₂PO)-3-(CH=NAr)-C₆H₄:

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 0.95 (dd, J = 7.3 and 15.8 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.10 (dd, J = 6.9 and 10.6 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.15 (d, ³J_{H-H} = 6.9 Hz, 12H, 4 CH₃ of NAr); 1.74 (m, 2H, 2CH of ^{*i*}Pr₂P); 3.12 (sept, ³J_{H-H} = 6.9 Hz, 2H, 2 CH of NAr); 7.09 (t, ³J_{H-H} = 7.8 Hz, 1H, CH); 7.11-7.18 (m, 3H, CH); 7.33 (m, 1H, CH); 7.41 (m, 1H, CH); 7.99 (s, 1H, CH); 8.07 (br s, 1H, CH=NAr). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 17.1 (d, J = 8.5 Hz, 2 CH₃ of ^{*i*}Pr₂P); 17.8 (d, J= 20.2 Hz, 2 CH₃ of ^{*i*}Pr₂P); 23.6 (s, 4 CH₃ of NAr); 28.5 (s, 2 CH of NAr); 28.6 (d, J = 18.1 Hz, 2 CH of ^{*i*}Pr₂P); 118.1 (d, J = 10.8 Hz); 121.8 (d, J = 11.7 Hz); 122.8 (s); 123.4 (s, 2C); 124.6 (s); 128.4 (s); 130.2 (s); 137.7 (s); 138.3 (s); 150.1 (s); 160.6 (d, J = 8.8 Hz); 161.9 (s). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 149.1 (s, OP^{*i*}Pr₂).

Characterization of POCN nickel bromide precursors

(^{i-Pr}POCN^{t-Bu})NiBr (1-^tBu): 53% yield

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 1.17 (dd, J = 7.0 and 15.0 Hz, 6H, 2 CH₃ of ^{*i*}*Pr*₂P); 1.43 (s, 9H, 3 CH₃ of N^{*t*}*Bu*); 1.49 (dd, J = 7.3 and 17.5 Hz, 6H, 2 CH₃ of ^{*i*}*Pr*₂P); 2.35 (m, 2H, 2CH of ^{*i*}*Pr*₂P); 6.62 (m, 2H, *m*-C*H*); 6.81 (t, ³*J*_{H-H} = 7.7 Hz, 1H, *p*-C*H*); 7.55 (br s, 1H, C*H*=NAr). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 16.6 (s, 2 CH₃ of ^{*i*}*Pr*₂P); 18.3 (s, 2 CH₃ of ^{*i*}*Pr*₂P); 28.6 (d, J = 25.4 Hz, 2 CH of ^{*i*}*Pr*₂P); 29.4 (s, 3 CH₃ of N^{*t*}*Bu*); 61.7 (s, C_q of N^{*t*}*Bu*); 112.2 (d, J = 12.3 Hz, *C*H); 120.7 (s, *C*H); 126.2 (s, *C*H); 148.5 (s, *C_q*); 150.7 (d, J = 37.4 Hz, *C_q*); 165.3 (d, J = 11.2 Hz, *C_q*); 165.9 (s, *C*H=N^{*t*}Bu). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 193.2 (s, O*P*^{*i*}Pr₂). C,H,N analysis (%): calcd for C₁₇H₂₇BrNNiOP (430.98): C 47.38, H 6.31, N 3.25; found: C 47.72, H 6.40, N 3.17.

(^{i-Pr}POCN^{Ph})NiBr (1-Ph):⁴

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 1.15 (m, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.44 (m, 2 CH₃ of ^{*i*}Pr₂P); 2.25 (m, 2H, 2CH of ^{*i*}Pr₂P); 6.66 (m, 2H, *m*-CH, central ring); 6.79 (m, 1H, *p*-CH, central ring); 7.00-7.23 (m, 5H, NPh); 7.34 (br s, 1H, CH=NPh). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 16.8 (s, 2 CH₃ of ^{*i*}Pr₂P); 18.2 (br s, 2 CH₃ of ^{*i*}Pr₂P); 29.0 (d, *J* = 24.1 Hz, 2 CH of ^{*i*}Pr₂P); 113.6 (d, *J* = 12.2 Hz, CH); 122.1 (s, CH); 124.6 (s, 2 CH); 126.7 (s, CH); 127.3 (s, CH); other aromatic ¹³C resonances of CH resonances are obscured by the signal of C₆D₆; 148.3 (s, *C_q*); 148.9 (s, *C_q*); 154.4 (d, *J* = 35.2 Hz, *C_q*); 165.8 (d, *J* = 9.8 Hz, *C_q*); 172.2 (s, CH=NPh). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 201.3 (s, OP^{*i*}Pr₂). NMR data are consistent with the previously published data.⁴

(^{i-Pr}POCN^{Ar'})NiBr (1-Ar'): 80% yield

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 1.14 (dd, J = 6.9 and 15.0 Hz, 6H, 2 CH₃ of ${}^{i}Pr_{2}P$); 1.40 (dd, J = 7.2 and 17.8 Hz, 6H, 2 CH₃ of ${}^{i}Pr_{2}P$); 2.18 (m, 2H, 2CH of ${}^{i}Pr_{2}P$); 2.33 (s, 6H, 2 CH₃ of N*Ar'*); 6.62 (d, ${}^{3}J_{\text{H-H}} = 7.4$ Hz, 1H, aromatic *CH*); 6.68 (d, ${}^{3}J_{\text{H-H}} = 8.0$ Hz, 1H, aromatic *CH*); 6.78 (t, ${}^{3}J_{\text{H-H}} = 7.6$ Hz, 1H, aromatic *CH*); 6.98 (m, 4H, 3 aromatic CH and *CH*=NAr). ${}^{13}C\{{}^{1}\text{H}\}$ -NMR (125.8 MHz; C₆D₆; δ , ppm): 16.8 (s, 2 CH₃ of ${}^{i}Pr_{2}P$); 18.1 (d, J = 4.0 Hz, 2 CH₃ of ${}^{i}Pr_{2}P$); 19.3 (s, 2 CH₃ of N*Ar'*); 28.9 (d, J = 23.6 Hz, 2 CH of ${}^{i}Pr_{2}P$); 113.7 (d, J = 12.5 Hz, *C*H); 121.7 (s, *C*H); 126.4 (s, *C*H); 126.6 (s, *C*H); 130.6 (s, *C*H); 148.0 (d, J = 8.0 Hz, C_q); 155.2 (d, J = 34.4 Hz, C_q); 165.9 (br s, C_q); 174.3 (s, *C*H=N^tBu); other aromatic ${}^{13}C$ resonances are obscured by the signal of C₆D₆. ${}^{31}P\{{}^{1}\text{H}\}$ -NMR (202.5 MHz; C₆D₆; δ , ppm): 203.0 (s, *OP*ⁱPr₂). C,H,N analysis (%): calcd for C₂₁H₂₇BrNNiOP (479.02): C 52.66, H 5.68, N 2.92; found: C 52.96 H 6.79, N 2.85.

(^{i-Pr}POCN^{Ar})NiBr (1-Ar): 69% yield

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 1.15 (m, 12H, 2 CH₃ of ^{*i*}Pr₂P and 2 CH₃ of NAr); 1.40 (dd, J = 7.2 and 17.9 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.57 (d, J = 6.8 Hz, 6H, 2 CH₃ of NAr); 2.19 (m, 2H, 2CH of ^{*i*}Pr₂P); 3.60 (sept, J = 6.8 Hz, 2H, 2 CH of NAr); 6.65 (m, 2H, aromatic CH); 6.76 (t, ³J_{H-H} = 7.7 Hz, 1H, aromatic CH); 7.14

(m, 3H, aromatic C*H*); 7.48 (d, J = 4.0 Hz, 1H, C*H*=NAr). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 16.8 (s, 2 CH₃ of ^{*i*}Pr₂P); 18.1 (d, J = 4.1 Hz, 2 CH₃ of ^{*i*}Pr₂P); 23.4 (s, 2 CH₃ of N*Ar*); 24.4 (s, 2 CH₃ of N*Ar*); 28.8 (d, J = 23.6 Hz, 2 CH of ^{*i*}Pr₂P); 29.3 (s, 2 CH, N*Ar*); 113.8 (d, J = 12.3 Hz, CH); 121.6 (s, CH); 123.2 (s, 2 CH); 126.7 (s, CH); 127.2 (s, CH); 141.2 (s, 2 C_q); 145.4 (s, C_q); 147.8 (s, C_q); 155.4 (d, J = 33.6 Hz, C_q); 166.0 (d, J = 10.3 Hz, C_q); 173.4 (d, J = 3.4 Hz, CH=N^{*i*}Bu). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 203.1 (s, OP^{*i*}Pr₂). C,H,N analysis (%): calcd for C₂₅H₃₅BrNNiOP (535.13): C 56.11, H 6.59, N 2.62; found: C 56.34 H 6.66, N 2.53.

Preparation of $({}^{i-Pr}POCN^{Ar})Ni(\eta^2-BH_4)$ (2-Ar)

A solution of LiBH₄ in THF (2.0 M, 96.3 µL, 0.1925 mmol) was added via syringe at room temperature to a solution of 1-Ar (98.1 mg, 0.1833 mmol) in 20 mL of toluene. An immediate colour change from orange-red to barberry red was observed, accompanied by the formation of white precipitate. The reaction mixture was left with stirring for 24 h, then all volatiles were pumped off and the product was extracted with hexanes (3 x 20 mL) and dried in vacuum to give the barberry red powder of 2-Ar (75 mg, 93%). Single crystals of 2-Ar suitable for X-ray diffraction analysis were obtained by crystallization from Et₂O solution at -30 °C. ¹H-NMR (500 MHz; C_6D_6 ; δ , ppm): -0.95 (br s, 2H, BH₄); -0.72 (br s, 2H, BH₄); 1.07 (dd, J = 6.9 and 14.8 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.08 (d, J = 6.9 Hz, 6H, 2 CH₃ of NAr); 1.24 (dd, J = 7.2 and 18 Hz, 6H, 2 CH₃ of ${}^{i}Pr_{2}P$); 1.50 (d, J = 6.9 Hz, 6H, 2 CH₃ of NAr); 2.06 (m, 2H, 2 CH of ${}^{i}Pr_{2}P$); 3.56 (sept, J = 6.9 Hz, 2H, 2 CH of NAr); 6.74 (m, 3H, aromatic protons of C_6H_3/NAr); 7.12 (m, 2H, aromatic protons of C_6H_3/NAr ; 7.18 (m, 1H, aromatic proton of C_6H_3/NAr); 7.57 (d, J = 3.5 Hz, 1H, CH=NAr). ${}^{31}P{}^{1}H$ -NMR (202.5 MHz; C₆D₆; δ , ppm): 208.2 (s, OPⁱPr₂). ¹¹B{¹H}-NMR (160.5 MHz; C₆D₆; δ , ppm): -30.8 (br s, BH₄). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 16.6 (d, J = 2.5 Hz, 2 CH₃ of ^{*i*}Pr₂P); 16.9 (d, J = 4.2Hz, 2 CH₃ of ${}^{i}Pr_{2}P$); 23.1 (s, 2 CH₃ of NAr); 25.4 (s, 2 CH₃ of NAr); 28.6 (d, J =22.8 Hz, 2 CH of ${}^{i}Pr_{2}P$); 28.7 (s, 2 CH of NAr); 112.8 (d, J = 13.1 Hz, CH of C_6H_3/NAr ; 121.5 (s, CH of C_6H_3/NAr); 123.4 (s, 2 CH of C_6H_3/NAr); 125.6 (s, CH of C_6H_3/NAr); 127.3 (s, CH of C_6H_3/NAr); 141.5 (s, Cq of C_6H_3/NAr); 145.7

(s, Cq of C_6H_3/NAr); 146.5 (s, Cq of C_6H_3/NAr); 156.7 (s, Cq of C_6H_3/NAr); 157.0 (s, Cq of C_6H_3/NAr); 166.0 (d, J = 10.1 Hz, Cq of C_6H_3); 172.2 (d, J = 3.0 Hz, *CH*=NAr). C,H,N analysis (%): calcd for $C_{25}H_{39}BNNiOP$ (470.07): C 63.88, H 8.36, N 2.98; found: C 64.18, H 8.59, N 3.06. IR (nujol, selected bands): 1902 cm⁻¹ (w, B-H), 1927 cm⁻¹ (w, B-H), 1954 cm⁻¹ (w, B-H), 2039 cm⁻¹ (w, B-H), 2251 cm⁻¹ (w, B-H).

Preparation of (^{*i*-Pr}POCN^{Ar})Ni(BF₄) (3-Ar)

A solution of AgBF₄ (76.6 mg, 0.3934 mmol) in 10 mL of toluene was added at room temperature to a solution of 1-Ar (200.5 mg, 0.3747 mmol) in 15mL of toluene. The colour immediately changed from orange-red to yellow and formation of white precipitate was observed. The reaction mixture was stirred at room temperature for 1 h, filtered and the residue was washed with a mixture of hexanes/toluene (5/1) until the filtrate became colourless. The solvent was removed in vacuum to give yellow powder of **3-Ar** which was additionally dried in vacuum for 5 h (120 mg, 59%). Single crystals of **3-Ar** suitable for X-ray diffraction analysis were obtained by slow room temperature vaporization of Et₂O solution into hexanes. ¹H-NMR (500 MHz; C₆D₆; δ , ppm): 1.05 (dd, J = 7.1 and 14.7 Hz, 6H, 2 CH₃ of ${}^{i}Pr_{2}P$); 1.09 (d, J = 6.9 Hz, 6H, 2 CH₃ of NAr); 1.41 (dd, J =7.2 and 19.4 Hz, 6H, 2 CH₃ of ${}^{i}Pr_{2}P$); 1.59 (d, J = 6.9 Hz, 6H, 2 CH₃ of NAr); 2.26 (m, 2H, 2 CH of ${}^{i}Pr_{2}P$); 3.59 (sept, J = 6.9 Hz, 2H, 2 CH of NAr); 6.37 (d, J = 8.1Hz, 1H, C_6H_3/NAr); 6.43 (d, J = 7.4 Hz, 1H, C_6H_3/NAr); 6.61 (t, J = 7.8 Hz, 1H, C_6H_3/NAr ; 7.10 (m, 2H, C_6H_3/NAr); 7.19 (m, 1H, C_6H_3/NAr); the resonance of CH=NAr is obscured by the residual resonance of C_6D_6 (found by ¹H-¹³C HSOC NMR). ${}^{31}P{}^{1}H{}$ -NMR (202.5 MHz; C₆D₆; δ , ppm): 199.5 (s, OPⁱPr₂). ${}^{11}B{}^{1}H{}$ -NMR (160.5 MHz; C₆D₆; δ , ppm): -1.4 (br s, BF₄). ¹⁹F{¹H}-NMR (470.6 MHz; C_6D_6 ; δ , ppm): -173.8 (br s, BF₄). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 16.5 $(d, J = 3.1 \text{ Hz}, 2 \text{ CH}_3 \text{ of } {}^{i}Pr_2P)$; 17.4 $(d, J = 6 \text{ Hz}, 2 \text{ CH}_3 \text{ of } {}^{i}Pr_2P)$; 23.0 $(s, 2 \text{ CH}_3)$ of NAr); 24.7 (s, 2 CH₃ of NAr); 28.5 (d, J = 21.7 Hz, 2 CH of ^{*i*}Pr₂P); 29.5 (s, 2) CH of N*Ar*); 114.6 (d, J = 11.3 Hz, CH of C_6H_3/NAr); 122.7 (s, CH of C_6H_3/NAr); 123.9 (s, 2 CH of C_6H_3/NAr); 128.6 (s, CH of C_6H_3/NAr); 129.3 (s, Cq of C_6H_3/NAr ; 141.1 (s, 2 Cq of C_6H_3/NAr); 142.8 (s, Cq of C_6H_3/NAr); 147.2 (s, Cq

of C_6H_3/NAr); 167.5 (d, J = 8.4 Hz, Cq of C_6H_3/NAr); 172.9 (d, J = 3.3 Hz, *CH*=NAr); other resonance for aromatic carbons are obscured by the signal of C₆D₆. C,H,N analysis (%): calcd for C₂₅H₃₅BF₄NNiOP (542.03): C 55.40, H 6.51, N 2.58; found: C 55.82, H 6.72, N 2.69.

Preparation of [(^{*i*-Pr}POCN^{Ar})Ni(CH₃CN)][BPh₄] (4-Ar)

First, a solution of 1-Ar (182.7 mg, 0.3414 mmol) in 30 mL of toluene and then CH₃CN (0.5 mL, 9.57 mmol) were added at room temperature to the solid NaBPh₄ (175.3 mg, 0.5121 mmol). The reaction mixture allowed to stir at room temperature for 24 h and during this time changed the colour from orange-red to yellow and formation of white precipitate was observed. The mixture was filtered and the precipitate was washed with toluene until the filtrate became colourless. Toluene was removed in vacuum to give yellow oil, which was dried in high vacuum for 10 h and triturated with hexanes and hexanes/Et₂O (1/1) mixture. All volatiles were pumped off to give yellow foamy material which was dried in vacuum for additional 5 h (230 mg, 83%). ¹H-NMR (400 MHz; C_6D_6 ; δ , ppm): -0.12 (s, 3H, CH_3CN); 0.95 (dd, J = 6.9 and 15.2 Hz, 6H, 2 CH₃ of ${}^{i}Pr_2P$); 0.97 (d, J = 6.8 Hz, 6H, 2 CH₃ of NAr); 1.03 (dd, J = 7.2 and 19.7 Hz, 6H, 2 CH₃ of ⁱPr₂P); 1.13 (d, J = 6.8 Hz, 6H, 2 CH₃ of NAr); 1.81 (m, 2H, 2 CH of ⁱPr₂P); 2.98 (sept, J = 6.8 Hz, 2H, 2 CH of NAr); 6.42 (d, J = 8.1 Hz, 1H, C₆H₃/NAr); 6.47 (d, J = 7.4Hz, 1H, C_6H_3/NAr); 6.62 (t, J = 7.8 Hz, 1H, C_6H_3/NAr); 6.81 (m, 2H, C_6H_3/NAr); 6.91 (m, 1H, C₆ H_3 /NAr); 7.08 (br t, J = 7.2 Hz, 4H, p-H of BP h_4); 7.27 (t, J = 7.4Hz, 8H, *m*-H of BP h_4); 8.05 (br s, 9H, CH=NAr and o-H of BP h_4). ³¹P{¹H}-NMR (202.5 MHz; C_6D_6 ; δ , ppm): 205.5 (s, OP^iPr_2). ¹¹B{¹H}-NMR (160.5 MHz; C_6D_6 ; δ , ppm): -5.8 (s, BPh₄). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): -0.6 (s, *CH*₃CN); 16.8 (br s, 2 CH₃ of ${}^{i}Pr_{2}P$); 17.5 (d, J = 5.1 Hz, 2 CH₃ of ${}^{i}Pr_{2}P$); 22.8 (s, 2 CH₃ of NAr); 23.7 (s, 2 CH₃ of NAr); 28.9 (d, J = 23.5 Hz, 2 CH of ^{*i*}Pr₂P); 29.1 (s, 2 CH of NAr); 115.9 (d, J = 10.7 Hz, CH of C_6H_3/NAr); 122.2 (s, BPh₄); 123.2 (s, CH of C_6H_3/NAr); 123.4 (s, CH₃CN); 123.8 (s, 2 CH of C_6H_3/NAr); 126.5 (s, BPh_4 ; 128.3 (s, CH of C_6H_3/NAr); 129.7 (s, CH of C_6H_3/NAr); 137.0 (s, BPh_4); 140.1 (s, 2 Cq of C_6H_3/NAr); 141.2 (s, Cq of C_6H_3/NAr); 142.9 (s, Cq of C_6H_3/NAr ; 147.5 (s, Cq of C_6H_3/NAr); 166.2 (d, J = 7.9 Hz, Cq of C_6H_3/NAr);

176.0 (br s, *CH*=NAr). C,H,N analysis (%): calcd for C₅₁H₅₈BN₂NiOP (815.52): C 75.11, H 7.17, N 3.44; found: C 74.71, H 7.18, N 4.15.

Preparation of [(^{*i*-Pr}POCN^{Ar})Ni(CH₃CN)][BAF] (5-Ar)

Method A. Generation of 6-Ar on NMR scale. A yellow solution of 3-Ar (11.5 mg, 0.0212 mmol) and CH₃CN (1.3 μ L, 0.0255 mmol) in CH₂Cl₂ (0.6 mL) was added at room temperature to the solid LiB(C₆F₅)₄·Et₂O (16.1 mg, 0.0212 mmol). No colour change and immediate formation of cloudy white precipitate was observed. The reaction mixture was transferred to an NMR tube, left at room temperature for 30 min and then checked with NMR spectroscopy, showing complete conversion of 3-Ar to 5-Ar. All volatiles were pumped off and the product with extracted with toluene (app. 2 mL) to give yellow oily material (22.4 mg, 90%), which dried in vacuum and dissolved in CD₂Cl₂ for NMR analysis (5-Ar is poorly soluble in C₆D₆).

Method B. A solution of CH₃CN (20 µL, 0.383 mmol) in CH₂Cl₂ (20 mL) was added to the mixture of solid 4-Ar (117.5 mg, 0.1441 mmol) and $LiB(C_6F_5)_4$ ·Et₂O (109.6 mg, 0.1441 mmol). Formation of yellow solution and white precipitate was observed. The reaction mixture was left with stirring at room temperature overnight, then filtered and the residue was washed with CH₂Cl₂ (5 mL). The resulting solution was concentrated to app. 3 mL, layered with hexanes (app. 5 mL) and left at -30 °C for 24 h to give yellow oily precipitate. The filtrate was decanted, and the residue was washed with hexanes/toluene (30ml/5ml) and dried in vacuum to give yellow foamy material of **5-Ar** (148.3 mg, 88%). ¹H-NMR (400 MHz; C₆D₆; δ , ppm): 1.24 (d, J = 6.8 Hz, 6H, 2 CH₃ of NAr); 1.37 (m, 18H, 2 CH₃) of NAr and 4 CH₃ of ${}^{i}Pr_{2}P$); 1.68 (s, 3H, CH₃CN); 2.34 (m, 2H, 2 CH of ${}^{i}Pr_{2}P$); 3.33 (sept, J = 6.8 Hz, 2H, 2 CH of NAr); 6.86 (m, 1H, C₆H₃/NAr); 7.2 (m, 2H, C_6H_3/NAr ; 7.27 (m, 2H, C_6H_3/NAr); 7.33 (m, 1H, C_6H_3/NAr); 8.1 (d, J = 4.0, 1H*CH*=NAr). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 203.9 (s, OPⁱPr₂). ¹⁹F{¹H}-NMR (376.5 MHz; C₆D₆; δ , ppm): -133.1 (br s, 8F, o-F of B(C₆F₅)₄); -163.8 (t, ${}^{3}J_{F}$ $_{\rm F} = 20.3$ Hz, 4F, *p*-F of B(C_6F_5)₄); -167.6 (br m, 8F, *m*-F of B(C_6F_5)₄). ¹¹B{¹H}-NMR (128.4 MHz; C₆D₆; δ , ppm): -16.7 (s, $B(C_6F_5)_4$). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 2.18 (s, CH₃CN); 17.0 (br s, 2 CH₃ of ^{*i*}Pr₂P); 17.6 (d, J = 5.4 Hz, 2 CH₃ of ${}^{i}Pr_{2}P$); 23.0 (s, 2 CH₃ of N*Ar*); 24.0 (s, 2 CH₃ of N*Ar*); 29.2 (d, J = 24 Hz, 2 CH of ${}^{i}Pr_{2}P$); 29.4 (s, 2 CH of N*Ar*); 116.5 (d, J = 12.7 Hz, CH of $C_{6}H_{3}/NAr$); 124.1 (s, CH of $C_{6}H_{3}/NAr$); 124.2 (s, 2 CH of $C_{6}H_{3}/NAr$); 126.6 (s, CH₃CN); 128.5 (s, CH of $C_{6}H_{3}/NAr$); 130.0 (s, CH of $C_{6}H_{3}/NAr$); 135.6 (br s, $B(C_{6}F_{5})_{4}$); 137.6 (br s, $B(C_{6}F_{5})_{4}$); 140.9 (s, 2 Cq of $C_{6}H_{3}/NAr$); 143.0 (s, Cq of $C_{6}H_{3}/NAr$); 146.9 (s, Cq of $C_{6}H_{3}/NAr$); 147.8 (s, Cq of $C_{6}H_{3}/NAr$); 149.4 (br s, $B(C_{6}F_{5})_{4}$); 166.3 (d, J = 8.2 Hz, Cq of $C_{6}H_{3}/NAr$); 176.4 (d, J = 3.4 Hz, CH=NAr). C,H,N analysis (%): calcd for $C_{51}H_{38}BF_{20}N_{2}NiOP$ (1175.32): C 52.12, H 3.26, N 2.38; found: C 51.20, H 3.24, N 2.33.

Preparation of (^{*i*-Pr}POCN^{Ar})NiMe (6-Ar)

A solution of MeLi in Et₂O (1.6 M, 0.2025 mmol) was added via syringe to a solution of 1-Ar (103.2 mg, 0.1929 mmol) in 30 mL of toluene at -80 °C. The mixture allowed to warm up to room temperature slowly and then stirred for additional 1.5 h (in total took app. 12 h). During this time the colour of the reaction mixture turned to crimson red. All volatiles were pumped off, the residue was dried in vacuum and the product was extracted with hexanes (3 x 20 mL) to give dark-red solid (69 mg, 76%). Single crystals of **6-Ar** suitable for X-ray diffraction analysis were obtained by slow vaporization of Et₂O solution into hexanes at -28 °C. ¹H-NMR (500 MHz; C₆D₆; δ , ppm): -0.81 (d, J = 3.6 Hz, 3H, Ni*CH*₃); 1.10 (d, J = 6.8 Hz, 6H, 2 CH₃ of NAr); 1.15 (m, 6H, 2 CH₃ of ⁱPr₂P); 1.19 (dd, J = 3.2 and 7.1 Hz, 6H, 2 CH₃ of ${}^{i}Pr_{2}P$); 1.38 (d, J = 6.8 Hz, 6H, 2 CH₃ of NAr); 2.05 (m, 2H, 2 CH of ${}^{i}Pr_{2}P$); 3.49 (sept, J = 6.8 Hz, 2H, 2 CH of NAr); 6.84-6.90 (m, 3H, C_6H_3/NAr ; 7.13-7.16 (m, 3H, C_6H_3/NAr overlapping with the residual resonance of C₆D₆); 7.73 (d, J = 4.2 Hz, 1H, CH=NAr). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 199.2 (s, $OP^{i}Pr_{2}$). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): -8.4 (d, J =22.3 Hz, NiMe); 17.2 (s, 2 CH₃ of ${}^{i}Pr_{2}P$); 18.0 (d, J = 5.2 Hz, 2 CH₃ of ${}^{i}Pr_{2}P$); 23.0 (s, 2 CH₃ of NAr); 24.5 (s, 2 CH₃ of NAr); 28.3 (d, J = 23.6 Hz, 2 CH of ${}^{i}Pr_{2}P$); 28.8 (s, 2 CH of NAr); 112.8 (d, J = 11.8 Hz, aromatic CH); 120.9 (s, aromatic CH); 123.3 (s, aromatic 2 CH); 125.7 (s, aromatic CH); 126.6 (s, aromatic CH); 141.1 (s, aromatic 2 C_q); 146.0 (s, aromatic 2 C_q); 147.3 (s, aromatic 2 C_q); 164.2 (br s, aromatic 2 C_a); 173.4 (br s, aromatic 2 C_a); 176.0 (s, CH=NAr). C,H,N

analysis (%): calcd for co-crystal of 0.81 **6-Ar** and 0.19 (^{*i*-Pr}POCN^{Ar})NiCl: C 65.42, H 7.97, N 2.95; found: C 65.88, H 8.23, N 2.82.

Preparation of (^{*i*-Pr}POC(H)N^{Ar})Ni(COD) (9-Ar)

A solution of 1-(¹Pr₂PO)-3-(CH=NAr)-C₆H₄ (124.2 mg, 0.31 mmol) in 10 mL of PhMe was added at room temperature to a solution of Ni(COD)₂ (85.9 mg, 0.31 mmol) in 10 mL of PhMe. The reaction mixture was clear and had bright red colour. The mixture was stirred 24 h at room temperature and the colour of the mixture became dark-brown. All volatiles were pumped of and the product was crystallized from pentane (app. 20 mL) at -20 °C overnight. After the crystallization was complete, pentane was carefully decanted while still cold to give an orange powder of **9-Ar**, which was dried in vacuum (120.0 mg, 69%). ¹H-NMR (500 MHz; C₆D₆; δ , ppm): 0.74 (dd, J = 7.1 and 17.6 Hz, 3H, CH₃ of ^{*i*}Pr₂P); 0.87 (m, 3H, CH₃ of ${}^{i}Pr_{2}P$); 1.00 (dd, J = 7.2 and 16.8 Hz, 3H, CH₃ of ${}^{i}Pr_{2}P$); 1.06 (dd, J = 6.9 and 12.9 Hz, 3H, CH₃ of ^{*i*}Pr₂P); 1.18 (d, J = 6.9 Hz, 12H, 4 CH₃ of NAr); 1.27 (m, 1H, CH₂ of COD); 1.37-1.63 (m, 4H, CH₂ of COD); 1.80 (m, 1H, CH_2 of COD); 1.89 (m, 2H, 2 CH of ${}^{i}Pr_2P$); 1.97 (m, 2H, CH_2 of COD); 2.47 (m, 1H, =CH of COD); 3.27 (sept, 6.9 Hz, 2H, 2 CH of NAr); 3.75 (m, 1H, =CH of COD); 4.59 (m, 1H, =CH of COD); 4.81 (m, 1H, =CH of COD); 7.13-7.20 (m, 4H, aromatic CH, overlapping with the residual resonance of C_6D_6); 7.54 (d, J = 7.3Hz, aromatic CH); 8.06 (s, aromatic CH); 8.20 (s, CH=NAr); 8.26 (d, J = 7.4 Hz, aromatic CH). ${}^{13}C{}^{1}H{}-NMR$ (125.8 MHz; C₆D₆; δ , ppm): 16.6 (s, CH₃ of ${}^{i}Pr_{2}P$); 17.2 (d, J = 8.4 Hz, CH_3 of ${}^{i}Pr_2P$); 17.7 (s, CH_3 of ${}^{i}Pr_2P$); 18.0 (d, J = 5.6 Hz, CH_3 of ^{*i*}Pr₂P); 23.7 (s, 2 CH₃ of NAr); 23.8 (s, 2 CH₃ of NAr); 28.4 (s, 2 CH of NAr); 28.57 (s, COD); 28.62 (d, J = 23.7 Hz, 2 CH of ${}^{i}Pr_{2}P$); 29.2 (d, J = 4.0 Hz, COD); 30.2 (s, COD); 31.8 (d, J = 3.0 Hz, COD); 32.1 (s, COD); 62.4 (s, COD); 82.1 (d, J= 24.2 Hz, COD); 109.3 (d, J = 11.7 Hz, aromatic $CH_{bridgehead}$); 111.7 (s, COD); 123.3 (s, aromatic 2 CH); 123.5 (s, aromatic CH); 124.2 (s, aromatic CH); 135.3 (s, aromatic C_q); 138.1 (s, aromatic 2 C_q); 144.5 (s, aromatic CH); 150.9 (s, aromatic C_a ; 153.2 (d, J = 16.3 Hz, aromatic C_a); 163.0 (s, CH=NAr); 170.0 (d, J = 14.3 Hz, aromatic C_q). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 197.2 (s,

OP^{*i*}Pr₂). C,H,N analysis (%): calcd for C₃₃H₄₈NNiOP (564.42): C 70.22, H 8.57, N 2.48; found: C 70.58, H 8.69, N 2.36.

NMR scale reaction of (^{i-Pr}POCN^{Ar})NiBr (1-Ar) with L-Selectride

A solution of L-Selectride in THF (20.2 μ L, 0.0202 mmol, 1.0 M solution) was added *via* syringe to a frozen in liq. N₂ solution of **1-Ar** (10.8 mg, 0.0202 mmol) in 0.6 mL of C₆D₆ in an NMR tube. The mixture was allowed to warm up slowly to room temperature, left at room temperature for 10 min and then was monitored by NMR at room temperature, showing after 10 min selective formation of **7-Ar** (16% conversion of **1-Ar** by ³¹P{¹H}-NMR). Monitoring the reaction mixture by NMR during the next 24 h at room temperature revealed decomposition of **7-Ar** to a mixture of unidentified products together with the release of POC(H)N ligand and H₂ and formation of black precipitate of metallic nickel.

7-Ar; selected NMR resonances: ¹H-NMR (500 MHz; C₆D₆; δ , ppm): -9.72 (d, ²J_{H-P} = 54 Hz, 1H, Ni*H*; coupled in the ¹H-³¹P HSQC NMR spectrum to the ³¹P resonance at 205.1 ppm); 1.16 (m, 6H, 2 CH₃ of P^{*i*}Pr₂; found by ¹H-³¹P HSQC NMR); 2.15 (m, 2H, 2 CH of P^{*i*}Pr₂); 3.03 (sept, ²J_{H-H} = 6.8 Hz, 2H, 2 CH of NAr); 7.94 (s, 1H, CH=NAr; coupled in the ¹H-¹³C HSQC NMR spectrum to the ¹³C resonance at 161.1 ppm); other resonances are overlapped with the resonances of **1-Ar**. ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 205.1 (s, OP^{*i*}Pr₂).

Figure S1. ¹H- (**A**) and ³¹P{¹H}-NMR (**B**) spectra from the reaction of **1-Ar** with L-Selectride in C₆D₆ taken after 10 min at room temperature, showing 16% conversion (by ³¹P{¹H}-NMR) of **1-Ar** to **7-Ar**.

NMR scale reaction of (^{i-Pr}POCN^{Ar})NiBr (1-Ar) with LiHBEt₃

A solution of LiHBEt₃ in THF (20.0 μ L, 0.02 mmol, 1.0 M solution) was added slowly *via* syringe to a cold (app. -30 °C) solution of **1-Ar** (10.8 mg, 0.02 mmol) in 0.6 mL of PhMe-d₈ in an NMR tube. The mixture was slowly warmed up to room temperature, left at room temperature for 10 minutes (during this time the colour change first to dark-red and then to green was observed) and then the reaction was monitored by NMR, showing formation of a mixture of **7-Ar** and **8-Ar** (app. 1:4 ratio by ¹H-NMR, respectively; app. 74% overall conversion of **1-Ar** by ³¹P{¹H}-NMR). Further monitoring the reaction by NMR during 24 h at room temperature revealed decomposition of both **7-Ar** and **8-Ar** to a mixture of unidentified products together with the release of POC(H)N ligand and H₂ and formation of black precipitate of metallic nickel. An attempted variable temperature NMR analysis of the reaction mixture (-80 °C to room temperature) gave the result identical to the room temperature experiment.

8-Ar; selected NMR resonances: ¹H-NMR (500 MHz; PhMe-d₈; δ , ppm): -15.00 (dt, J = 22 Hz and 23.8 Hz, 1H, Ni*H*); -8.17 (dt, J = 22 Hz, 101.5 Hz, 1H, Ni*H*); the CH₃ resonances of P^{*i*}Pr₂ and N*Ar* of **8-Ar** (in the region of 0.93-1.51 ppm are overlapping with the corresponding resonances for **1-Ar**, **7-Ar** and the residual CH₃ resonance of PhMe-d₈; 2.10 (m, 4 CH of P^{*i*}Pr₂, overlapping with the CH resonances of **7-Ar** and with the residual resonance of PhMe-d₈); 3.10 (m, 4 CH of N*Ar*; overlapping with the CH resonances of **7-Ar** and with the residual resonances of **1-Ar**, **7-Ar** and with the residual resonances of **1-Ar**, **7-Ar** and with the resonances of **7-Ar**); 7.64 and 7.71 (both s, 1H, C*H*=NAr); other resonances are overlapped with the resonances of **1-Ar**, **7-Ar** and with the residual resonances of PhMe-d₈. ³¹P{¹H}-NMR (202.5 MHz; PhMe-d₈; δ , ppm): 197.6 (br s, 1P, OP^{*i*}Pr₂); 208.5 (br s, 1P, OP^{*i*}Pr₂).

213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 18 f1 (ppm)

Figure S2. ¹H- (**A**), expanded hydride region (**B**) and ³¹P{¹H}-NMR (**C**) spectra from the reaction of **1-Ar** with LiBHEt₃ in PhMe-d₈ taken after 10 min at room temperature, showing 74% conversion (by ³¹P{¹H}-NMR) of **1-Ar** to a mixture of **7-Ar** and **8-Ar** (app. 1:4 ratio by ¹H-NMR, respectively).

Figure S3. Variable temperature NMR analysis (-80 °C to room temperature) of the reaction of **1-Ar** with LiBHEt₃ in PhMe-d₈, showing formation of a mixture of **7-Ar** and **8-Ar**: ¹H-NMR spectra (**A**) and ³¹P{¹H}-NMR spectra (**B**).

NMR scale reaction of (^{*i*-Pr}POCN^{Ar})NiMe (6-Ar) with PhSiH₃

PhSiH₃ (5.0 µL, 0.0405 mmol, 2.7 equiv to Ni) was added in one portion at room temperature to a solution of **6-Ar** (7.1 mg; 0.015 mmol) in 0.6 mL of C₆D₆ in an NMR tube. The reaction was monitored by NMR spectroscopy overnight at room temperature, showing no consumption of both **6-Ar** and PhSiH₃. The mixture was heated at 65 °C for 12 h, showing by ${}^{31}P{}^{1}H{}$ -NMR 72% conversion of **6-Ar**, complete consumption of PhSiH₃ and formation of PhMeSiH₂ in a mixture with the silane redistribution products, Ph₂SiH₂ and SiH₄ (PhMeSiH₂:Ph₂SiH₂ = 1:2.4 by ¹H-NMR),³ and unidentified Ni decomposition species.

NMR scale reaction of (^{*i*-Pr}POCN^{Ar})NiMe (6-Ar) with HBPin

HBPin (3.2 µL, 0.022 mmol) was added at room temperature to a solution of **6-Ar** (12.2 mg, 0.022 mmol) in 0.6 mL of C₆D₆ in an NMR tube. The mixture was left at room temperature for 10 min and then the reaction was monitored by ¹H and ³¹P{¹H}-NMR at room temperature, showing after 24 h decomposition of **6-Ar** (42% consumption of **6-Ar** by ³¹P{¹H}-NMR relative to **1-Ar**, which is known to be unreactive towards HBPin and was used as an internal standard) and formation of small amounts of **8-Ar** (7% by ³¹P{¹H}-NMR). Further monitoring of the reaction by NMR showed only decomposition, along with H₂ release, to metallic Ni and unidentified products. The reaction at low temperature showed an identical result.

NMR scale reaction of (^{*i*-Pr}POCN^{Ar})Ni(BF₄) (3-Ar) with PhC(O)H

PhC(O)H (5.3 µL, 0.0523 mmol) was added at room temperature to a solution of **3-Ar** (28.4 mg, 0.0523 mmol) in 0.6 mL of C₆D₆ in an NMR tube. The mixture was left at room temperature for 10 min and then checked with NMR, which chowed complete conversion of **3-Ar** to a weak adduct $[(^{i-Pr}POCN^{Ar})Ni(\eta^{1}-O=CHPh)][BF_4]$. In an attempt to isolate the product, all volatiles were pumped off in vacuum and this resulted in the formation of a difficult to separate mixture of **3-Ar** and $[(^{i-Pr}POCN^{Ar})Ni(\eta^{1}-O=CHPh)][BF_4]$. ¹H-NMR (500 MHz; C₆D₆; δ , ppm): 1.04 (d, J = 6.8 Hz, 6H, 2 CH₃ of NAr); 1.14 (dd, J = 7.0 and 14.9 Hz, 6H, 2 CH₃ of ^{*i*}Pr₂P); 1.41 (m, 12H, 2 CH₃ of NAr and 2 CH₃ of ^{*i*}Pr₂P); 2.45 (m, 2H, 2 CH of

^{*i*}*Pr*₂P); 3.49 (sept, J = 6.8 Hz, 2H, 2 CH of N*Ar*); 6.43 (m, 1H); 6.69 (m, 2H); 6.97 (m, 3H); 7.05 (m, 3H); 7.34 (br s, 1H, *CH*=NAr); 7.56 (br d, ³*J*_{H-H} = 7.5 Hz, 1H, *o*-H of η^1 -O=CH*Ph*); 9.72 (br s, 1H, η^1 -O=C*H*Ph). ³¹P{¹H}-NMR (202.5 MHz; C₆D₆; δ , ppm): 200.3 (br s, O*P*^{*i*}Pr₂). ¹³C{¹H}-NMR (125.8 MHz; C₆D₆; δ , ppm): 16.6 (br s, 2 *C*H₃ of ^{*i*}*Pr*₂P); 17.6 (br s, 2 *C*H₃ of ^{*i*}*Pr*₂P); 22.8 (br s, 2 *C*H₃ of N*Ar*); 24.5 (br s, 2 *C*H₃ of N*Ar*); 28.5 (br d, *J* = 22.1 Hz, 2 *C*H of ^{*i*}*Pr*₂P); 29.4 (br s, 2 *C*H of N*Ar*); 114.9 (br d, *J* = 11.7 Hz); 123.2 (br s); 124.0 (s); 124.6 (s); 129.0 (s); 130.3 (s); 134.7 (s); 136.6 (s); 141.1 (s); 147.2 (s); 167.3 (d, *J* = 8.3 Hz); 174.1 (br s, *C*H=NAr); 194.7 (br s, η^1 -O=*C*HPh). ¹⁹F{¹H}-NMR (470.6 MHz; C₆D₆; δ , ppm): -1.2 (br s, *B*F₄).

NMR scale reaction of (^{*i*-Pr}POCN^{Ar})Ni(BF₄) (3-Ar) with PhSiH₃

PhSiH₃ (1.7 μ L, 0.018 mmol) was added *via* syringe to a frozen in liq. N₂ solution of **3-Ar** (7.0 mg, 0.013 mmol) in 0.6 mL of PhMe-d₈ in an NMR tube. The tube was placed into the pre-cooled to -80 °C NMR machine and the reaction was monitored by ¹H, ³¹P{¹H}, ¹⁹F{¹H} and ¹¹B{¹H} NMR upon gradual increasing the temperature up to 25 °C. NMR analysis showed to reaction between **3-Ar** and PhSiH₃ below 0 °C, but above this temperature formation of BF₃ and PhSiH₂F,⁵ followed by conversion of the latter compound to PhSiHF₂⁵ was observed (see Figure S4). Also, formation of a complex mixture of unidentified Ni decomposition species along with large amount of H₂ was observed by NMR.

Figure S4. A fragment of ¹H-NMR spectrum of the reaction of **3-Ar** with PhSiH₃ in PhMe-d₈ at 0 °C, showing formation of PhSiH₂F, PhSiHF₂ and H₂.

General procedure for catalytic hydrosilylation and hydroboration reactions

A substrate of interest or a mixture of substrates, as in competitive hydroboration of benzaldehyde (Table 4), each 0.162 mmol, was mixed with an appropriate amount of either PhSiH₃ (see Tables 1 and 2) or HBPin (see Tables 3 and 4) in 0.6 mL of C_6D_6 (unless another solvent is specified, see Tables 1-4) at room temperature. The mixture was transferred to an NMR tube equipped with a Teflon valve, left at room temperature for 15 min and checked with ¹H-NMR, confirming no reaction in the absence of the catalyst. This solution was then added to the solid pre-catalyst, the mixture was transferred back to the NMR tube and the reaction was monitored with ${}^{1}H$ - and ${}^{31}P{}^{1}H$ -NMR either at room temperature or at elevated temperatures (see Tables 1-4). Conversion of substrates and the yields of the hydrosilylation and hydroboration products were determined by ¹H-NMR spectroscopy using Si(SiMe₃)₄ as an internal standard. All hydrosilylation and hydroboration products were characterized without isolation. NMR signals for new hydrosilylation and hydroboration products are given below. Concerning hydrosilylation of styrene and 1-octene with the bromide pre-catalysts, the activity of 1-Ar'/LiBHEt₃ system was found to be very similar to 1-Ph/LiBHEt₃, whereas under analogous reaction conditions (20 h at 60 °C) **1-^tBu**/LiBHEt₃ showed low activity in hydrosilylation of styrene (18% conversion to PhCH(Me)SiH₂Ph) and 1-octene (only trace amounts of $(^{n}Oct)SiH_{2}Ph$ and no octane isomerization products were detected).

NMR data for hydrosilylation and hydroboration products

The hydrosilylation products PhCH(SiH₂Ph)CH₃,⁶ Ph(CH₂)₂SiH₂Ph,⁶ (*n*-Hex)SiH₂Ph, (*n*-Oct)SiH₂Ph,⁷ Ph(CH₂)₃SiH₂Ph,⁸ PhH₂Si(OBn),⁹ PhHSi(OBn)₂,^{9,10,11} PhH₂Si(OCy),^{10,12,13} PhHSi(OCy)₂,^{10,12,13} PhMeHSi(OBn), ¹⁴ Et₃Si(OBn) ¹⁵ and hydroboration products BnOBPin, ¹⁶ ^{*i*}PrOBPin,^{16a} CyOBPin, ¹⁷ PhMeC(H)OBPin,^{16c,d, 18} Ph₂C(H)OBPin,^{18, 19} EtOBPin,²⁰ EtN(Bpin)₂²¹ have been previously described, and NMR spectra for these compounds have been listed for a variety of solvents including C₆D₆.

A compound was not obtained in pure form and was observed in a mixture with EtOAC during the catalytic hydroboration of EtOAc with HBPin mediated by **6-Ar**. Characteristic NMR signals: ¹H-NMR (500

MHz; C₆D₆; δ, ppm): 1.15 (br s, 12 H, 4 CH₃ of B*Pin*); 1.29 (m, 3H, OCH₂CH₃);

1.53 (br d, ${}^{3}J_{\text{H-H}} = 5.2$ Hz, 3H, *CH*₃CH(O)-); 3.49 (m, 1H, O*CH*₂CH₃); 3.88 (m, 1H, O*CH*₂CH₃); 5.52 (q, ${}^{3}J_{\text{H-H}} = 5.2$ Hz, 3H, CH₃C*H*(O)-). ${}^{1}\text{H-}{}^{13}\text{C}$ HSQC NMR (f1: 500 MHz; f2: 128.5 MHz; C₆D₆; δ , ppm): 17.3 (OCH₂CH₃); 23.0 (OCH*CH*₃); 24.4 (CH₃ of B*Pin*); 62.6 (O*CH*₂CH₃); 96.2 (O*CH*CH₃).

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 1.05 (br s, 12 H, 4 CH₃ of BPin); 1.57 (m, 2H, CH₂); 1.84 (m, 1H, CH₂); 2.24 (m, 1H, CH₂); 2.69 (s, 3H, NCH₃); 5.21 (m, 1H, CH). ¹H-¹³C HSQC NMR (f1: 500 MHz; f2: 128.5 MHz; C₆D₆; δ , ppm): 24.5 (CH₃ of BPin); 26.6 (NCH₃); 27.5 (CH₂); 27.8 (CH₂); 86.2 (CH). ¹¹B{¹H}-NMR (160.5 MHz; C₆D₆; δ , ppm): 21.2 (br s, BPin).

¹H-NMR (500 MHz; C₆D₆; δ , ppm): 0.79 (t, ³J_{H-H} = 7.5 Hz, 3H, CH₃CH₂CH₂N); 1.08 (br s, 12H, BPin); 1.49 (m, 2H, CH₃CH₂CH₂N); 3.51 (t, ³J_{H-H} = 7.2 Hz, 2H, CH₃CH₂CH₂N); 6.85 (t, ³J_{H-H} = 7.2 Hz, 1H, p-H of NPh); 7.16 (t, ³J_{H-H} = 7.9 Hz, 2H, m-H of

NPh); 7.37 (d, ${}^{3}J_{\text{H-H}} = 8.0$ Hz, 1H, o-H of NPh). ${}^{13}C\{{}^{1}\text{H}\}$ - NMR (128.5 MHz; C₆D₆; δ , ppm): 11.3 (s, CH₃ of NPr); 22.6 (s, CH₂ of NPr); 25.0 (s, 4 CH₃ of BPin); 48.7 (s, CH₂ of NPr); 83.2 (s, 2 C_q of BPin); 121.78 (s, CH of NPh); 121.83 (s, CH of NPh); 128.9 (s, CH of NPh); 146.4 (s, C_q of NPh). ${}^{11}\text{B}\{{}^{1}\text{H}\}$ -NMR (160.5 MHz; C₆D₆; δ , ppm): 23.7 (br s, BPin).

MeC(O)NH(BPin): was obtained in a mixture with MeC(O)NH₂ and EtN(BPin)₂ (see Table 3, entry 13 and Figure S5). ¹H-NMR (500 MHz; C₆D₆; δ , ppm): 0.96 (br s, 12H, B*Pin*); 2.10 (br s, 3H, *CH*₃); 6.36 (br s, 1H, N*H*).

EtC(O)N(BPin)Ph: was obtained in a mixture with EtC(O)NHPh and ^{*n*}PrN(BPin)Ph (see Table 3, entry 15 and Figure S6). ¹H-NMR (500 MHz; C₆D₆; δ , ppm): 0.94 (br s, 12H, B*Pin*); 1.23 (t, ³J_{H-H} = 7.2 Hz, 3H, *CH*₃); 2.78 (q, ³J_{H-H} = 7.2 Hz, 3H, *CH*₃); 6.99 (t, ³J_{H-H} = 7.0 Hz, 1H, *p*-H of N*Ph*); 7.13 (m, 4H, *m*-H and *o*-H of N*Ph*).

Figure S5. ¹H-NMR spectrum for hydroboration of acetamide with HBPin at 60 °C in the presence of 5 mol% of **6-Ar**, taken after 5 h and showing formation of a mixture of MeC(O)NH(BPin) and EtN(BPin)₂.

Figure S6. ¹H-NMR spectrum for hydroboration of *N*-phenylpropanamide with HBPin at room temperature in the presence of 5 mol% of **6-Ar**, taken after 5 days at room temperature and showing formation of a mixture of EtC(O)NHPh (19%), EtC(O)N(BPin)Ph (40%) and ^{*n*}PrN(BPin)Ph (41%).

X-Ray diffraction analysis

The single crystals of **1-Ar** and **2-Ar** suitable for X-Ray diffraction analysis were obtained by crystallization from there solutions in hexanes at -30 °C, whereas the single crystals of **3-Ar** and **6-Ar** were obtained by slow ambient pressure vaporization of their Et₂O solutions into hexanes at room temperature and at -28 °C, respectively. The later crystallization technique consists of a two vials system: the small vial with Et₂O solution of a complex was placed in a larger vial with hexanes, the system was closed with a screw cap and left either at room temperature or at -28 °C, showing slow transfer of the lower boiling point Et₂O from the inner vial solution into higher boiling point hexanes in the outer vial.

X-ray diffraction data for 1-Ar, 2-Ar, 3-Ar and 6-Ar were collected on a SMART APEX II area-detector diffractometer (graphite monochromator, ω -scan technique), using Mo_{Ka}radiation (0.71073 Å). The intensity data were integrated by the SAINT program²² and were corrected for absorption and decay using SADABS.²³ All structures were solved by direct methods using SHELXS.²⁴ and were refined on F² using SHELXL-2014/2017.²⁵ All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters taken as $U_{iso}(H)=1.5U_{eq}(C)$ for methyl groups and $U_{iso}(H)=1.2U_{eq}(C)$ for rest ones. The hydrogen atoms of BH4 group were located from the Fourier density synthesis and refined in the isotropic approximation. In the crystal of **3-Ar** the fluorine atoms of CF₃ group are disordered by three positions with the occupancies equal to 0.31054, 0.37834 and 0.31088. In crystal of 6-Ar in both independent molecules the superposition of Cl and Me-group was observed with slightly different ratio of occupancies (0.23, 0.77 and 0.15, 0.85). The positional and anisotropic displacement parameters of the fluorine atoms in 3-Ar and Cl and Me groups in two independent molecules in 6-Ar were refined with the constraints DFIX and EADP. Crystal data, data collection and structure refinement details are summarized in Table S1. The general view of **1-Ar**, **2-Ar**, **3-Ar** and **6-Ar** are shown on the Figures S7-S10.

	1-Ar	2-Ar	3-Ar	6-Ar
Empirical formula	C ₂₅ H ₃₅ BrNNiOP	C ₂₅ H ₃₉ BNNiOP	C ₂₅ H ₃₅ BF ₄ NNiOP	C _{25·81} H _{37·43} Cl _{0·19} NNiOP
Formula weight	535.13	470.06	542.03	474.18
Temperature (K)	120	120	120	120
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	$P2_1/c$	P2 ₁ /c	$P2_1/n$	Pca2 ₁
Z(Z')	4(1)	4(1)	4(1)	8(2)
Unit cell dimensions				
a, Å	15.4795(10)	15.5364(18)	12.0222(5)	28.3028(16)
b, Å	10.0302(6)	10.1575(12)	13.5884(5)	12.4428(7)
c, Å	16.4542(11)	16.462(2)	16.3723(6)	14.4107(8)
α, °	90	90	90	90
β, °	93.9154(17)	94.059(3)	90.8780(10)	90
γ, °	90	90	90	90
V, Å ³	2548.8(3)	2591.4(6)	2674.31(18)	5075.0(5)
$d_{calc}, g \cdot cm^{-3}$	1.395	1.205	1.346	1.241
μ, cm ⁻¹	24.08	8.26	8.31	8.64
F(000)	1112	1008	1136	2028
2θ _{max} , °	58	58	58	58
Completeness	1.0	0.99	1.00	1.00
Refl. collected	22748	24001	31862	59956
Refl. unique (R _{int})	6780 (0.0687)	6879 (0.0416)	7117 (0.0423)	13472 (0.0422)
Refl. with $I > 2\sigma(I)$	4746	5622	5660	11538
Variables	279	295	325	570
Final R_1 with $I \ge 2\sigma(I)$	0.0417	0.0332	0.0459	0.0337
wR ₂ (all data)	0.0970	0.0843	0.1204	0.0836
GOF	0.949	1.006	1.022	1.037
Largest difference in peak / hole (e/Å ³)	0.527/-0.464	0.539/-0.286	1.243/-1.183	0.370/-0.302
CCDC number	1883579	1883581	1883582	1883580

Table S1. X-ray crystallographic data and refinement details for complexes 1-Ar, 2-Ar,3-Ar and 6-Ar.

Figure S7. Molecular structure of **1-Ar** (hydrogen atoms are omitted for clarity). Thermal ellipsoids are drawn to 50% probability level

Figure S8. Molecular structure of **2-Ar** (hydrogen atoms except for BH_4 unit are omitted for clarity). Thermal ellipsoids are drawn to 50% probability level.

Figure S9. Molecular structure of **3-Ar** (hydrogen atoms are omitted for clarity). Thermal ellipsoids are drawn to 50% probability level.

Figure S10. The general view of one of the independent molecules of co-crystal of 0.81 **6-Ar** and 0.19 ($^{i-Pr}POCN^{Ar}$)NiCl illustrating the superposition of Cl(1) and Me-groups. Atoms are shown by thermal ellipsoids (50% probability level). Hydrogen atoms are omitted for clarity.

Computational Details

Gibbs free energies at 60 °C and a reference pressure of 1 bar were obtained within the rigid-rotator and harmonic oscillator approximations at the PBE0-D3/def2-TZVPP//PBE-D3/dhf-SV(P) level of theory with TURBOMOLE, using the RI-approximation.^{26,27}

Figure S11 shows the free energy diagram for the direct addition of PhSiH₃. Figure S12 shows the transition states for Markovnikov and *anti*-Markovnikov olefin insertion. Figure S13 shows the transition state energies for various conformers. Figure S14 shows the reaction pathways also including dissociation of the N-arm, while Figure S15 shows the corresponding free energy diagram.

Figure S11. Computed mechanism for direct addition of $PhSiH_3$ to the alkylnickel species

Figure S12. Computed structures of the transition state for styrene insertion, towards intermediates C (top) and E (bottom), showing more favorable interaction of the alkyl ligand in the intermediate C with P-arm of the POCN ligand (Ph-group is unhindered)

Figure S13. Analysis of the conformers of insertion of styrene into the Ni-H bond of **7-Ar** (transition states free energies are shown at the bottom). In principle, there are $3^{4}=81$ conformers; 9 conformers for different orientations of ^{*i*}Pr groups on phosphine. For Markovnikov insertion product some converged to same conformer The ^{*i*}Pr groups of the Ar substituent have only one stable orientation.

Figure S14. DFT-calculated mechanism for **7-Ar**-catalyzed hydrosilylation of styrene with $PhSiH_3$ at 60 °C (free energies are in kcal·mol⁻¹).

Figure S15. DFT-calculated reaction coordinate for 7-Ar-catalyzed hydrosilylation of styrene with $PhSiH_3$ at 60 °C.

structure	E PBE0-D3/def2-TZVPP	ΔG (vib-rot-trans)
styrene	-194139.15800	58.85037
SiH ₃ Ph	-327951.82790	48.45362
PhCH(SiH ₂ Ph)Me	-522123.56349	122.88955
PhCH ₂ CH ₂ SiH ₂ Ph	-522123.20147	122.14147
7-Ar	-1852926.66005	290.14095
TS1	-2047075.47715	366.97172
TS2	-2047074.68155	369.46933
В	-2047079.91331	368.75709
TS4	-2047071.23596	367.12229
TS5	-2047069.24920	369.02956
D	-2047074.21007	368.68539
С	-2047101.43584	369.90671
Ε	-2047098.56533	367.62659
TS3	-2375035.81125	437.33260
TS6	-2375042.63602	435.94159
TS7	-2047077.23230	371.15671
F	-2047086.46511	370.52334
TS8	-2047079.60252	368.21933
Α	-2047085.31370	366.88568
TS9	-2375037.41291	432.58117
G	-2375065.55817	432.82018
TS10	-2375051.59631	435.43968
Н	-2375058.15611	435.45163
TS11	-2375050.42029	432.74608
Ι	-2375053.76454	432.63375
TS12	-2375050.31317	432.89905
J	-2375057.65120	433.22888
TS13	-2375048.72407	432.64092

Table S2. Total energy and free energy contribution (including zero-point correction) for all structures in kcal/mol.

T 11 01	α · ·	1. 1	•	C 4
1 able 55.	Cartesian	coordinates	in xyz-	format.
			,	

styrene				
16				
Energy =				
С	-2.8989348	-4.4486348	-4.9060087	
Н	-3.8450549	-3.9445270	-4.6304896	
С	-2.5237216	-5.5251278	-4.1795529	
Н	-3.1448924	-5.8837697	-3.3411340	
Н	-1.5956845	-6.0883267	-4.3843712	
С	-2.1948243	-3.8407459	-6.0483850	
С	-2.7598218	-2.7065168	-6.6793532	
С	-0.9680739	-4.3357314	-6.5558835	
С	-2.1307616	-2.0893919	-7.7706535	
Н	-3.7151254	-2.3043089	-6.3001499	
С	-0.3383648	-3.7216012	-7.6448274	
Н	-0.4982237	-5.2171882	-6.0900199	
С	-0.9155282	-2.5946467	-8.2591653	
Н	-2.5937178	-1.2069394	-8.2429105	
Н	0.6161459	-4.1258144	-8.0214460	
Н	-0.4168603	-2.1133257	-9.1166912	
SiF	I ₃ Ph			
15				
Energy =				
Н	0.4869892	1.7826316	11.2028233	
Si	0.7231362	1.4505087	12.6560245	
Н	0.0923196	0.1178738	12.9780426	
Н	2.2142867	1.3240108	12.8669209	
С	-0.0155922	2.7952091	13.7560095	
С	-0.0622185	4.1415896	13.3255485	
С	-0.5099448	2.4894974	15.0452184	
С	-0.5808210	5.1489202	14.1552908	
Н	0.3081421	4.4128346	12.3212492	

```
C
-1.0293764
3.4941279
15.8779611

H
-0.4954987
1.4468372
15.4083777

C
-1.0649401
4.8264418
15.4341010

H
-0.6104580
6.1925921
13.7997638

H
-1.4122324
3.2343849
16.8792032

H
-1.4748578
5.6160750
16.0858788

PhCH(SiH_2Ph)We
V
V
V
```

```
31
```

Energy =

C -4.2652232 -9.5284275 -3.5376605 Н -4.0911326 -8.7744071 -4.3400871 C -3.0804306 -9.4788706 -2.5558482 Н -2.9020290 -8.4384060 -2.2059395 Н -3.2531536 -10.1008060 -1.6489580 Н -2.1462096 -9.8467495 -3.0382118 C -4.5083731 -10.8707891 -4.1987729 C -4.9509817 -10.9348528 -5.5401134 C -4.3468326 -12.0891005 -3.5007989 C -5.2185989 -12.1631260 -6.1619666 Н -5.0846291 -9.9967305 -6.1068229 C -4.6128125 -13.3204330 -4.1208553 Н -4.0065377 -12.0798039 -2.4524558 C -5.0500620 -13.3650963 -5.4542818 Н -5.5573693 -12.1814167 -7.2114904 Н -4.4748842 -14.2559694 -3.5530302 Н -5.2569607 -14.3324367 -5.9411888 Si -5.8972056 -8.9717141 -2.6803185 Н -7.0046104 -8.9531617 -3.7062485 Н -6.2161651 -9.9718981 -1.5932559 C -5.7134793 -7.2522159 -1.9202298 C -5.2262180 -7.0841985 -0.6024392 C -5.9949162 -6.0908379 -2.6774572 C -5.0252873 -5.8040062 -0.0609149 Н -5.0029121 -7.9703602 0.0176770

```
C
-5.7962494
-4.8084740
-2.1403715

H
-6.3835554
-6.1869747
-3.7069135

C
-5.3099326
-4.6632864
-0.8302051

H
-4.6475953
-5.6953907
0.9697170

H
-6.0258503
-3.9160620
-2.7466571

H
-5.1553916
-3.6571008
-0.4057786
```

31

Energy =

C -5.5448923 -11.5209401 -3.8997430 Н -6.5108208 -11.4690640 -4.4522865 C -5.1082237 -10.0951188 -3.4910366 Н -4.1391945 -10.1372057 -2.9406667 H -4.9103366 -9.4815198 -4.4007985 Н -5.7388593 -12.1261622 -2.9847940 C -4.5100196 -12.2211448 -4.7576374 C -4.5239301 -12.0876704 -6.1617058 C -3.4754536 -12.9783088 -4.1695506 C -3.5355977 -12.6911192 -6.9554256 Н -5.3285063 -11.5021069 -6.6403026 C -2.4844217 -13.5840606 -4.9581204 Н -3.4505948 -13.0973987 -3.0720555 C -2.5107293 -13.4416751 -6.3554927 Н -3.5683915 -12.5779206 -8.0521026 Н -1.6872545 -14.1759572 -4.4777323 Н -1.7350290 -13.9189448 -6.9771179 Si -6.3666830 -9.1640820 -2.4070824 Н -7.6735554 -9.0342294 -3.1576226 Н -6.6102858 -9.9598131 -1.1435519 C -5.7386753 -7.4413419 -1.9552912 C -4.8614576 -7.2530434 -0.8614585 C -6.0860687 -6.3107390 -2.7307702 C -4.3470672 -5.9830464 -0.5543353 Н -4.5757702 -8.1135903 -0.2306106
```
C -5.5743670 -5.0382238 -2.4276639
Н -6.7744807 -6.4223004 -3.5870710
C -4.7029353 -4.8726303 -1.3383757
Н -3.6666457 -5.8577839 0.3047453
H -5.8603232 -4.1691539 -3.0438032
H -4.3019868 -3.8738524 -1.0972551
7-Ar
65
Energy =
Ni 1.9458392 -0.1425017 6.2968761
C 1.0351659 -0.1615326 4.6597884
C 1.8270495 -0.0726713 3.4882736
C -0.3628770 -0.2046626 4.5417264
C 1.2255258 -0.0470124 2.2072651
C -0.9843430 -0.1832907 3.2818360
C -0.1751551 -0.1064178 2.1226833
Н 1.8376924 0.0222286 1.2923010
Н -2.0826523 -0.2211941 3.2019877
Н -0.6630083 -0.0892167 1.1341536
N 3.5257963 -0.0048454 5.1092759
C 3.2348340 0.0141367 3.8273284
H 4.0404476 0.1135880 3.0708575
P 0.0268989 -0.2818638 7.0633358
O -1.0781916 -0.2620366 5.7226770
C -0.5991607 1.1661587 8.0526915
C -2.1119011 1.1541041 8.3070800
Н -0.0503282 1.0567710 9.0179914
Н -2.4115915 2.0778758 8.8523260
Н -2.6731256 1.1237554 7.3479057
Н -2.4288289 0.2864175 8.9249762
C -0.4652309 -1.8500584 7.9651322
C -1.8538709 -2.3754128 7.5722391
Н -0.4680773 -1.5490974 9.0398365
Н -2.0932244 -3.2791161 8.1775040
```

Н	-2.6595810	-1.6295097	7.7334831
Н	-1.8772950	-2.6623058	6.4993794
С	-0.1238875	2.4561380	7.3639876
Н	-0.5917086	2.5677613	6.3606912
Н	-0.4017385	3.3447554	7.9745701
Н	0.9805229	2.4508639	7.2281621
С	0.6306609	-2.9082923	7.7522394
Н	0.6915660	-3.2055642	6.6813442
Н	1.6285439	-2.5198667	8.0486138
Н	0.4073904	-3.8213496	8.3498800
С	4.8709160	0.0617994	5.5664517
С	5.7263315	-1.0672179	5.4308607
С	5.2898813	1.2509496	6.2196304
С	7.0414261	-0.9472884	5.9193775
С	6.6129576	1.3165490	6.6915535
С	7.4875189	0.2331708	6.5313850
Н	7.7343982	-1.7978986	5.8290476
Н	6.9664486	2.2298770	7.1959304
Н	8.5243205	0.3020142	6.9003301
С	4.3016600	2.3990090	6.3816792
С	4.5138632	3.2241809	7.6578519
Н	3.2974347	1.9148698	6.4728178
Н	3.6711040	3.9385748	7.7924101
Н	4.5553731	2.5692826	8.5554534
Н	5.4500031	3.8262425	7.6215559
С	5.1845751	-2.3861884	4.8772754
С	6.2688769	-3.3822885	4.4433480
Н	4.5813023	-2.1556538	3.9706212
Н	5.8002281	-4.2627741	3.9512988
Н	6.9846861	-2.9277229	3.7232346
Н	6.8511879	-3.7652491	5.3112976
С	4.2692110	3.2965869	5.1299983
Н	4.0368139	2.7118973	4.2132423
Н	3.4924188	4.0877343	5.2330011

```
      H
      5.2529266
      3.7950940
      4.9750816

      C
      4.2251803
      -3.0274209
      5.9024917

      H
      3.7679767
      -3.9555097
      5.4915342

      H
      4.7693155
      -3.2870619
      6.8380177

      H
      3.4028992
      -2.3274134
      6.1748970

      H
      2.5995089
      -0.0937909
      7.7310180

      TSI
      5.4111
      5.4111
      5.4111

      81
      5.4111
      5.4111
      5.4111
```

Н	0.4076025	-1.6144486	0.6894095
С	0.3185340	-1.9288019	-0.9358313
Ni	-0.0734601	-0.2306944	0.2066498
С	-0.6736212	1.5152505	-0.1332250
С	0.3050004	2.4654482	-0.5236445
С	-1.9880715	1.9441935	0.1253888
С	-0.0829576	3.7982880	-0.8296731
С	-2.3910545	3.2496858	-0.1863630
С	-1.4271635	4.1619633	-0.6886264
Н	0.6668628	4.5388477	-1.1548722
Н	-3.4307102	3.5644356	-0.0030501
Н	-1.7430116	5.1906626	-0.9286801
N	1.7410929	0.6723335	-0.0412954
С	1.6344523	1.9138450	-0.4841915
Н	2.5347721	2.4928025	-0.7734634
Р	-1.8322960	-0.2347601	1.4144723
0	-2.8079245	1.0457999	0.7721067
С	-1.7560835	0.2942457	3.2118791
С	-0.9910758	1.6211514	3.3284761
Н	-0.9258349	1.9257103	4.3979908
Н	0.0439022	1.5220567	2.9322112
Н	-1.4883689	2.4402336	2.7672896
С	-3.1111029	-1.5856287	1.2755410
С	-4.4093152	-1.2835836	2.0354355
Н	-5.1965572	-2.0131817	1.7374339

Н	-4.2757746	-1.3725327	3.1370531
Н	-4.7852732	-0.2641980	1.8043793
С	-1.1074962	-0.8128202	4.0567487
Н	-0.1202315	-1.1089012	3.6353925
Н	-0.9364099	-0.4493236	5.0953433
Н	-1.7391485	-1.7243149	4.1228927
Н	-3.3212684	-1.5278587	0.1824709
С	2.9956258	0.0097226	-0.0298446
С	3.7121257	-0.2456325	-1.2365980
С	3.4852372	-0.4597164	1.2278405
С	4.9243766	-0.9618240	-1.1487685
С	4.6984603	-1.1662758	1.2544358
С	5.4191834	-1.4174523	0.0769770
Н	5.4938992	-1.1678703	-2.0705399
Н	5.0949880	-1.5276772	2.2162783
Η	6.3702819	-1.9737066	0.1179726
С	2.7193382	-0.1366924	2.5043252
С	2.9015514	-1.1682790	3.6253618
Η	2.2115619	-0.9398343	4.4677563
Η	2.6779341	-2.1982555	3.2694002
Η	3.9337664	-1.1644328	4.0432597
С	3.2269419	0.2147700	-2.6113862
С	4.1422684	1.3125244	-3.1891210
Н	3.7525316	1.6758824	-4.1665440
Н	4.2180951	2.1837481	-2.5016328
Н	5.1746323	0.9303637	-3.3557233
С	3.0541184	1.2855737	2.9978474
Н	2.8450205	2.0451046	2.2137315
Н	2.4438261	1.5448883	3.8924279
Н	4.1291003	1.3664641	3.2777598
С	3.0749340	-0.9547388	-3.6029813
Н	2.6580762	-0.5905886	-4.5684895
Н	4.0510080	-1.4419085	-3.8231925
Н	2.3861882	-1.7329907	-3.2087488

С	-0.3493312	-0.9452761	-1.7343290
Н	0.2775951	-0.2505874	-2.3200578
Н	-0.2051502	-2.8799703	-0.7266159
Н	1.4092554	-2.0558018	-1.0723921
С	-1.7517039	-1.0289568	-2.1857812
С	-2.3642921	0.1094852	-2.7707565
С	-2.5335318	-2.2067580	-2.0806634
С	-3.6959114	0.0813405	-3.2001158
Н	-1.7791464	1.0402841	-2.8558200
С	-3.8691260	-2.2354822	-2.5106370
Н	-2.0878213	-3.1242731	-1.6626124
С	-4.4630061	-1.0907293	-3.0678935
Н	-4.1452517	0.9893457	-3.6363246
Н	-4.4495668	-3.1690828	-2.4162742
Н	-5.5127337	-1.1130889	-3.4039479
С	-2.5512629	-2.9838183	1.5709215
Н	-1.5703402	-3.1475910	1.0761754
Н	-2.4138138	-3.1591019	2.6600991
Н	-3.2583268	-3.7577868	1.1957629
Н	-2.8095174	0.4523764	3.5353299
Н	2.2186830	0.6631873	-2.4887258
Н	1.6423100	-0.1377145	2.2170855
тs	2		

Energy =

 H
 -0.8093417
 -1.2666949
 -0.2153718

 C
 0.2525120
 -1.8288482
 -0.3097927

 Ni
 -0.1870388
 0.3285221
 -0.1935984

 C
 -0.2356953
 2.1768209
 -0.0617318

 C
 0.0134632
 2.7235678
 1.2365939

 C
 -0.6202106
 3.0590083
 -1.0955108

 C
 0.0240477
 4.1337612
 1.4265561

 C
 -0.6243874
 4.4440811
 -0.9151371

 C
 -0.2719414
 4.9750658
 0.3539086

Н	0.2452054	4.5504064	2.4233787
Н	-0.9236988	5.0991433	-1.7482135
Н	-0.2692886	6.0683572	0.4943316
N	-0.0231210	0.4620778	1.7756616
С	0.1513176	1.7055931	2.2216046
Н	0.3530982	1.8988646	3.2912935
Р	-1.1023579	0.7937473	-2.0908501
0	-1.0489858	2.4849034	-2.2745744
С	-2.9353168	0.4567465	-2.2435215
С	-3.6870317	1.1704256	-1.1119893
Н	-4.7812545	0.9867528	-1.2068643
Н	-3.3535916	0.7977068	-0.1177182
Н	-3.5165701	2.2678402	-1.1357499
С	-0.3089896	0.3040754	-3.7086633
С	-1.2067721	0.4940326	-4.9400786
Н	-0.6233283	0.2547252	-5.8579157
Н	-2.1003630	-0.1667532	-4.9346104
Н	-1.5490635	1.5489669	-5.0293650
С	-3.1858572	-1.0584300	-2.2442216
Н	-2.8613649	-1.5143406	-1.2812077
Н	-4.2729574	-1.2669628	-2.3608464
Н	-2.6533410	-1.5823939	-3.0692152
С	0.0982987	-0.6417774	2.6612902
С	1.3501782	-0.9818649	3.2552483
С	-1.0672542	-1.4296873	2.9022929
С	1.3971753	-2.1150267	4.0930391
С	-0.9620690	-2.5481094	3.7464695
С	0.2608041	-2.8937296	4.3393651
Η	2.3533633	-2.3940874	4.5657518
Н	-1.8563374	-3.1586511	3.9529343
Н	0.3269552	-3.7747902	4.9989588
С	-2.4105662	-1.0201657	2.3080376
С	-3.2299771	-0.2081765	3.3295522
Н	-4.1815268	0.1504258	2.8752321

Н	-3.4831013	-0.8242824	4.2223827
Н	-2.6611425	0.6811678	3.6788828
С	2.6210070	-0.1598272	3.0389010
С	2.9768837	0.6516542	4.3017227
Н	3.8758087	1.2830508	4.1218734
Н	2.1438676	1.3196981	4.6115964
Н	3.1993256	-0.0228591	5.1592288
Н	-2.1826267	-0.3369739	1.4600694
С	3.8203583	-1.0225102	2.5984797
Н	4.6867613	-0.3720730	2.3445586
Н	4.1515940	-1.7160949	3.4032578
Н	3.5791037	-1.6325943	1.7011531
С	1.4676735	-0.9714908	-0.4276109
Н	1.9850301	-0.7835519	0.5254523
Н	0.0532322	-2.4624497	-1.1989136
Н	0.2194425	-2.4441859	0.6161377
С	2.3886235	-1.0382960	-1.5571133
С	3.5712785	-0.2408413	-1.5296913
С	2.2139424	-1.8683874	-2.7000557
С	4.4930222	-0.2488103	-2.5798735
Η	3.7386026	0.4153894	-0.6577343
С	3.1382982	-1.8739527	-3.7545604
Η	1.3452779	-2.5459888	-2.7592711
С	4.2837412	-1.0607331	-3.7125725
Н	5.3897200	0.3915019	-2.5196449
Н	2.9643540	-2.5356733	-4.6207436
Н	5.0083665	-1.0660092	-4.5430166
Н	-0.0671003	-0.7753163	-3.5817662
Η	2.4208501	0.5662198	2.2216655
С	-3.2158583	-2.1992662	1.7404686
Η	-3.5702497	-2.8946750	2.5343301
Η	-4.1170810	-1.8258691	1.2045474
Н	-2.6095158	-2.7910224	1.0186276
Н	-3.2461138	0.8923102	-3.2195458

```
C 1.0096317 1.0854939 -3.8392982
Н 0.8072732 2.1527228 -4.0717139
Н 1.6126675 1.0375422 -2.9083783
Н 1.6259673 0.6470374 -4.6540079
B
81
Energy =
Н 0.4003029 -1.8216161 0.2733397
C 0.2676806 -2.0340833 -0.9217303
Ni -0.1059370 -0.2101452 0.1546244
C -0.6608751 1.5143094 -0.2182184
C 0.3431771 2.4392281 -0.6055415
C -1.9620479 1.9681319 0.0641867
C -0.0198478 3.7808126 -0.9087807
C -2.3371754 3.2800525 -0.2564820
C -1.3561518 4.1702843 -0.7668229
Н 0.7457674 4.5075236 -1.2283843
Н -3.3692934 3.6170665 -0.0694721
```

H -1.6519215 5.2046422 -1.0083159 N 1.7394303 0.6241581 -0.0883878

- C 1.6598500 1.8608354 -0.5585108
- Н 2.5704643 2.4140105 -0.8635783
- P -1.8298455 -0.1639180 1.4570175
- O -2.7872384 1.1018115 0.7432534
- C -1.7640354 0.4851501 3.2187480 C -0.9376099 1.7794010 3.2562926 H -0.8557690 2.1467669 4.3048894
- H 0.0917492 1.6083841 2.8687254
- H -1.3958539 2.5851658 2.6447259 C -3.1431908 -1.4896320 1.4027358
- C -4.4127763 -1.1463945 2.1912572
- Н -5.2194881 -1.8734968 1.9427351
- Н -4.2472456 -1.1990047 3.2908078
- Н -4.7818575 -0.1298786 1.9368749

С	-1.1755786	-0.5900631	4.1448505
Н	-0.1945830	-0.9542047	3.7622439
Н	-1.0037568	-0.1685065	5.1612864
Н	-1.8462486	-1.4688490	4.2586106
Н	-3.3852086	-1.4602619	0.3147487
С	2.9636672	-0.0883356	-0.1009386
С	3.6630912	-0.3515184	-1.3177177
С	3.4344824	-0.6164709	1.1423807
С	4.8449327	-1.1186897	-1.2515097
С	4.6173843	-1.3731428	1.1466899
С	5.3256939	-1.6220720	-0.0388063
Н	5.4017217	-1.3278166	-2.1803767
Н	4.9997659	-1.7775291	2.0969847
Н	6.2539954	-2.2164947	-0.0147772
С	2.6791776	-0.3082676	2.4292685
С	3.0346454	1.0988510	2.9505972
Н	2.4346549	1.3460123	3.8553681
Н	4.1127203	1.1596503	3.2235606
Н	2.8283648	1.8766625	2.1842032
С	3.1863133	0.1475599	-2.6821993
С	4.1317513	1.2260379	-3.2474937
Η	3.7487179	1.6166229	-4.2170260
Н	4.2378322	2.0835677	-2.5471150
Н	5.1510814	0.8148644	-3.4252040
Н	1.5988056	-0.2841565	2.1481075
С	2.9956991	-0.9994102	-3.6934763
Η	2.5794389	-0.6071433	-4.6481080
Н	3.9562127	-1.5081328	-3.9323977
Н	2.2910995	-1.7680666	-3.3079653
С	-0.4130197	-0.9568940	-1.6879748
Η	0.2341052	-0.3663609	-2.3614667
Η	-0.2851911	-2.9949549	-0.8635221
Η	1.3198263	-2.2127105	-1.2272591
С	-1.8074738	-1.0484021	-2.1517481

С	-4.5148712	-1.0840472	-3.0627033
Н	-4.1000809	0.9142661	-3.8295529
Н	-4.5974171	-3.0827893	-2.2024743
Н	-5.5611309	-1.0956341	-3.4096246
С	-2.5904512	-2.8857617	1.7215799
Н	-1.6458307	-3.0893361	1.1721734
Н	-2.3848170	-3.0197463	2.8060774
Н	-3.3310159	-3.6625293	1.4243281
Н	-2.8118447	0.7124102	3.5174630
Н	2.1919047	0.6227108	-2.5469866
С	2.8514447	-1.3637642	3.5294451
Н	3.8831739	-1.3758826	3.9483059
Н	2.1625759	-1.1460744	4.3756581
Н	2.6209381	-2.3857734	3.1549956
TS	4		
TS 81	4		
TS 81 Ene	4 ergy =		
TS 81 Ene Ni	4 ergy = -0.2253042	0.2904407	-0.2366768
TS 81 End Ni C	4 ergy = -0.2253042 -0.0832504	0.2904407 -1.6366142	-0.2366768 -1.0739806
TS 81 End Ni C H	4 ergy = -0.2253042 -0.0832504 -0.2294586	0.2904407 -1.6366142 -1.1124207	-0.2366768 -1.0739806 0.3959124
TS 81 End Ni C H C	4 ergy = -0.2253042 -0.0832504 -0.2294586 -0.2078601	0.2904407 -1.6366142 -1.1124207 2.0988371	-0.2366768 -1.0739806 0.3959124 -0.7144102
TS 81 End Ni C H C C	4 ergy = -0.2253042 -0.0832504 -0.2294586 -0.2078601 1.0687901	0.2904407 -1.6366142 -1.1124207 2.0988371 2.7243065	-0.2366768 -1.0739806 0.3959124 -0.7144102 -0.7644221
TS 81 End Ni C H C C C	4 ergy = -0.2253042 -0.0832504 -0.2294586 -0.2078601 1.0687901 -1.3604096	0.2904407 -1.6366142 -1.1124207 2.0988371 2.7243065 2.9092513	-0.2366768 -1.0739806 0.3959124 -0.7144102 -0.7644221 -0.7446859
TS 81 End Ni C H C C C C	4 ergy = -0.2253042 -0.0832504 -0.2294586 -0.2078601 1.0687901 -1.3604096 1.1728121	0.2904407 -1.6366142 -1.1124207 2.0988371 2.7243065 2.9092513 4.1101321	-0.2366768 -1.0739806 0.3959124 -0.7144102 -0.7644221 -0.7446859 -1.0667759
TS 81 Ni C H C C C C C C	4 ergy = -0.2253042 -0.0832504 -0.2294586 -0.2078601 1.0687901 -1.3604096 1.1728121 -1.2760928	0.2904407 -1.6366142 -1.1124207 2.0988371 2.7243065 2.9092513 4.1101321 4.2737169	-0.2366768 -1.0739806 0.3959124 -0.7144102 -0.7644221 -0.7446859 -1.0667759 -1.0469801
TS 81 End Ni C H C C C C C C	4 ergy = -0.2253042 -0.0832504 -0.2294586 -0.2078601 1.0687901 -1.3604096 1.1728121 -1.2760928 0.0037126	0.2904407 -1.6366142 -1.1124207 2.0988371 2.7243065 2.9092513 4.1101321 4.2737169 4.8575053	-0.2366768 -1.0739806 0.3959124 -0.7144102 -0.7644221 -0.7446859 -1.0667759 -1.0469801 -1.2377815
TS 81 Ni C H C C C C C C H	4 ergy = -0.2253042 -0.0832504 -0.2294586 -0.2078601 1.0687901 -1.3604096 1.1728121 -1.2760928 0.0037126 2.1619705	0.2904407 -1.6366142 -1.1124207 2.0988371 2.7243065 2.9092513 4.1101321 4.2737169 4.8575053 4.5941248	-0.2366768 -1.0739806 0.3959124 -0.7144102 -0.7644221 -0.7446859 -1.0667759 -1.0469801 -1.2377815 -1.1298718
TS 81 End C H C C C C C C C C C H H H	4 ergy = -0.2253042 -0.0832504 -0.2294586 -0.2078601 1.0687901 -1.3604096 1.1728121 -1.2760928 0.0037126 2.1619705 -2.1918679	0.2904407 -1.6366142 -1.1124207 2.0988371 2.7243065 2.9092513 4.1101321 4.2737169 4.8575053 4.5941248 4.8846022	-0.2366768 -1.0739806 0.3959124 -0.7144102 -0.7644221 -0.7446859 -1.0667759 -1.0469801 -1.2377815 -1.1298718 -1.0915386

C -2.3689728 0.0510074 -2.8564982
C -2.6453127 -2.1731698 -1.9379992
C -3.6950484 0.0362084 -3.2987043
H -1.7434956 0.9437082 -3.0252767
C -3.9762216 -2.1890918 -2.3842508
H -2.2517195 -3.0624466 -1.4183672

Н	0.0693243	5.9327001	-1.4728005
N	1.7512115	0.6444795	0.0829341
С	2.1240171	1.8350604	-0.3608477
Н	3.1936396	2.1268169	-0.3705784
Р	-2.2082545	0.8009848	0.3942374
0	-2.5481862	2.3118885	-0.3690537
С	-2.5154701	1.2286424	2.1895376
Н	-3.5403416	1.6561440	2.2545763
С	-3.7232244	-0.1501175	-0.1684471
С	-5.0342162	0.2847351	0.5039570
Н	-5.8834994	-0.2807754	0.0571750
Н	-5.0478626	0.0879888	1.5970292
Н	-5.2295823	1.3676382	0.3393366
С	-1.5022104	2.2853710	2.6506280
Н	-1.6099087	3.2337243	2.0822850
Н	-1.6512847	2.5105584	3.7312906
Н	-0.4586106	1.9262774	2.5111372
С	-3.8351245	-0.0517936	-1.6986198
Н	-4.0946657	0.9835427	-2.0073671
Н	-2.8873596	-0.3316866	-2.1993206
Н	-4.6265853	-0.7440796	-2.0624222
С	2.7136476	-0.3338539	0.4450725
С	3.6449305	-0.8534461	-0.5026489
С	2.6753248	-0.8377477	1.7824559
С	4.5336798	-1.8630769	-0.0770726
С	3.5833191	-1.8440411	2.1496751
С	4.5114086	-2.3563336	1.2307763
Н	5.2618055	-2.2746420	-0.7960124
Н	3.5719367	-2.2357334	3.1790078
Н	5.2176941	-3.1453877	1.5377623
С	1.7039383	-0.2368358	2.7896641
С	1.2457818	-1.2136550	3.8806425
Н	0.8055579	0.0567393	2.2001684
Н	0.4424109	-0.7493980	4.4942790

Н	0.8415719	-2.1528364	3.4408074
Н	2.0682629	-1.4887193	4.5791085
С	3.7169136	-0.3777178	-1.9531589
С	5.0260663	0.3870541	-2.2310118
Н	2.8818715	0.3336707	-2.1233287
Н	5.0452396	0.7668076	-3.2773057
Н	5.1432015	1.2558355	-1.5462864
Н	5.9147578	-0.2688961	-2.0910716
С	2.2831681	1.0538108	3.4032849
Н	2.5408181	1.7937366	2.6147908
Н	1.5447374	1.5299617	4.0873977
Н	3.2064208	0.8372446	3.9874732
С	3.5308932	-1.5357903	-2.9528661
Н	3.5010452	-1.1464413	-3.9951496
Н	4.3643266	-2.2710712	-2.8952203
Н	2.5816724	-2.0835605	-2.7654635
Н	0.9051164	-2.0934281	-0.8457267
С	-0.0546545	-0.5961288	-2.0669609
Н	0.9052180	-0.3158298	-2.5289131
Н	-0.9400849	-0.4081993	-2.6973741
С	-1.2208364	-2.6236715	-0.9918794
С	-1.5684424	-3.2328449	0.2352810
С	-1.9470559	-2.9929754	-2.1427160
С	-2.6156335	-4.1611682	0.3151678
Н	-1.0138157	-2.9520063	1.1481974
С	-3.0043618	-3.9152760	-2.0664865
Н	-1.6734292	-2.5518647	-3.1145644
С	-3.3467364	-4.5004038	-0.8374221
Н	-2.8690153	-4.6185818	1.2862721
Η	-3.5622374	-4.1810051	-2.9800205
Н	-4.1766538	-5.2238794	-0.7768696
С	-2.4266960	-0.0625133	3.0173193
Н	-2.5584343	0.1629141	4.0997833
Н	-3.1998938	-0.8098094	2.7313358

H -1.4306482 -0.5419310 2.8877492 H -3.4918804 -1.2060281 0.1033759 TS5 81 Energy =

Н -0.5629383 -1.3778887 -0.1241371 C 0.5351253 -1.8214740 -0.3241859 Ni -0.0845776 0.3353616 -0.1635623 C -0.2785468 2.1648635 -0.0285813 C -0.1205937 2.7114958 1.2850013 C -0.5089659 3.0414582 -1.1130090 C -0.1181326 4.1248254 1.4616236 C -0.5302594 4.4248011 -0.9391721 C -0.3117079 4.9588283 0.3612023 H 0.0325604 4.5501303 2.4679360 Н -0.7354959 5.0792212 -1.8008440 Н -0.3186787 6.0528699 0.4959766 N -0.0573272 0.4452980 1.7776928 C -0.0110239 1.6878830 2.2659961 Н 0.0792906 1.8643539 3.3535575 P -0.9250443 0.7719852 -2.0937803 O -0.7685801 2.4500052 -2.3356168 C -2.7700772 0.5361866 -2.3019331 C -3.5282429 1.4005146 -1.2850514 Н -4.6249916 1.2561143 -1.4139975 Н -3.2584710 1.1183414 -0.2430252 Н -3.3045094 2.4808593 -1.4113284 C -0.1111158 0.1308104 -3.6496544 C 1.2251998 0.8714366 -3.8375019 H 1.8448225 0.3431781 -4.5963898 Н 1.0490775 1.9108443 -4.1877420 Н 1.8029435 0.9302929 -2.8907950 C -3.1241595 -0.9507291 -2.1670073 Н -2.8904233 -1.3125550 -1.1409946

Н	-4.2140251	-1.1013647	-2.3370776
Н	-2.5743566	-1.6005977	-2.8828095
Н	0.0990313	-0.9367195	-3.4042602
С	-0.0738668	-0.6766642	2.6518279
С	1.1246061	-1.1394904	3.2625248
С	-1.3154661	-1.3492962	2.8546158
С	1.0497122	-2.2762677	4.0931034
С	-1.3327319	-2.4826166	3.6862132
С	-0.1615249	-2.9453327	4.3045018
Н	1.9651842	-2.6485330	4.5820564
Н	-2.2818740	-3.0147523	3.8603769
Н	-0.1947970	-3.8356042	4.9542431
С	-2.5917336	-0.8064841	2.2206242
С	-3.2782893	0.2099341	3.1549154
Н	-4.1684313	0.6594225	2.6589102
Н	-3.6159485	-0.2794102	4.0968401
Н	-2.5867925	1.0368179	3.4257686
С	2.4567090	-0.4252642	3.0543057
С	2.8408075	0.4016980	4.2978337
Н	3.7939404	0.9507878	4.1261245
Н	2.0559369	1.1480573	4.5488839
Η	2.9783050	-0.2541118	5.1875055
Η	-2.2693804	-0.2474820	1.3127925
С	3.5926927	-1.3915708	2.6696116
Н	4.5102228	-0.8201321	2.4054328
Н	3.8595434	-2.0765012	3.5057011
Н	3.3153658	-2.0170495	1.7930793
С	1.5732661	-0.7625028	-0.5711037
Н	2.3797920	-0.7053600	0.1788681
Н	1.9670063	-0.6993908	-1.6001778
Н	0.6962528	-2.3134571	0.6636223
С	0.2620264	-2.8770876	-1.3861797
С	1.1889153	-3.1677325	-2.4070639
С	-0.9367686	-3.6219041	-1.3464277

С	0.9185580	-4.1579261	-3.3679693
Н	2.1416783	-2.6152721	-2.4405395
С	-1.2102239	-4.6135825	-2.2985044
Н	-1.6688377	-3.4154949	-0.5459622
С	-0.2833470	-4.8808275	-3.3220260
Н	1.6588805	-4.3664466	-4.1585971
Н	-2.1540738	-5.1814924	-2.2434008
Н	-0.4967746	-5.6554893	-4.0771741
С	-0.9748047	0.1970519	-4.9175617
Н	-1.8815841	-0.4413716	-4.8546917
Н	-1.2914344	1.2406537	-5.1389384
Н	-0.3793508	-0.1622655	-5.7874603
Н	-3.0063394	0.8938482	-3.3291756
Н	2.3203487	0.2816992	2.2084893
С	-3.5746202	-1.8966368	1.7693711
Н	-4.0414074	-2.4294563	2.6283176
Н	-4.4006460	-1.4451672	1.1762317
Н	-3.0720756	-2.6580893	1.1319480
D			
81			
Ene	ergy =		
Ni	-0.2395968	0.3103116	-0.2239103
С	-0.0751113	-1.6952888	-0.9706586
Н	-0.1068070	-1.2939721	0.1959192
С	-0.2377364	2.0516239	-0.8461413
С	1.0320807	2.6856106	-0.9361417
С	-1.4059268	2.8344092	-0.9271158
С	1.1119522	4.0478132	-1.3402958
С	-1.3405231	4.1713566	-1.3389102
С	-0.0689359	4.7586167	-1.5729042
Η	2.0929000	4.5435863	-1.4326971
Η	-2.2659931	4.7620073	-1.4318622
Η	-0.0199966	5.8134440	-1.8901412
Ν	1.7393785	0.6843010	0.0660171

С	2.0994986	1.8404122	-0.4758207
Н	3.1664155	2.1351889	-0.5311362
Р	-2.2003240	0.8821672	0.5097387
0	-2.5766116	2.2561765	-0.4816938
С	-2.4116901	1.6388218	2.2146758
Н	-3.3943333	2.1594422	2.2309512
С	-3.7825279	-0.0801606	0.2135240
С	-5.0456442	0.6572834	0.6850760
Н	-5.9485586	0.0698074	0.4016146
Н	-5.0775312	0.7993668	1.7864863
Н	-5.1250689	1.6553594	0.2010393
С	-1.2980214	2.6653735	2.4654663
Н	-1.3539219	3.5177979	1.7554182
Н	-1.3793594	3.0714527	3.4997353
Н	-0.2925627	2.2024094	2.3527021
С	-3.8800726	-0.4607276	-1.2719361
Н	-3.9238867	0.4483252	-1.9101706
Н	-3.0171527	-1.0764805	-1.5946909
Н	-4.8020108	-1.0591918	-1.4481353
С	2.7043206	-0.2861390	0.4335031
С	3.6119210	-0.8384547	-0.5208981
С	2.6790061	-0.7694323	1.7797071
С	4.5046409	-1.8407519	-0.0871749
С	3.5904451	-1.7698359	2.1541039
С	4.5051337	-2.3018836	1.2327944
Η	5.2169453	-2.2739344	-0.8093472
Η	3.5909792	-2.1435241	3.1901199
Η	5.2153332	-3.0848602	1.5461950
С	1.7088621	-0.1605288	2.7838787
С	1.2800339	-1.1175886	3.9039154
Н	0.7972826	0.1052314	2.1979058
Н	0.4731295	-0.6529468	4.5129169
Η	0.8912996	-2.0763653	3.4936212
Н	2.1138435	-1.3568061	4.6021184

С	3.6470931	-0.4091924	-1.9877937
С	4.9436004	0.3547564	-2.3215155
Н	2.8009336	0.2879835	-2.1618731
Н	4.9355406	0.7009208	-3.3795415
Н	5.0715507	1.2455960	-1.6680004
Н	5.8395912	-0.2913002	-2.1815192
С	2.2709033	1.1552914	3.3583088
Н	2.5015814	1.8805861	2.5483577
Н	1.5343212	1.6330146	4.0430939
Н	3.2071566	0.9695601	3.9323363
С	3.4487548	-1.5982909	-2.9480340
Н	3.3952043	-1.2400581	-4.0004293
Н	4.2866799	-2.3281039	-2.8864561
Н	2.5065158	-2.1458461	-2.7268043
Η	0.9483377	-2.1390241	-0.9509459
С	-0.1839248	-0.6019677	-1.9754569
Н	0.7183585	-0.3726612	-2.5698166
Н	-1.1193589	-0.5374521	-2.5603205
С	-1.1408430	-2.7736308	-0.9507651
С	-1.7624573	-3.1728741	0.2496627
С	-1.5182818	-3.4144235	-2.1488744
С	-2.7429276	-4.1772316	0.2556904
Н	-1.4798302	-2.6721058	1.1930689
С	-2.4977696	-4.4197359	-2.1472571
Н	-1.0395892	-3.1076912	-3.0939496
С	-3.1169328	-4.8025144	-0.9454251
Н	-3.2221046	-4.4698609	1.2050042
Н	-2.7840398	-4.9054925	-3.0950720
Н	-3.8912236	-5.5875284	-0.9450667
С	-2.3965009	0.5055444	3.2520522
Н	-2.4187726	0.9239068	4.2839227
Н	-3.2674754	-0.1792434	3.1493671
Η	-1.4689215	-0.1045853	3.1575104
Н	-3.6498557	-1.0158789	0.8056443

С

81

Energy =

Ni	1.9553503	-0.2182705	6.6594782
С	1.0561591	-0.1405474	4.9822040
С	1.8388545	0.1572724	3.8396290
С	-0.3283428	-0.2992857	4.8137757
С	1.2544380	0.3032330	2.5584388
С	-0.9365223	-0.1713142	3.5524981
С	-0.1326105	0.1355378	2.4308836
Н	1.8744610	0.5408641	1.6776677
Н	-2.0245478	-0.3111762	3.4487040
Н	-0.6098343	0.2403672	1.4426576
N	3.5629971	0.0550734	5.4350037
С	3.2408387	0.2416572	4.1750185
Н	4.0302324	0.4266208	3.4184980
Р	-0.0090617	-0.6430181	7.3311814
0	-1.0534108	-0.5911001	5.9427782
С	-0.9642916	0.5445530	8.4011825
С	-0.9160306	1.9239971	7.7218498
Н	-1.3149274	2.6981599	8.4142262
Н	0.1234524	2.2105739	7.4544516
Н	-1.5272590	1.9297881	6.7927748
С	-0.4313393	-2.3859043	7.8548988
Н	-1.5318558	-2.4407537	7.6908664
Н	-0.3854378	0.5928824	9.3509562
С	0.2636097	-3.3680015	6.8980539
Н	0.0084174	-3.1587327	5.8369792
Н	1.3706753	-3.3042455	6.9998697
Н	-0.0468248	-4.4123672	7.1291433
С	4.9417942	0.0075088	5.7974871
С	5.6187348	-1.2414166	5.7369394
С	5.5748836	1.1853545	6.2731780
С	6.9717902	-1.2726411	6.1226446

С	6.9285880	1.0988840	6.6500892
С	7.6244348	-0.1149047	6.5697996
Н	7.5266583	-2.2236519	6.0813786
Н	7.4491472	1.9979758	7.0170738
Н	8.6844480	-0.1622540	6.8693397
С	4.8041388	2.5011431	6.3267300
С	5.1361480	3.3508757	7.5641459
Н	3.7234094	2.2336606	6.3834749
Н	4.4495979	4.2242016	7.6248842
Н	5.0248719	2.7635487	8.5016129
Η	6.1736591	3.7526120	7.5289266
С	4.8893316	-2.4954572	5.2555190
С	5.0621774	-2.6951015	3.7357197
Η	3.8043793	-2.3274529	5.4500163
Н	4.5071716	-3.5968469	3.3921098
Н	4.6851709	-1.8253048	3.1564531
Η	6.1368055	-2.8308672	3.4777498
С	5.0054722	3.3102543	5.0295514
Н	4.6923319	2.7318269	4.1330605
Н	4.4095921	4.2503227	5.0543907
Η	6.0768206	3.5830460	4.8969530
С	5.3011101	-3.7727646	6.0079247
Η	4.6330539	-4.6148556	5.7209634
Η	6.3414698	-4.0839904	5.7634778
Н	5.2336733	-3.6413672	7.1096014
С	2.9988705	-0.0938907	8.4119707
Η	3.8054541	0.5774868	8.0424676
С	3.6191984	-1.4457021	8.7552928
Η	4.2441446	-1.8110353	7.9145184
Η	4.2845566	-1.3866807	9.6532031
Η	2.8642735	-2.2359449	8.9641744
С	2.3070576	0.6151425	9.5238770
С	2.0635556	2.0125950	9.4346441
С	1.8617251	-0.0298512	10.7067044

С	1.3781673	2.7125477	10.4347321	
Н	2.4170270	2.5519037	8.5384326	
С	1.1678885	0.6670216	11.7103896	
Н	2.0625109	-1.1029591	10.8483096	
С	0.9099495	2.0415726	11.5805217	
Н	1.2043498	3.7961600	10.3197635	
Н	0.8313888	0.1261352	12.6117284	
Н	0.3655605	2.5881066	12.3680862	
С	-0.1178437	-2.6868972	9.3252736	
Н	0.9768783	-2.6931658	9.5080143	
Н	-0.5689264	-1.9506230	10.0243596	
Н	-0.5088332	-3.6952125	9.5903653	
С	-2.4062793	0.0994569	8.6822792	
Н	-2.9696006	-0.0470402	7.7346496	
Н	-2.4589472	-0.8413950	9.2711192	
Н	-2.9285681	0.8872012	9.2713187	
Е				
81				
Energy =				
Ni	0.1575323	-0.3490622	6.7897042	

С	0.2113599	-0.2132153	4.9017016
С	-1.0271876	-0.2287893	4.2122132
С	1.3958774	-0.0577427	4.1622053
С	-1.0800673	-0.0742963	2.8050365
С	1.3724284	0.0893675	2.7658719
С	0.1228526	0.0856514	2.1003484
Н	-2.0445495	-0.0796157	2.2696491
Н	2.3126002	0.2004300	2.2020653
Н	0.1025705	0.2062668	1.0046781
N	-1.8543182	-0.5617145	6.3958569
С	-2.1344884	-0.4669885	5.1154016
Н	-3.1735578	-0.6193007	4.7572334
Р	2.2149460	-0.3444689	6.5584611
0	2.5744511	-0.0704916	4.8842560

С	3.0816550	-1.9771775	6.8081351
С	2.3639590	-3.0611786	5.9893461
Н	4.1058778	-1.8317699	6.3947274
Н	2.9029399	-4.0306757	6.0869353
Н	1.3216361	-3.2031812	6.3531090
Н	2.3146148	-2.7987970	4.9110945
С	3.2704795	0.9885513	7.3163803
С	4.7597454	0.8803559	6.9634764
Н	3.1257489	0.8457476	8.4131105
Н	5.3155250	1.7443828	7.3935711
Н	5.2255418	-0.0460906	7.3641433
Н	4.9047893	0.8963723	5.8609410
С	3.1620546	-2.3390476	8.2981183
Н	2.1450234	-2.4677900	8.7299501
Н	3.7117176	-3.2991442	8.4244239
Н	3.6926325	-1.5677696	8.8988730
С	2.6689665	2.3461962	6.9154451
Н	2.7897807	2.5233242	5.8243538
Н	1.5825791	2.3885058	7.1487404
Н	3.1791855	3.1715154	7.4607215
С	-2.8557936	-0.9122767	7.3422355
С	-3.8805689	0.0022102	7.7099028
С	-2.7465571	-2.1950530	7.9547292
С	-4.8233882	-0.4205288	8.6694398
С	-3.7037727	-2.5589333	8.9167726
С	-4.7439407	-1.6846811	9.2661440
Н	-5.6318783	0.2666060	8.9678416
Н	-3.6397217	-3.5465007	9.4005411
Н	-5.4908086	-1.9874515	10.0184058
С	-1.6394931	-3.1447972	7.5129608
С	-1.1080261	-4.0521887	8.6305550
Н	-0.7906035	-2.4936876	7.1871228
Н	-0.2024577	-4.5956502	8.2793070
Н	-0.8262001	-3.4616732	9.5298829

TS	TS3				
Н	-1.7680816	1.2798547	14.4656801		
Н	-3.2703422	0.0796922	12.8420880		
Н	0.3020867	2.4273055	13.6212927		
С	-1.5187871	1.2550105	13.3915864		
Н	-2.6989251	0.0204108	10.4123800		
С	-2.3570260	0.5844037	12.4835097		
Н	0.8596969	2.3746280	11.1820304		
С	-0.3617607	1.8956055	12.9184093		
С	-2.0387857	0.5542417	11.1175636		
С	-0.0493040	1.8655645	11.5489558		
С	-0.8807446	1.1976053	10.6267663		
Н	-1.4434474	1.2798308	8.5519539		
Н	0.1756902	1.9370523	8.9002769		
Н	-0.5809077	-1.0685480	9.1211503		
Н	1.0459866	-0.3778175	9.3503498		
С	-0.5243797	1.1092430	9.1562749		
С	0.0974184	-0.2502179	8.7787671		
Н	-3.3714354	2.4176015	8.9804605		
Н	-5.1417556	2.4339235	8.6817006		
Н	-4.0704444	3.5044306	7.7255216		
С	-4.1465511	2.4950256	8.1874661		
Н	-2.9269180	-4.6286610	6.5237292		
Н	-1.2289109	-4.5938751	5.9152669		
Н	-2.3815438	-3.2992743	5.4417270		
С	-2.0699332	-3.9611238	6.2791488		
Н	-6.0902834	1.2930373	6.5306646		
Н	-4.9635888	0.7581543	5.2427975		
Н	-5.1369885	2.5118631	5.6107402		
Н	-3.0105083	1.6091662	6.5920823		
С	-5.0999543	1.4956457	6.0637561		
С	-3.9720195	1.4048496	7.1118719		
Н	-1.8512977	-4.8212712	8.9401349		

Ni -0.0483490 -0.1542956 -0.1643087 Si -0.3125252 1.1237319 1.8712253 C 0.1165234 -1.2453253 1.9689236 C -0.2340968 -1.7321141 -1.2125112 C 0.9677503 -2.4058959 -1.5431163 C -1.4405232 -2.2001269 -1.7639971 C 0.9332727 -3.6204515 -2.2777789 C -1.5001071 -3.4021534 -2.4830376 C -0.3007177 -4.1188086 -2.7124243 Н 1.8683097 -4.1565780 -2.5105579 Н -2.4628017 -3.7543941 -2.8855786 H -0.3420132 -5.0644642 -3.2772031 N 1.9775117 -0.5318030 -0.5208035 C 2.1444368 -1.6888350 -1.1288782 Н 3.1580944 -2.0605832 -1.3672281 P -1.9351779 0.1708767 -1.1388967 O -2.5300535 -1.3761244 -1.6099760 C -1.8748091 1.0204709 -2.8092443 Н -2.8825765 0.8417503 -3.2463693 C -3.4652774 0.8158461 -0.2965237 Н -3.1835566 1.8463522 0.0164020 C -0.8211905 0.3804494 -3.7234814 Н -1.0420658 -0.6861737 -3.9376628 Н -0.7902251 0.9263916 -4.6939009 Н 0.1901014 0.4296332 -3.2649740 C -4.6837483 0.8759421 -1.2324831 Н -4.5596405 1.6108513 -2.0563751 Н -4.9037991 -0.1205462 -1.6741219 Н -5.5748883 1.1903222 -0.6439130 C 3.1174693 0.2040508 -0.0778968 C 4.0876200 -0.3587832 0.8141324 C 3.2633895 1.5455684 -0.5518138 C 5.1325275 0.4752765 1.2634113

С	4.3266086	2.3248097	-0.0665586
С	5.2501094	1.8040799	0.8482052
Н	5.8799220	0.0652874	1.9609278
Н	4.4460577	3.3600341	-0.4206703
Н	6.0741594	2.4320496	1.2249072
С	2.3577964	2.0777318	-1.6554503
С	2.2483458	3.6082233	-1.7025498
Η	1.3420339	1.6662541	-1.4574848
Η	1.4349754	3.9102343	-2.3987851
Н	2.0213866	4.0371663	-0.7024832
Η	3.1841632	4.0842272	-2.0731350
С	4.0993094	-1.8214855	1.2695298
С	5.0927536	-2.6514261	0.4236094
Н	3.0802533	-2.2416330	1.1212415
Н	5.0621425	-3.7232476	0.7229677
Η	4.8885237	-2.5929125	-0.6671287
Η	6.1313498	-2.2820335	0.5777160
С	2.8087835	1.5260143	-3.0247289
Н	2.7980386	0.4148195	-3.0404421
Н	2.1338405	1.8838509	-3.8343057
Η	3.8427759	1.8634854	-3.2630612
С	4.4609959	-2.0067540	2.7590130
Η	4.2356608	-3.0489313	3.0755106
Н	5.5456966	-1.8396445	2.9422670
Н	3.8950163	-1.3191726	3.4195581
Н	0.6167252	-1.8603409	1.1976839
С	1.1336532	-1.0114564	3.0886970
Η	2.0550500	-0.5373881	2.6972121
Η	0.7573975	-0.3599909	3.9086256
Н	1.4088436	-1.9884990	3.5543574
С	-1.1273752	-1.9583161	2.3989802
С	-1.7212022	-2.9371651	1.5628239
С	-1.7443292	-1.7324064	3.6557862
С	-2.8891287	-3.6151499	1.9308461

Н	-1.2442060	-3.1715481	0.5990411
С	-2.9236880	-2.4020276	4.0238789
Н	-1.2937697	-1.0272431	4.3702109
С	-3.5126112	-3.3391471	3.1616000
Н	-3.3161356	-4.3694944	1.2482322
Η	-3.3797347	-2.1928823	5.0066030
Η	-4.4373410	-3.8648414	3.4525365
Н	0.1672427	1.3233418	0.1633898
Η	-1.1144359	0.7215485	3.1032312
Η	1.0481165	1.5945219	2.3326101
С	-1.3198044	2.7472264	1.5582300
С	-0.9437160	3.7168264	0.6030773
С	-2.4698944	3.0142877	2.3349558
С	-1.6793014	4.8991803	0.4207083
Η	-0.0485427	3.5449271	-0.0195804
С	-3.2255037	4.1858866	2.1518942
Н	-2.7884189	2.2784838	3.0952278
С	-2.8327278	5.1321086	1.1903479
Η	-1.3546644	5.6408666	-0.3293249
Η	-4.1268552	4.3618552	2.7636680
Η	-3.4222549	6.0528028	1.0431182
С	-3.7553849	-0.0143217	0.9614466
Η	-4.6020901	0.4435030	1.5192810
Η	-4.0254951	-1.0608565	0.7050633
Η	-2.8862990	-0.0599484	1.6510922
С	-1.6431384	2.5275793	-2.6384141
Η	-1.6575163	3.0254064	-3.6341947
Η	-2.4089667	3.0182526	-1.9998334
Н	-0.6516535	2.7215681	-2.1763030
TS	6		
0			

TS7

Energy =	
----------	--

Ni 0.3953987 -0.3938249 0.3946077 C 2.2461313 -0.4504609 0.3480040 C 2.9204067 0.8006690 0.1972520 C 3.0205899 -1.6224096 0.5037832 C 4.3357533 0.8614564 0.3211178 C 4.4138346 -1.5704683 0.6011317 C 5.0633770 -0.3108817 0.5323197 H 4.8482556 1.8349450 0.2443922 Н 4.9845909 -2.5070302 0.7007955 Н 6.1612728 -0.2686954 0.6200889 N 0.7453234 1.5470586 -0.1994185 C 2.0270221 1.8752778 -0.0908896 H 2.3617359 2.9193923 -0.2400113 P 0.7191726 -2.4900961 0.0389034 O 2.3370351 -2.8181923 0.4839257 C 0.7225200 -3.0038119 -1.7629841 C 1.7092767 -2.1512630 -2.5717831 Н 1.0845581 -4.0563786 -1.7552974 Н 1.7045111 -2.4841826 -3.6347473 Н 1.4308476 -1.0753711 -2.5415676 Н 2.7479678 -2.2399017 -2.1889368 C -0.1169495 -3.8633835 0.9727947 C 0.2020113 -5.2708770 0.4467048 Н -1.2022451 -3.6497659 0.8441355 Н -0.2595340 -6.0266876 1.1221297 Н -0.2038276 -5.4502665 -0.5718671 Н 1.2980926 -5.4608465 0.4306082 C -0.6996067 -2.9456319 -2.3370467 H -1.0884466 -1.9043766 -2.3201471 Н -0.6955527 -3.2951705 -3.3942001 Н -1.4216430 -3.5729645 -1.7697674 C 0.2432931 -3.7115129 2.4586053 H 1.3016401 -3.9985258 2.6387123

Н	0.1109387	-2.6636772	2.8011023
Н	-0.4117927	-4.3638617	3.0777857
С	-0.2199181	2.5380523	-0.5164833
С	-0.5319615	3.5927385	0.3905299
С	-0.8990762	2.4157470	-1.7669821
С	-1.5202559	4.5222963	0.0066488
С	-1.8779146	3.3682659	-2.0956353
С	-2.1881454	4.4178340	-1.2180549
Н	-1.7745265	5.3492752	0.6900748
Н	-2.4086367	3.2942273	-3.0578908
Н	-2.9591836	5.1568784	-1.4917018
С	-0.5145874	1.2961556	-2.7285416
С	-1.6530147	0.8398626	-3.6514095
Н	-0.2275347	0.4283856	-2.0893814
Н	-1.3541155	-0.0830195	-4.1959600
Н	-2.5801011	0.6151260	-3.0796088
Н	-1.9033754	1.6054405	-4.4200769
С	0.1716543	3.7556464	1.7375708
С	1.1626130	4.9375601	1.7082761
Н	0.7563390	2.8299502	1.9274916
Н	1.7023278	5.0216754	2.6782852
Н	1.9201164	4.8231666	0.9024684
Н	0.6300363	5.8989389	1.5293866
С	0.7357003	1.6793822	-3.5459798
Н	1.5937734	1.9234566	-2.8835782
Н	1.0450799	0.8387427	-4.2073741
Н	0.5303026	2.5660933	-4.1873734
С	-0.8177164	3.9157836	2.9086698
Н	-0.2689851	3.9081361	3.8766207
Н	-1.3763246	4.8767382	2.8522034
Н	-1.5607854	3.0898329	2.9305384
С	-0.9049227	0.2728028	2.0573921
Н	-1.0037935	1.3175877	1.7152785
С	-0.5033260	0.1454452	3.5065142

Н	0.3425663	0.8294830	3.7372872
Н	-1.3368626	0.4013008	4.2111671
Н	-0.1621746	-0.8800172	3.7713079
С	-1.8942587	-0.5978214	1.4585320
С	-2.3194925	-0.3760282	0.0964147
С	-2.4841815	-1.7238196	2.1294048
С	-3.2075310	-1.2534573	-0.5463674
Н	-2.0228038	0.5582439	-0.4105504
С	-3.3812362	-2.5712752	1.4795448
Н	-2.2447367	-1.8982783	3.1898185
С	-3.7366336	-2.3677617	0.1250983
Н	-3.5143030	-1.0408477	-1.5847776
Н	-3.8292117	-3.4112300	2.0390819
Н	-4.4458742	-3.0447522	-0.3774528
F			

```
81
```

Ni	-0.5064754	-0.1895149	0.0699576
С	-0.3351926	-1.6970104	-1.0489551
С	0.9324863	-2.3264016	-1.1745329
С	-1.3345378	-2.0696109	-1.9731150
С	1.1004464	-3.4662428	-2.0070369
С	-1.1968333	-3.1996499	-2.7919826
С	0.0221247	-3.9191317	-2.7733359
Η	2.0846923	-3.9605756	-2.0731301
Η	-2.0167429	-3.4832302	-3.4713807
Η	0.1350374	-4.8056963	-3.4187999
N	1.7796614	-0.4478656	-0.0077169
С	2.0170808	-1.6279831	-0.5273031
Η	3.0415689	-2.0585996	-0.5287548
Р	-2.0383002	0.2995449	-1.3690764
0	-2.4068199	-1.2157158	-2.1163428
С	-1.6690370	1.3475059	-2.8763580
С	-0.4437679	0.7794264	-3.6058236

Н	-2.5513926	1.2935475	-3.5514122
Н	-0.1593208	1.4447196	-4.4529019
Н	0.4283317	0.6991915	-2.9200868
Н	-0.6427977	-0.2342713	-4.0139743
С	-3.7793481	0.7446284	-0.8406045
С	-4.6968031	1.2410451	-1.9678321
Н	-3.6268652	1.5598830	-0.0963454
Н	-5.7186172	1.4198713	-1.5613874
Н	-4.3520937	2.1949582	-2.4207077
Н	-4.7883340	0.4820612	-2.7762388
С	-1.4482909	2.7945340	-2.4086581
Н	-0.6172743	2.8449853	-1.6708197
Н	-1.1794775	3.4446485	-3.2720138
Н	-2.3497714	3.2310576	-1.9242333
С	-4.3989738	-0.4684815	-0.1266010
Н	-4.6780188	-1.2520187	-0.8626340
Н	-3.6946986	-0.9220700	0.6017223
Н	-5.3126122	-0.1576726	0.4283889
С	2.7664726	0.2457531	0.7203071
С	3.4584287	-0.3327683	1.8322517
С	2.9855954	1.6170306	0.3662800
С	4.3749757	0.4752776	2.5359838
С	3.9104762	2.3717575	1.1051752
С	4.6092852	1.8076327	2.1822231
Н	4.9214883	0.0437884	3.3911510
Η	4.0958290	3.4227434	0.8337867
Η	5.3349225	2.4125189	2.7505992
С	2.2624348	2.2014451	-0.8394475
С	2.0707679	3.7230969	-0.7809170
Η	1.2530995	1.7243995	-0.8530833
Н	1.4135778	4.0572707	-1.6135872
Н	1.6007692	4.0415548	0.1760812
Η	3.0327389	4.2732943	-0.8883049
С	3.2504013	-1.7714634	2.3090070

С	4.4891398	-2.6440478	2.0235210
Η	2.4043836	-2.2109860	1.7388397
Н	4.3087301	-3.6976786	2.3344502
Н	4.7513856	-2.6422789	0.9425286
Н	5.3786677	-2.2722166	2.5802326
С	2.9708237	1.7890908	-2.1464074
Н	3.0321051	0.6835329	-2.2400930
Н	2.4205027	2.1764897	-3.0329885
Н	4.0067114	2.1965216	-2.1771241
С	2.8614037	-1.8421855	3.7991141
Н	2.6182001	-2.8901999	4.0843778
Н	3.6870598	-1.4999428	4.4618764
Н	1.9709297	-1.2121688	4.0147205
С	-0.4262965	-1.1312012	1.9092159
Н	0.6526057	-1.1024300	2.1336642
С	-1.0847238	-2.4603863	2.1703529
Н	-0.5059987	-3.2763051	1.6849375
Н	-1.1438031	-2.6980718	3.2619205
Н	-2.1150366	-2.5056758	1.7546346
С	-1.1118418	0.1250606	2.0658180
С	-0.4400300	1.3273372	1.5958257
С	-2.4710006	0.2695366	2.5269846
С	-1.1330176	2.5748364	1.5961418
Н	0.6632640	1.3613208	1.5564476
С	-3.1026877	1.5011501	2.5324021
Η	-2.9852219	-0.6137744	2.9379832
С	-2.4458838	2.6681476	2.0375742
Н	-0.5900763	3.4793318	1.2723846
Н	-4.1284617	1.5838120	2.9304689
Н	-2.9676492	3.6391154	2.0445711
TS	8		

Energy =

Ni -1.3860897 -0.3660647 0.3327640

С	-0.5444110	-0.7048550	-1.3663970
С	0.7909442	-1.0882583	-1.6316002
С	-1.3696909	-0.5217279	-2.5074644
С	1.2115783	-1.4425859	-2.9348181
С	-0.9824824	-0.8761720	-3.8073861
С	0.3136160	-1.3782920	-4.0101343
Н	2.2576791	-1.7492639	-3.1036978
Н	-1.6840018	-0.7238345	-4.6429827
Н	0.6397290	-1.6681284	-5.0226745
N	2.4825905	0.1108234	-0.4228751
С	1.8480468	-0.9901952	-0.5784272
Н	2.1149575	-1.9017254	0.0162687
Р	-2.5992362	0.9405624	-0.8425490
0	-2.5900764	0.1263106	-2.3433190
С	-1.9137135	2.6575247	-1.2130291
С	-1.7551366	2.9196258	-2.7178413
Н	-2.6726781	3.3615630	-0.7955398
Н	-1.3857972	3.9579365	-2.8794293
Н	-1.0146733	2.2219739	-3.1664375
Н	-2.7093559	2.8010068	-3.2727403
С	-4.4401001	1.1179469	-0.6473177
С	-5.1089756	1.9572990	-1.7458191
Н	-4.5447379	1.6324379	0.3383217
Н	-6.2070461	2.0077826	-1.5657020
Н	-4.7297096	3.0015070	-1.7794911
Н	-4.9495949	1.4962882	-2.7449005
С	-0.5927422	2.8497561	-0.4474126
Н	0.1912885	2.1411022	-0.7974271
Н	-0.2115741	3.8869202	-0.5901513
Н	-0.7241180	2.6857233	0.6447741
С	-5.0557625	-0.2853364	-0.5381646
Н	-4.9642451	-0.8264835	-1.5048007
Н	-4.5482346	-0.8884369	0.2443653
Н	-6.1355204	-0.2129625	-0.2765807

С	3.5771865	0.2505809	0.4534168
С	3.3890124	0.6393343	1.8079386
С	4.8876698	0.1211646	-0.0966023
С	4.5304219	0.8541171	2.6050444
С	5.9921056	0.3385651	0.7446424
С	5.8230980	0.6984668	2.0900174
Н	4.4013511	1.1549929	3.6584486
Н	7.0108745	0.2306249	0.3384503
Н	6.7017128	0.8665979	2.7342840
С	5.0529450	-0.2607396	-1.5647023
С	6.2595440	0.4065145	-2.2446827
Н	4.1361381	0.0989550	-2.0856446
Н	6.2412923	0.2080145	-3.3394546
Η	6.2525908	1.5081869	-2.0938083
Η	7.2279635	0.0147223	-1.8595173
С	1.9951058	0.8751304	2.3810200
С	1.7591897	0.0853961	3.6816503
Н	1.2601782	0.5149713	1.6281125
Н	0.7092422	0.1981142	4.0337421
Η	1.9563061	-0.9995266	3.5365359
Η	2.4214469	0.4393181	4.5030306
С	5.1082584	-1.7926082	-1.7378205
Η	4.2109730	-2.2875452	-1.3060617
Η	5.1682992	-2.0697318	-2.8151606
Η	6.0005242	-2.2147322	-1.2223029
С	1.7274631	2.3799564	2.5786244
Η	0.6892802	2.5541767	2.9455570
Η	2.4286588	2.8192394	3.3236539
Η	1.8524080	2.9344407	1.6233168
С	-0.5819994	-1.8843245	1.3633775
Н	0.3708804	-1.5018279	1.7797657
С	-0.5044345	-3.2857035	0.8059853
Η	0.3548128	-3.3880320	0.1096619
Н	-0.3727953	-4.0501356	1.6105706

Н	-1.4137144	-3.5513391	0.2249218
С	-1.7736926	-1.4165799	2.0489036
С	-1.8481766	-0.0027363	2.3628241
С	-2.9785649	-2.1854295	2.2176702
С	-3.0455388	0.5543703	2.9013735
Н	-0.9159012	0.5835324	2.4720140
С	-4.1309868	-1.6126174	2.7368961
Н	-2.9617071	-3.2589832	1.9721501
С	-4.1758753	-0.2317861	3.0805356
Н	-3.0535432	1.6185396	3.1926425
Н	-5.0269323	-2.2378188	2.8887394
Н	-5.0998625	0.2022350	3.4961862
A			
81			
En	ergy =		
Ni	1.6636713	-0.8000179	7.2355616

С	1.2920008	-0.9647524	5.3378187
С	2.1945406	-0.9925503	4.2342508
С	-0.0854748	-1.0519509	4.9963267
С	1.7419196	-1.2591552	2.9154372
С	-0.5493174	-1.3261594	3.7027645
С	0.3855463	-1.4629720	2.6586521
Н	2.4900618	-1.2732977	2.1065955
Н	-1.6340194	-1.4003750	3.5242475
Н	0.0366787	-1.6824918	1.6359030
N	4.4625189	-0.4839561	3.4901652
С	3.5988580	-0.6209429	4.4394423
Н	3.8712964	-0.4090168	5.4951875
Р	-0.3322488	-0.0288526	7.3146520
0	-1.0441083	-0.7901770	5.9710454
С	-0.5857190	1.8153166	7.0126245
С	-1.5473898	2.0963827	5.8488520
Н	-1.0286809	2.2024385	7.9609248
Н	-1.6859720	3.1955624	5.7338107

Н	-1.1393836	1.7020638	4.8926619
Н	-2.5457734	1.6363766	6.0016376
С	-1.5716772	-0.5423282	8.6045476
С	-2.9807813	0.0308977	8.3925396
Н	-1.1391789	-0.1403208	9.5520760
Н	-3.6576403	-0.3310360	9.1996965
Н	-3.0029988	1.1417618	8.4157728
Н	-3.4031067	-0.3072602	7.4211107
С	0.7835680	2.4841605	6.8033311
Н	1.2867760	2.0886909	5.8928925
Н	0.6642739	3.5853445	6.6832211
Н	1.4648990	2.3057624	7.6639299
С	-1.5877832	-2.0768829	8.6837363
Η	-2.0194687	-2.5101669	7.7557924
Η	-0.5637227	-2.4865709	8.8133225
Η	-2.2055116	-2.4091480	9.5482699
С	5.7411252	0.0170308	3.7578236
С	5.9525616	1.2729460	4.4109137
С	6.8530203	-0.7441642	3.2757882
С	7.2808379	1.7012483	4.6101220
С	8.1536039	-0.2717494	3.5090724
С	8.3744529	0.9400125	4.1822912
Н	7.4628327	2.6663181	5.1133206
Н	9.0168434	-0.8595681	3.1577781
Η	9.4023392	1.2969870	4.3605061
С	6.5865555	-2.0717817	2.5773851
С	7.6404657	-2.4469637	1.5248543
Н	5.6063685	-1.9519983	2.0616200
Η	7.3080361	-3.3406725	0.9512644
Η	7.8103611	-1.6182267	0.8027104
Η	8.6208794	-2.7047624	1.9861336
С	4.8089914	2.1956811	4.8390979
С	4.7192150	2.3286405	6.3721124
Н	3.8523344	1.7507215	4.4925967

Н	3.8672954	2.9843400	6.6631984	
Н	4.5703299	1.3371794	6.8558603	
Н	5.6498368	2.7696351	6.7952887	
С	6.4135242	-3.2065792	3.6085560	
Н	5.6024035	-2.9742232	4.3320610	
Н	6.1565566	-4.1658980	3.1043083	
Н	7.3528922	-3.3607524	4.1867229	
С	4.9104317	3.5811709	4.1707003	
Н	4.0221610	4.2024128	4.4262362	
Н	5.8147071	4.1386762	4.5029889	
Н	4.9593082	3.4867984	3.0640097	
С	3.3363294	-1.9083068	7.4023185	
Н	4.1994279	-1.2281262	7.2459256	
С	3.4704426	-3.2427037	6.7130334	
Н	3.7067934	-3.0980250	5.6369170	
Н	4.2923629	-3.8603521	7.1501925	
Н	2.5294769	-3.8320541	6.7596014	
С	2.7129216	-1.7675851	8.7037300	
С	2.4782211	-0.4127842	9.1611553	
С	2.1075528	-2.8311427	9.4585681	
С	1.7581495	-0.1773786	10.3694932	
Н	3.1041694	0.4092691	8.7603246	
С	1.4013379	-2.5691720	10.6247071	
Н	2.2531432	-3.8700679	9.1223725	
С	1.2173383	-1.2358104	11.0884203	
Н	1.6517612	0.8579371	10.7357925	
Н	0.9790063	-3.4070948	11.2043349	
Н	0.6607943	-1.0507671	12.0217610	
TS9				
96				
Energy =				
Ni	-1.1287812	0.6994319	0.5746243	

C -0.5744942 -0.1227562 -1.1941774 C 0.7074165 -0.5074794 -1.6885799

С	-1.6773937	-0.3636605	-2.0589382
С	0.8661219	-1.1029631	-2.9622716
С	-1.5230051	-0.9527286	-3.3252144
С	-0.2472752	-1.3353598	-3.7718078
Н	1.8833568	-1.3827177	-3.2785820
Н	-2.4190804	-1.0902867	-3.9508377
Н	-0.1315505	-1.8033019	-4.7633306
N	3.0303260	-0.8582896	-1.0453882
С	1.8799419	-0.3184041	-0.8286061
Н	1.7128972	0.3348285	0.0539069
Р	-3.0905150	1.1000837	-0.3951922
0	-2.9484488	0.0257536	-1.7259057
С	-3.5609542	2.6448394	-1.3654582
С	-2.4284365	3.0112579	-2.3372506
Н	-4.4533843	2.3593373	-1.9653609
Н	-2.6966737	3.9336654	-2.9012757
Η	-1.4694292	3.1994115	-1.8066714
Н	-2.2450888	2.2018498	-3.0749807
С	-4.7100278	0.3674936	0.2146799
С	-5.1773274	0.9060050	1.5717869
Н	-4.3836211	-0.6884265	0.3570231
Η	-6.0557991	0.3177609	1.9214059
Н	-4.3864532	0.8179656	2.3436253
Н	-5.4957303	1.9705126	1.5191937
С	-3.9363052	3.8104198	-0.4380074
Н	-3.0845658	4.1185297	0.2090925
Н	-4.2242732	4.6998108	-1.0431018
Η	-4.7935466	3.5687411	0.2264435
С	-5.8286068	0.3755662	-0.8357579
Н	-6.2616198	1.3918857	-0.9732027
Н	-5.4699156	0.0041016	-1.8189155
Н	-6.6568086	-0.2904304	-0.5021893
С	4.0678802	-0.6526567	-0.1196500
С	5.2492392	-0.0112583	-0.5914609
С	3.9716254	-1.1297345	1.2263379
---	------------	------------	------------
С	6.2990672	0.2204626	0.3154706
С	5.0583851	-0.8819303	2.0860163
С	6.2033896	-0.1976460	1.6493822
Н	7.2126354	0.7318067	-0.0277909
Н	5.0163899	-1.2330956	3.1283409
Н	7.0328464	-0.0085071	2.3507523
С	2.7646183	-1.9569662	1.6829005
С	2.7327878	-3.3174062	0.9554801
Н	1.8390355	-1.4129013	1.3905843
Н	1.8175863	-3.8878021	1.2326729
Н	2.7374773	-3.1829000	-0.1481034
Н	3.6220738	-3.9281404	1.2301863
С	5.3182375	0.4313346	-2.0490040
С	4.6370636	1.7999751	-2.2523019
Н	4.7165702	-0.3136450	-2.6192915
Η	4.6448000	2.0905248	-3.3275435
Н	3.5799794	1.7808655	-1.9107268
Н	5.1691420	2.5929746	-1.6779873
С	2.6725518	-2.1559062	3.2016414
Н	2.6854398	-1.1868837	3.7489652
Η	1.7219776	-2.6733641	3.4555449
Н	3.5067289	-2.7815236	3.5916017
С	6.7408696	0.4387846	-2.6285089
Η	6.7066335	0.6144069	-3.7267331
Η	7.3668834	1.2488778	-2.1901473
Η	7.2605289	-0.5283413	-2.4506931
С	-0.9545002	1.4261747	2.4668589
Η	-0.5551400	0.7765912	3.2746827
С	-2.0853136	2.2873886	3.0058348
Η	-2.8718572	1.6554380	3.4693520
Н	-1.7030054	2.9721397	3.8006148
Η	-2.5702345	2.9112082	2.2263137
С	0.1554364	2.0587959	1.7311049

С	-0.1081903	2.9904670	0.6801294
С	1.5223806	1.7403040	2.0080124
С	0.9535306	3.5525360	-0.0635170
Η	-1.1272253	3.3731550	0.5298490
С	2.5620563	2.3299186	1.2931728
Η	1.7447075	1.0145814	2.8083164
С	2.2791581	3.2359771	0.2428075
Η	0.7277056	4.2716394	-0.8684199
Η	3.6061423	2.0662301	1.5295860
Η	3.1052718	3.6935369	-0.3240544
Si	-1.5611793	-1.0504196	1.9457036
Η	-0.3284680	-0.5305868	0.3306131
Η	-2.6647146	-0.8016845	2.9594444
С	-2.1856497	-2.5302599	0.9260724
С	-1.3644438	-3.1686720	-0.0330767
С	-3.4989253	-3.0244125	1.1053640
С	-1.8379772	-4.2513947	-0.7897267
Η	-0.3321146	-2.8164682	-0.2033884
С	-3.9804998	-4.1054374	0.3471437
Η	-4.1578101	-2.5625645	1.8624081
С	-3.1510802	-4.7181275	-0.6064310
Η	-1.1777417	-4.7276543	-1.5336562
Η	-5.0088364	-4.4729440	0.5041015
Η	-3.5276833	-5.5632093	-1.2068841
Η	-0.3649870	-1.5231957	2.7476528
G			
96			
Ene	ergy =		
Ni	-1.5667594	0.8689539	1.2345985
С	-0.2132339	-0.1555744	-1.5411072
С	0.9940098	-0.8019310	-1.8755591
С	-1.4135611	-0.5100401	-2.1751053
С	1.0116924	-1.7804443	-2.8925785
С	-1.3924422	-1.4698027	-3.2073870

С	-0.1814287	-2.0895107	-3.5616257
Н	1.9616372	-2.2797750	-3.1386182
Н	-2.3413790	-1.7373799	-3.6971505
Н	-0.1810914	-2.8453423	-4.3646097
N	3.3185429	-1.0064571	-1.1560880
С	2.1691233	-0.4341462	-1.0785849
Н	1.9874412	0.3857244	-0.3444443
Р	-2.8960715	1.0235835	-0.4685033
0	-2.6279085	0.0198014	-1.8360576
С	-3.0909609	2.6301651	-1.4211392
С	-1.7499445	3.0085620	-2.0680471
Н	-3.8207714	2.3970520	-2.2282426
Н	-1.8407731	3.9870458	-2.5927743
Н	-0.9462429	3.1012651	-1.3059319
Н	-1.4277327	2.2533072	-2.8160207
С	-4.6276539	0.4198012	-0.1113789
С	-5.0932329	0.8612303	1.2839225
Н	-4.4431005	-0.6776368	-0.0715212
Н	-6.0409975	0.3403721	1.5490135
Н	-4.3341560	0.6046926	2.0580138
Н	-5.2846490	1.9556689	1.3424993
С	-3.6628782	3.7465972	-0.5366909
Н	-3.0343030	3.9206536	0.3627073
Н	-3.7006447	4.7015727	-1.1083332
Н	-4.6960794	3.5250279	-0.1927930
С	-5.6546204	0.6847966	-1.2169307
Η	-5.9347939	1.7596522	-1.2868943
Н	-5.2765932	0.3519783	-2.2075481
Η	-6.5870677	0.1140951	-1.0044869
С	4.3160048	-0.6315719	-0.2322424
С	5.4323623	0.1109507	-0.7054043
С	4.2233930	-1.0482684	1.1318591
С	6.4527752	0.4442364	0.2037534
С	5.2760467	-0.6925534	1.9963601

С	6.3790818	0.0483016	1.5459035
Н	7.3217832	1.0263338	-0.1431523
Н	5.2361916	-1.0017221	3.0524062
Н	7.1862903	0.3161412	2.2474917
С	3.0513317	-1.9126550	1.6011655
С	3.1632671	-3.3376632	1.0212848
Η	2.1150954	-1.4752723	1.1875774
Н	2.2732210	-3.9448042	1.3014676
Н	3.2307413	-3.3112912	-0.0881505
Н	4.0732664	-3.8477149	1.4101107
С	5.4445579	0.5756406	-2.1567728
С	4.6933848	1.9168213	-2.2996258
Н	4.8678499	-0.1863989	-2.7304318
Н	4.6442972	2.2356289	-3.3656791
Н	3.6513587	1.8446822	-1.9169176
Н	5.2102879	2.7176358	-1.7231757
С	2.8633343	-1.9562733	3.1239763
Н	2.8080561	-0.9361091	3.5661521
Н	1.9151606	-2.4835741	3.3689675
Η	3.6891355	-2.5028942	3.6325798
С	6.8490387	0.6664822	-2.7722269
Η	6.7788177	0.8729062	-3.8633680
Н	7.4493548	1.4901416	-2.3237671
Η	7.4148438	-0.2812261	-2.6364956
С	-0.7364123	0.8171350	3.0351125
Н	-0.0486599	0.0095103	3.3588123
С	-1.7601476	1.1703389	4.1029123
Η	-2.3111088	0.2628278	4.4297715
Н	-1.2552309	1.6053520	4.9992147
Н	-2.5177501	1.9084585	3.7613953
С	-0.0596524	1.8601725	2.2657657
С	-0.8094414	2.9768655	1.7542867
С	1.3097654	1.7353194	1.8471651
С	-0.1681725	3.9507122	0.9406531

Н	-1.7854644	3.2373898	2.1990331	
С	1.9055693	2.6881134	1.0310554	
Н	1.8959353	0.8762944	2.2129199	
С	1.1666126	3.8105518	0.5703630	
Н	-0.7390429	4.8364376	0.6153437	
Н	2.9672909	2.5753487	0.7524621	
Н	1.6543069	4.5715072	-0.0601936	
Si	-1.6154987	-1.3250550	1.7449576	
Н	-0.2135862	0.6169760	-0.7510481	
Н	-2.0496472	-1.6604720	3.1634915	
С	-2.6647026	-2.5264091	0.7023843	
С	-2.1266482	-3.1794626	-0.4294645	
С	-4.0118462	-2.8004368	1.0423142	
С	-2.9060597	-4.0547078	-1.2042930	
Н	-1.0743771	-3.0049028	-0.7122836	
С	-4.7976421	-3.6722948	0.2711552	
Н	-4.4559083	-2.3255134	1.9362139	
С	-4.2462335	-4.2981158	-0.8610232	
Н	-2.4603260	-4.5490039	-2.0842890	
Н	-5.8442517	-3.8718488	0.5582929	
Н	-4.8597541	-4.9841787	-1.4689861	
Н	-0.1940391	-1.8436944	1.5874676	
TS	10			
96				
Energy =				
Ni	1.1146594	0.1860867	1.0324924	
С	-2.0637209	0.1162860	0.5083189	
С	-2.8395244	-0.3731867	-0.5629665	
С	-2.3467424	-0.2562855	1.8318036	

C -3.9458536 -1.2086808 -0.3037482
 C -3.4589207 -1.0947400 2.0857398
 C -4.2508725 -1.5559420 1.0237862
 H -4.5584605 -1.5885897 -1.1382156
 H -3.6736812 -1.3794463 3.1279884

77

Н	-5.1132100	-2.2089640	1.2370193
N	-1.3648854	0.6140829	-2.1913217
С	-2.4603531	-0.0097386	-1.9376685
Н	-3.1646590	-0.3139713	-2.7515029
Р	0.0277993	0.7400471	2.7508891
0	-1.6041482	0.1403905	2.9013587
С	-0.3519158	2.5749197	2.9819613
С	-0.8681492	3.1735784	1.6658919
Н	-1.1630040	2.6166078	3.7430350
Н	-1.0090557	4.2736060	1.7697094
Н	-0.1381794	2.9962308	0.8444543
Н	-1.8434074	2.7380613	1.3615461
С	0.6119732	0.2264323	4.4603981
С	-0.3750617	0.5490968	5.5903448
Н	1.5302444	0.8487942	4.5819920
Н	0.0527720	0.2308378	6.5682707
Н	-0.6049180	1.6339886	5.6645832
Н	-1.3323581	0.0054027	5.4404691
С	0.8839175	3.3303153	3.4924791
Н	1.7536825	3.1664674	2.8189544
Н	0.6771066	4.4246389	3.5113043
Н	1.1742942	3.0306036	4.5224892
С	1.0410690	-1.2444520	4.4707013
Н	0.1765281	-1.9245002	4.3104843
Н	1.7751158	-1.4522290	3.6637037
Н	1.5074431	-1.5034555	5.4482073
С	-0.9940688	1.0291372	-3.4807303
С	0.0231153	0.3031247	-4.1625192
С	-1.5402096	2.2305490	-4.0262220
С	0.4553510	0.7729553	-5.4158510
С	-1.0662425	2.6572940	-5.2804753
С	-0.0844581	1.9373623	-5.9775997
Н	1.2332552	0.2166671	-5.9635830
Н	-1.4719327	3.5781654	-5.7275579

Н	0.2649363	2.2917662	-6.9612881
С	-2.5406129	3.0529700	-3.2136295
С	-1.8226998	3.7500739	-2.0379944
Н	-3.2765057	2.3451789	-2.7692081
Н	-2.5481607	4.2980561	-1.3951542
Н	-1.2876847	3.0130184	-1.4014568
Н	-1.0753014	4.4823466	-2.4193632
С	0.5800193	-0.9704705	-3.5376699
С	-0.2294191	-2.2071499	-3.9767235
Н	0.4313969	-0.8719863	-2.4385569
Н	0.1397296	-3.1230539	-3.4619917
Н	-1.3091557	-2.0906261	-3.7362069
Н	-0.1444321	-2.3662188	-5.0756453
С	-3.3446324	4.0660819	-4.0402069
Н	-3.8484309	3.5849513	-4.9073955
Н	-4.1277224	4.5381140	-3.4067575
Н	-2.7014782	4.8870966	-4.4295999
С	2.0830963	-1.1763353	-3.7832124
Н	2.4526673	-2.0349758	-3.1791946
Н	2.3088717	-1.4034562	-4.8494711
Н	2.6680151	-0.2743780	-3.4960556
С	3.0531932	-0.5511661	0.2832680
Н	3.2231667	-0.8587690	-0.7716950
С	4.1632257	-1.1006401	1.1776035
Н	4.2815084	-2.1989686	1.0394695
Н	5.1448285	-0.6257627	0.9418978
Н	3.9472126	-0.9248588	2.2538010
С	2.8844854	0.9545429	0.2635502
С	3.5976754	1.8427830	1.1248664
С	2.0555758	1.5455952	-0.7517027
С	3.5116175	3.2297595	0.9601806
Η	4.2381384	1.4291270	1.9192825
С	1.9588334	2.9448578	-0.8847091
Н	1.5609601	0.9066084	-1.5032342

С	2.6882761	3.7913778	-0.0390804
Н	4.0878616	3.8896484	1.6303120
Н	1.3170879	3.3613141	-1.6785645
Н	2.6234373	4.8855481	-0.1543415
Si	1.4007739	-1.9341639	0.3741456
Н	-1.2188993	0.7799617	0.2687884
Н	2.0332626	-2.7851595	-0.7103700
С	0.8242556	-3.1955811	1.6605266
С	-0.5547497	-3.3092918	1.9518707
С	1.7251188	-4.0363627	2.3526580
С	-1.0177775	-4.2261805	2.9083380
Н	-1.2821782	-2.6677055	1.4279111
С	1.2666917	-4.9454074	3.3202262
Н	2.8082266	-3.9807088	2.1421037
С	-0.1069852	-5.0414313	3.6024443
Н	-2.0991683	-4.2980871	3.1154816
Н	1.9864729	-5.5865632	3.8568239
Н	-0.4673788	-5.7555584	4.3617722
Н	0.2040019	-1.2331829	-0.2918634
н			
96			
Ene	ergy =		
Ni	0.3493856	0.9443170	0.6042328
С	-1.9364475	-0.9487247	-0.0875096
С	-1.9088583	-2.1077592	-0.8918570
С	-2.4751462	-0.9853312	1.2120680
С	-2.4784557	-3.3073716	-0.4142382
С	-3.0467528	-2.1913791	1.6812997
С	-3.0538599	-3.3351435	0.8673227
Н	-2.4635325	-4.2131401	-1.0429839
Н	-3.4706394	-2.2076880	2.6979065
Н	-3.5029399	-4.2671266	1.2485324
N	-0.5534473	-1.0308327	-2.5687541
С	-1.2649013	-2.0421933	-2.2113501

Н	-1.4101484	-2.9220476	-2.8861895
Р	-1.3265863	1.4003183	1.8188269
0	-2.4701515	0.0826577	2.0514710
С	-2.5992072	2.6601883	1.2242104
С	-2.9231610	2.4255860	-0.2577595
Н	-3.5127935	2.4569752	1.8268626
Н	-3.6450343	3.1919507	-0.6219639
Н	-2.0014789	2.5001690	-0.8778096
Н	-3.3768397	1.4273206	-0.4360846
С	-1.1101952	1.8541555	3.6270056
С	-2.4151434	1.9169302	4.4312256
Н	-0.6639374	2.8745686	3.5539820
Н	-2.1968663	2.1912407	5.4885495
Н	-3.1300722	2.6688687	4.0326803
Н	-2.9222108	0.9280879	4.4300960
С	-2.1204230	4.0981397	1.4690877
Н	-1.1315483	4.2736108	0.9917098
Н	-2.8433993	4.8197469	1.0246563
Н	-2.0320277	4.3417416	2.5497711
С	-0.0734197	0.9340441	4.2813523
Н	-0.4379043	-0.1145717	4.3402895
Н	0.8719757	0.9214702	3.6975306
Н	0.1547663	1.2784412	5.3156116
С	0.0302874	-0.9296756	-3.8434816
С	1.4142304	-1.2264072	-3.9883040
С	-0.7369589	-0.4213635	-4.9343844
С	2.0070122	-1.0549430	-5.2525961
С	-0.0932067	-0.2662443	-6.1756740
С	1.2625040	-0.5864171	-6.3430168
Н	3.0751580	-1.2907178	-5.3867361
Н	-0.6625248	0.1170176	-7.0367885
Н	1.7415444	-0.4602297	-7.3278827
С	-2.1846558	0.0122804	-4.7068094
С	-2.2185377	1.3140663	-3.8768051

Н	-2.6791010	-0.7754406	-4.0938459
Н	-3.2651865	1.6091410	-3.6372135
Н	-1.6694237	1.1873833	-2.9188199
Н	-1.7422714	2.1472353	-4.4415516
С	2.1972142	-1.7381745	-2.7850396
С	2.1341983	-3.2752506	-2.6834608
Н	1.6769965	-1.3357636	-1.8855558
Н	2.6549558	-3.6308723	-1.7656388
Н	1.0839492	-3.6380732	-2.6426050
Н	2.6199311	-3.7484960	-3.5667128
С	-3.0107365	0.1612251	-5.9915715
Н	-2.9772536	-0.7604579	-6.6134700
Н	-4.0744543	0.3660778	-5.7388482
Н	-2.6545901	1.0102492	-6.6174395
С	3.6531930	-1.2473664	-2.7420040
Н	4.1164325	-1.5136331	-1.7657031
Н	4.2761060	-1.7136439	-3.5381670
Н	3.7165420	-0.1434069	-2.8654412
С	3.1864676	0.6729652	1.1164665
Н	3.9163446	0.4202133	0.3096564
С	3.9712910	0.9695585	2.3980170
Η	4.6398298	0.1216455	2.6634388
Н	4.6141599	1.8710498	2.2736362
Н	3.2994119	1.1532551	3.2653077
С	2.3316385	1.8243711	0.5878413
С	2.2065715	3.0787067	1.2508436
С	1.7461285	1.6918903	-0.7245305
С	1.5679823	4.1711201	0.6377755
Н	2.6600201	3.2118256	2.2454663
С	0.9707307	2.7619400	-1.2524000
Н	2.0432097	0.8678125	-1.3966770
С	0.9242062	4.0099329	-0.6015810
Н	1.5312249	5.1409427	1.1607910
Н	0.4988148	2.6331460	-2.2410240

Н	0.3759082	4.8482072	-1.0613535
Si	2.0603391	-0.9169513	1.1831703
Н	-1.5305078	-0.0187637	-0.5185045
Н	2.8021804	-1.9693446	0.3775733
С	1.5733357	-1.7205549	2.8203275
С	0.3379893	-2.4108373	2.8383211
С	2.3467508	-1.7145246	4.0033252
С	-0.1171343	-3.0575697	3.9973766
Н	-0.2950813	-2.4325183	1.9355218
С	1.8895710	-2.3526486	5.1686009
Н	3.3213812	-1.2015761	4.0302682
С	0.6549999	-3.0232225	5.1707662
Н	-1.0876698	-3.5816588	3.9812864
Н	2.5050284	-2.3264161	6.0836583
Н	0.2963759	-3.5207955	6.0874122
Н	0.7499525	-0.7689587	0.3311836

96

TS11

Energy = Ni 0.5313935 0.7583891 1.0941049 C -1.6200803 0.5195883 0.7632029 C -2.2526219 -0.5770766 0.0925951 C -2.1125833 0.8840932 2.0539439 C -3.1976793 -1.3750517 0.7783628 C -3.0629339 0.0946392 2.7120780 C -3.5908344 -1.0493772 2.0793392 Н -3.6346106 -2.2484077 0.2662989 Н -3.3688016 0.3827189 3.7301939 Н -4.3216138 -1.6790051 2.6121465 N -1.1734348 -0.1578902 -2.0347114 C -2.0114941 -0.8357487 -1.3236092 Н -2.6481287 -1.6342956 -1.7773541 P 0.0078789 2.3967570 2.4137984 O -1.6480904 1.9980246 2.7133340

С	-0.2439033	4.1943422	1.9425585
С	-0.8170334	4.2428387	0.5188988
Н	-0.9999649	4.6003760	2.6516738
Н	-0.9886106	5.2965595	0.2013902
Н	-0.1186458	3.7727908	-0.2093914
Н	-1.7886028	3.7067104	0.4493422
С	0.6063306	2.4680767	4.1944853
С	-0.2567698	3.3540779	5.1036048
Н	1.6317631	2.9029124	4.1108990
Н	0.1203191	3.3123902	6.1507821
Н	-0.2516361	4.4210225	4.7925753
Н	-1.3111732	3.0011859	5.1052388
С	1.0606011	4.9945824	2.0658001
Н	1.8727951	4.5450807	1.4504040
Н	0.9079959	6.0348168	1.6993940
Н	1.4238965	5.0613106	3.1143214
С	0.7320934	1.0381383	4.7427289
Н	-0.2597377	0.5328383	4.7645673
Н	1.4095905	0.4183706	4.1164547
Н	1.1309130	1.0553204	5.7820745
С	-0.9703291	-0.4070727	-3.3974652
С	-0.5990665	-1.6880406	-3.9135245
С	-1.0829160	0.7217557	-4.2723860
С	-0.3590429	-1.8007198	-5.2991582
С	-0.8474449	0.5452793	-5.6433671
С	-0.4854637	-0.7085175	-6.1625366
Н	-0.0686354	-2.7815104	-5.7126845
Н	-0.9508551	1.4015602	-6.3284254
Н	-0.3033638	-0.8303226	-7.2431254
С	-1.4427135	2.0859815	-3.6867646
С	-0.1894601	2.7433077	-3.0756645
Н	-2.1532806	1.9037372	-2.8501717
Н	-0.4425317	3.7239840	-2.6118603
Н	0.2588120	2.0905859	-2.2968478

Н	0.5806508	2.9216181	-3.8599778
С	-0.4090964	-2.9254818	-3.0366144
С	-1.4807290	-3.9977065	-3.3111719
Н	-0.5152494	-2.6189903	-1.9756685
Н	-1.3578846	-4.8620147	-2.6193217
Н	-2.5066953	-3.5900285	-3.1738473
Н	-1.4133346	-4.3826165	-4.3539616
С	-2.1326384	3.0354050	-4.6774448
Н	-3.0127223	2.5575486	-5.1618196
Н	-2.4846424	3.9484983	-4.1478484
Н	-1.4416423	3.3740580	-5.4823714
С	1.0100477	-3.5099017	-3.1696392
Н	1.1483640	-4.3627458	-2.4664389
Н	1.2133646	-3.8895324	-4.1958522
Н	1.7757872	-2.7402622	-2.9303213
С	3.0371246	-1.4751991	0.5175194
Н	3.3425510	-2.3395237	-0.1122519
С	3.7707347	-1.5244631	1.8634660
Н	3.6050543	-2.5054178	2.3608303
Н	4.8690702	-1.3806342	1.7396261
Н	3.4077902	-0.7427404	2.5689601
С	3.1706619	-0.2025828	-0.2850825
С	2.9519859	1.0690778	0.3225413
С	3.2967089	-0.2407460	-1.6910585
С	2.9097348	2.2435142	-0.4601962
Н	2.9540991	1.1628866	1.4211527
С	3.2320919	0.9265644	-2.4674027
Н	3.4375766	-1.2163236	-2.1868623
С	3.0366295	2.1763640	-1.8548756
Н	2.7863822	3.2196111	0.0371664
Η	3.3258187	0.8573551	-3.5637957
Н	2.9852212	3.0935497	-2.4633240
Si	1.0996821	-1.4423991	0.6620535
Н	-1.1601169	1.2990426	0.0930005

Н 0.7065711 -1.5051189 -0.7954690 C 0.2198800 -2.8743451 1.5294161 C -0.3580711 -2.7063399 2.8083501 C 0.0530907 -4.1225195 0.8842576 C -1.0764519 -3.7449319 3.4229104 Н -0.2675242 -1.7330389 3.3218969 C -0.6617595 -5.1659542 1.4940970 Н 0.4830989 -4.2811019 -0.1210727 C -1.2292560 -4.9776040 2.7665585 Н -1.5277514 -3.5882178 4.4173147 Н -0.7828776 -6.1303433 0.9720199 Н -1.7962016 -5.7937696 3.2454669 Н 1.1212479 -0.3510610 1.9858439 I 96 Energy = Ni -0.0672350 0.4898192 0.9981860

C -2.1273926 -0.2154192 0.8836799 C -2.5900395 -1.1526928 -0.0824218 C -2.5481033 -0.3400921 2.2362556 C -3.3783324 -2.2481121 0.3248229 C -3.3355241 -1.4339250 2.6296589 C -3.7401690 -2.3859466 1.6729352 Н -3.7056228 -2.9910642 -0.4213113 Н -3.6157212 -1.5294856 3.6904713 Н -4.3488833 -3.2472793 1.9934481 N -1.4272948 -0.0004086 -1.8241706 C -2.2593961 -0.9267658 -1.4920045 Н -2.7952729 -1.5606941 -2.2375473 P -0.6847219 1.4103686 2.8526905 O -2.1730950 0.5746853 3.1878542 C -1.2746106 3.1731813 3.0551364 C -2.3059944 3.4836045 1.9604013

Н -1.7694127 3.2606710 4.0479673

86

Н	-2.6695632	4.5316565	2.0581860
Н	-1.8619973	3.3710786	0.9458183
Н	-3.1861274	2.8083956	2.0280250
С	0.2155130	1.0071198	4.4471894
С	-0.5037939	1.4677453	5.7215487
Н	1.1815496	1.5577143	4.3376574
Н	0.0542050	1.1244489	6.6222116
Н	-0.5889321	2.5738833	5.7886762
Н	-1.5277221	1.0359302	5.7719152
С	-0.0560286	4.1087102	2.9921593
Н	0.5182260	3.9576225	2.0483723
Н	-0.3833811	5.1725429	3.0230032
Н	0.6425527	3.9502384	3.8436159
С	0.5199315	-0.4994620	4.4713247
Н	-0.4187560	-1.0920878	4.5484167
Н	1.0487443	-0.8237474	3.5492085
Н	1.1571439	-0.7517099	5.3484230
С	-1.0042922	0.3207997	-3.1098433
С	-0.5914068	-0.6442536	-4.0828611
С	-0.8823725	1.7239073	-3.3805756
С	-0.1601342	-0.1710425	-5.3389983
С	-0.4615890	2.1336925	-4.6530974
С	-0.1157628	1.1941244	-5.6385100
Н	0.1540332	-0.8985682	-6.1057750
Н	-0.3901777	3.2073246	-4.8866625
Н	0.2102861	1.5322986	-6.6359989
С	-1.1630713	2.7305652	-2.2636592
С	0.0267838	2.7756398	-1.2830719
Н	-2.0474164	2.3609777	-1.6970216
Н	-0.1093784	3.5763182	-0.5228497
Н	0.1422332	1.7993154	-0.7422863
Н	0.9868430	2.9634615	-1.8093002
С	-0.5311972	-2.1445621	-3.7970757
С	-1.6697991	-2.9106953	-4.4991002

Н	-0.6447317	-2.2917185	-2.7012464
Н	-1.6378046	-3.9925930	-4.2374802
Н	-2.6706227	-2.5156723	-4.2165259
Н	-1.5834007	-2.8228578	-5.6059163
С	-1.4973216	4.1453155	-2.7604697
Н	-2.3167443	4.1360637	-3.5127479
Н	-1.8223367	4.7799459	-1.9062915
Н	-0.6146830	4.6450836	-3.2194441
С	0.8365538	-2.7515502	-4.1661647
Н	0.8867218	-3.8110751	-3.8297405
Н	1.0198907	-2.7429102	-5.2637777
Н	1.6626941	-2.1924219	-3.6748415
С	3.2202869	-0.7813030	-0.0091675
Н	3.6609653	-1.3834561	-0.8359545
С	3.7686509	-1.2894930	1.3306920
Н	3.6338873	-2.3902317	1.4127177
Н	4.8535767	-1.0605981	1.4465058
Н	3.2397754	-0.8388426	2.2019472
С	3.4470559	0.6819912	-0.3079987
С	3.3464249	1.6755959	0.6961910
С	3.6629062	1.1183567	-1.6365317
С	3.4671378	3.0400174	0.3859246
Н	3.1737949	1.3794733	1.7434253
С	3.7882701	2.4799297	-1.9491092
Η	3.7272118	0.3662425	-2.4419307
С	3.6916420	3.4513376	-0.9378448
Н	3.3867311	3.7893938	1.1920747
Н	3.9589128	2.7848126	-2.9953406
Η	3.7871174	4.5224695	-1.1814350
Si	1.2857019	-0.9936584	-0.1601260
Н	-1.8689688	0.8071545	0.4747332
Н	1.1045676	-0.7125686	-1.6383547
С	0.8231627	-2.8014822	0.1921215
С	-0.0178951	-3.1373631	1.2772617

C 1.2991365 -3.8535411 -0.6257060
C -0.3758324 -4.4705391 1.5369952
H -0.4168969 -2.3319097 1.9183408
C 0.9431695 -5.1887913 -0.3738022
H 1.9586852 -3.6273633 -1.4819882
C 0.1028680 -5.4999652 0.7098631
H -1.0412949 -4.7033384 2.3855016
H 1.3224793 -5.9928203 -1.0274949
H -0.1795398 -6.5479086 0.9076226
H 1.2315139 -0.1483446 1.3905858

TS12

96

Energy =

Ni 0.1800520 -0.8057630 0.4383855 C 2.2998185 -0.6805479 0.5995258 C 2.8236789 0.6323682 0.4424291 C 2.6675618 -1.4754295 1.7179832 C 3.7214050 1.1409906 1.4049971 C 3.5547010 -0.9621209 2.6708909 C 4.0839847 0.3407737 2.4991222 Н 4.1115397 2.1677681 1.3106853 Н 3.8193639 -1.5747468 3.5472139 Н 4.7733725 0.7404409 3.2608462 N 1.2652603 0.9528942 -1.3195970 C 2.3517562 1.3545038 -0.7371478 Н 2.9645169 2.1986277 -1.1241072 P 0.4942188 -2.8247374 1.1848523 O 2.1050104 -2.7203817 1.8639493 C 0.6813677 -4.4019776 0.1969096 C 1.6842950 -4.1637220 -0.9375611 Н 1.0771327 -5.1932351 0.8711189 Н 1.8019379 -5.0832930 -1.5547392 H 1.3312600 -3.3481502 -1.6060591 Н 2.6856762 -3.8809090 -0.5470301

С	-0.4083921	-3.3555947	2.7471816
С	0.0245769	-4.7140539	3.3137957
Н	-1.4738942	-3.4057928	2.4144766
Н	-0.4972726	-4.9095109	4.2782941
Н	-0.2138384	-5.5599832	2.6339646
Н	1.1188714	-4.7246777	3.5147850
С	-0.7032308	-4.8034283	-0.3372984
Н	-1.1530277	-3.9793601	-0.9385867
Н	-0.6187388	-5.6980662	-0.9950076
Н	-1.4180799	-5.0541029	0.4779076
С	-0.2821154	-2.2431609	3.8004526
Н	0.7674555	-2.1569599	4.1586018
Н	-0.5812998	-1.2544346	3.3930219
Н	-0.9286935	-2.4671828	4.6782990
С	0.6589026	1.5021554	-2.4477020
С	0.4046152	2.9025866	-2.6075884
С	0.1452854	0.5582916	-3.3980987
С	-0.2902250	3.3183511	-3.7602848
С	-0.5419480	1.0329049	-4.5246721
С	-0.7486165	2.4071226	-4.7189255
Η	-0.4881550	4.3931105	-3.9060729
Η	-0.9291958	0.3176134	-5.2669645
Η	-1.2848645	2.7668414	-5.6125753
С	0.3966051	-0.9261099	-3.1747910
С	-0.5971391	-1.8575511	-3.8794204
Η	0.2800205	-1.0914691	-2.0705174
Η	-0.4360896	-2.9055088	-3.5404267
Н	-1.6461777	-1.5830130	-3.6384320
Н	-0.4699162	-1.8484508	-4.9856435
С	0.8048448	3.9461586	-1.5653080
С	2.0524883	4.7390115	-2.0044233
Η	1.0521060	3.4122082	-0.6219636
Η	2.3645696	5.4571947	-1.2126908
Н	2.9141174	4.0709688	-2.2255217

Н	1.8439181	5.3196935	-2.9314061
С	1.8494701	-1.2850324	-3.5512246
Н	2.5833226	-0.6936634	-2.9622578
Н	2.0579820	-2.3638797	-3.3758046
Н	2.0293492	-1.0752011	-4.6295807
С	-0.3475943	4.9081185	-1.2173621
Н	-0.0637425	5.5449132	-0.3500958
Н	-0.5982611	5.5889408	-2.0612368
Н	-1.2661712	4.3441805	-0.9452837
С	-2.9367227	1.0220896	1.1735932
Н	-3.3738091	2.0191689	0.9394754
С	-3.2898533	0.6369734	2.6144087
Н	-3.0285081	1.4627000	3.3113127
Н	-4.3763219	0.4141686	2.7297054
Н	-2.7289552	-0.2603293	2.9622167
С	-3.3531265	0.0465309	0.0975694
С	-3.4544357	-1.3443749	0.3405200
С	-3.5457635	0.4919646	-1.2330045
С	-3.7499834	-2.2456156	-0.6957234
Н	-3.3093599	-1.7318410	1.3618412
С	-3.8391952	-0.4053106	-2.2691005
Н	-3.4529352	1.5683592	-1.4574776
С	-3.9460676	-1.7824868	-2.0063816
Н	-3.8315475	-3.3230107	-0.4722145
Н	-3.9806294	-0.0226907	-3.2938202
Н	-4.1783565	-2.4900514	-2.8194551
Si	-1.0150169	1.1873884	0.8794487
Н	1.9970106	-1.2037167	-0.3386083
Н	-1.0236084	1.9253885	-0.4402781
С	-0.2196651	2.2776476	2.2100296
С	0.7435959	1.7427742	3.0953414
С	-0.5566327	3.6457790	2.3440104
С	1.3486172	2.5402326	4.0808761
Н	1.0420145	0.6845002	2.9946343

```
C 0.0472359 4.4493195 3.3249202
Н -1.3026980 4.0967191 1.6659253
C 1.0018931 3.8963137 4.1971371
H 2.1036035 2.0992871 4.7534894
Н -0.2270141 5.5146985 3.4101690
Н 1.4778088 4.5268664 4.9671483
Н -0.8840005 -0.4284953 1.4406207
J
96
Energy =
Ni 1.2065216 -0.7016460 -0.0896853
C 2.6930543 -1.1411028 1.1158631
C 3.1157938 0.0679118 1.8083965
C 2.5405385 -2.3462954 1.8915438
C 3.6235334 -0.0364803 3.1336534
C 3.0035825 -2.4219645 3.1926149
```

```
C 3.5969839 -1.2641089 3.7941293
H 3.9607073 0.8719411 3.6611534
H 2.8826638 -3.3568104 3.7629441
H 3.9644598 -1.3358704 4.8308165
N 1.8247296 1.1519659 0.1698782
C 2.7945697 1.2545373 1.0922859
H 3.3208042 2.2103146 1.2625283
P 0.7062354 -2.7579642 0.1094049
O 1.8432372 -3.3659498 1.2789591
C 1.1065142 -3.8871310 -1.3251526
C 2.5048158 -3.5535753 -1.8616055
H 1.1138869 -4.9254742 -0.9248675
```

H 2.5486025 -2.5011624 -2.2214635

Н 2.7642058 -4.2226350 -2.7132765

- H
 3.2817441
 -3.6779059
 -1.0768099

 C
 -0.8637175
 -3.4699921
 0.8483956

 C
 -0.8338106
 -4.9899448
 1.0534640
- H -1.6450316 -3.2069938 0.0944340

Н	-1.7619716	-5.3234475	1.5713272
Н	-0.7699726	-5.5508519	0.0959021
Н	0.0326813	-5.2813204	1.6867892
С	0.0239447	-3.7494783	-2.4064098
Н	-0.0870523	-2.6907620	-2.7347329
Н	0.2939541	-4.3538900	-3.3019826
Н	-0.9722205	-4.0994177	-2.0565557
С	-1.1720279	-2.7159859	2.1504803
Н	-0.3960463	-2.9206215	2.9211108
Н	-1.2071886	-1.6174744	1.9926708
Н	-2.1564540	-3.0359476	2.5600945
С	1.3666180	2.2266945	-0.6156197
С	1.0435176	3.5106693	-0.0612251
С	1.0819338	1.9548123	-1.9963515
С	0.5105944	4.4889612	-0.9224677
С	0.5276123	2.9656936	-2.7974195
С	0.2556480	4.2367213	-2.2752287
Н	0.2654639	5.4811657	-0.5094258
Н	0.3042875	2.7594276	-3.8551094
Н	-0.1685707	5.0247808	-2.9186082
С	1.4275901	0.5999429	-2.5934485
С	0.6429196	0.2337138	-3.8585820
Н	1.1252471	-0.2105253	-1.8411982
Н	0.8457640	-0.8239418	-4.1373055
Н	-0.4529770	0.3417770	-3.7095687
Η	0.9412753	0.8612409	-4.7284310
С	1.1997164	3.8640561	1.4196443
С	2.4352512	4.7561716	1.6589336
Η	1.3394590	2.9184496	1.9848615
Η	2.5726630	4.9610168	2.7448585
Н	3.3706908	4.2941319	1.2725342
Н	2.3179780	5.7339597	1.1392010
С	2.9448195	0.4605011	-2.8184288
Н	3.5172087	0.6648585	-1.8887714

Н	3.2054502	-0.5635018	-3.1687277
Н	3.2784314	1.1846815	-3.5952531
С	-0.0573320	4.5286606	2.0138310
Н	0.0504955	4.6240567	3.1171779
Н	-0.2249118	5.5516898	1.6087927
Н	-0.9656515	3.9220013	1.8152375
С	-3.6170717	0.2555617	-0.8023103
Н	-4.3962377	1.0524631	-0.7728152
С	-4.0432359	-0.8898587	0.1282175
Н	-4.3050500	-0.4983646	1.1348160
Н	-4.9278988	-1.4341343	-0.2752586
Н	-3.2320432	-1.6349099	0.2826228
С	-3.3872078	-0.1201975	-2.2529378
С	-3.0199113	-1.4277702	-2.6430667
С	-3.4794734	0.8640245	-3.2660540
С	-2.7619784	-1.7408177	-3.9878165
Н	-2.9356087	-2.2221544	-1.8841994
С	-3.2213182	0.5548230	-4.6092748
Н	-3.7591135	1.8951471	-2.9890729
С	-2.8610866	-0.7524101	-4.9793336
Н	-2.4803949	-2.7718904	-4.2607139
Н	-3.3042161	1.3436598	-5.3756024
Н	-2.6578162	-0.9976923	-6.0346739
Si	-1.9824316	1.0938147	-0.2134361
Н	3.1122627	-1.2867248	0.0754994
Н	-1.8452871	2.3960685	-0.9602396
С	-1.9264809	1.3619086	1.6571798
С	-0.7905955	0.9425898	2.3883402
С	-2.9743691	1.9992253	2.3623389
С	-0.6960745	1.1577610	3.7726837
Н	0.0395503	0.4419910	1.8566267
С	-2.8864732	2.2144659	3.7474338
Н	-3.8758737	2.3436315	1.8239071
С	-1.7445417	1.7970851	4.4545244

```
Н -3.7126618 2.7150934 4.2799928
Н -1.6753617 1.9703834 5.5417269
Н -0.8359245 0.1439119 -0.5358481
TS13
96
Energy =
Ni -0.4492723 0.1586569 -0.4038976
C -1.1620556 1.1326470 -1.8504645
C -0.2590705 1.4215568 -2.9125002
C -2.5479566 1.3027804 -2.0623045
C -0.7273571 2.1070052 -4.0671884
C -3.0201421 1.9590134 -3.2022730
C -2.0891633 2.3981734 -4.1812696
Н -0.0288471 2.3630027 -4.8811726
Н -4.1041150 2.0873654 -3.3503061
Н -2.4645570 2.9213563 -5.0759871
N 1.1277380 0.0190317 -1.6466346
C 1.0228268 0.8116690 -2.7039745
Н 1.8659929 0.9322226 -3.4108555
P -2.5113577 -0.5079274 -0.2742120
O -3.3894748 0.6942172 -1.1519324
C -3.4263676 -0.3952831 1.3477521
C -4.9109312 -0.7859734 1.3068047
Н -2.8668255 -1.1100051 1.9954097
Н -5.3752023 -0.5805988 2.2984656
Н -5.4612453 -0.1887274 0.5475859
Н -5.0649942 -1.8625829 1.0866222
C -2.9834770 -2.1060165 -1.1409693
C -2.6544751 -3.2843549 -0.2094571
Н -2.2339685 -2.1078761 -1.9669096
Н -2.6664616 -4.2397885 -0.7803469
Н -1.6464697 -3.1829775 0.2525207
Н -3.3969675 -3.3781362 0.6138547
```

Н 0.2052165 0.8217684 4.3131191

95

С	-3.2471814	1.0259810	1.9058421
Н	-3.8311068	1.7583994	1.3076600
Н	-3.6020637	1.0721932	2.9598684
Н	-2.1878462	1.3546593	1.8798763
С	-4.3774065	-2.1730291	-1.7769022
Н	-5.1844541	-2.2712971	-1.0216498
Н	-4.5875936	-1.2676871	-2.3848315
Н	-4.4377903	-3.0605988	-2.4476260
С	2.3322345	-0.6744863	-1.3535885
С	2.2660599	-2.1024836	-1.3384093
С	3.5388865	0.0107205	-1.0246451
С	3.4158048	-2.8213305	-0.9723482
С	4.6599043	-0.7640698	-0.6614433
С	4.6052130	-2.1613849	-0.6283274
Н	3.3859442	-3.9218742	-0.9562171
Н	5.6020722	-0.2558507	-0.3988126
Н	5.4964427	-2.7426032	-0.3388256
С	3.6705192	1.5317958	-1.0887006
С	4.3674931	2.1434925	0.1412868
Н	2.6422159	1.9540855	-1.1259203
Н	4.3209353	3.2541783	0.0929043
Н	3.8788644	1.8230091	1.0856725
Н	5.4428804	1.8618358	0.1928883
С	0.9824098	-2.8047077	-1.7685593
С	0.8322809	-2.7875301	-3.3045022
Н	0.1514427	-2.1875514	-1.3530575
Η	-0.1474410	-3.2248791	-3.6044706
Н	0.8794157	-1.7557536	-3.7125663
Н	1.6380361	-3.3868068	-3.7861006
С	4.4056469	1.9652791	-2.3751544
Н	3.9126474	1.5752809	-3.2919426
Н	4.4473608	3.0753674	-2.4503457
Н	5.4513115	1.5828059	-2.3765145
С	0.8260270	-4.2324242	-1.2311447

Н	-0.1769257	-4.6295579	-1.5020736
Н	1.5776169	-4.9299400	-1.6658742
Н	0.9149780	-4.2625012	-0.1241683
С	0.3175215	0.0040101	3.2284665
Н	-0.7023798	0.2633303	3.5959673
С	1.3529592	0.5248996	4.2502422
Н	1.2915254	1.6287617	4.3684572
Н	1.1949422	0.0608043	5.2507653
Н	2.3908896	0.2838506	3.9306286
С	0.3784464	-1.4982291	3.0631027
С	-0.7196361	-2.3180260	3.4047916
С	1.5343448	-2.1311334	2.5469688
С	-0.6759481	-3.7115203	3.2320639
Н	-1.6253298	-1.8496784	3.8289230
С	1.5885063	-3.5233203	2.3874050
Н	2.4054314	-1.5232376	2.2494459
С	0.4825563	-4.3224910	2.7255846
Н	-1.5512756	-4.3247696	3.5054864
Н	2.5036582	-3.9835410	1.9792585
Н	0.5229925	-5.4162444	2.5921640
Н	-0.6081246	1.6473352	-0.2353900
Si	0.5704449	0.9090580	1.5217520
Н	0.0615331	-0.7195109	0.7332497
Н	2.0491771	0.7779463	1.2489313
С	0.3038059	2.7760853	1.8793430
С	0.8890052	3.7272758	1.0092648
С	-0.4731288	3.2659927	2.9534365
С	0.7147773	5.1050389	1.2053456
Н	1.4907250	3.3814087	0.1498764
С	-0.6597898	4.6456656	3.1518239
Н	-0.9482927	2.5640497	3.6601956
С	-0.0650792	5.5702295	2.2793296
Н	1.1877812	5.8225789	0.5136280
Н	-1.2741942	4.9992785	3.9972385

Н -0.2092023 6.6526938 2.4336886

References

- 1 (a) D. M. Spasyuk, S. I. Gorelsky, A. van der Est and D. Zargarian, *Inorg. Chem.*, 2011, **50**, 2661-2674; (b) B. Mougang-Soumé, F. Belanger-Gariépy and D. Zargarian, *Organometallics*, 2014, **33**, 5990-6002.
- (a) G. Barbe, G. and A. B. Charette, J. Am. Chem. Soc. 2008, 130, 18; (b) S. Zhou, K. Junge, D. Addis, S. Das and M. Beller, Angew. Chem. Int. Ed., 2009, 48, 9507; (c) A. Volkov, E. Buitrago and H. Adolfsson, Eur. J. Org. Chem., 2013, 2066; (d) C. M. Kelly, R. McDonald, O. L. Sydora, M. Stradiotto and L. Turculet, Angew. Chem. Int. Ed., 2017, 56, 15901.
- Such redistribution reactions are often observed during hydrosilylation catalysis by both late and early transition metal systems. For example: (a) J. L. Speier, Adv. Organomet. Chem., 1979, 17, 407; (b) M. D. Curtis and P. S. Epstein, Adv. Organomet. Chem., 1981, 19, 213; (c) A. Y. Khalimon, O. G. Shirobokov, E. Peterson, R. Simionescu, L. G. Kuzmina, J. A. K. Howard and G. I. Nikonov, Inorg. Chem., 2012, 51, 4300-4313.
- 4 B. Mougang-Soumé, F. Belanger-Gariépy and D. Zargarian, *Organometallics*, 2014, **33**, 5990-6002.
- 5 A. Kunai, T. Sakurai, E. Toyoda and M. Ishikawa, *Organometallics*, 1996, **15**, 2478-2482.
- 6 D. Xiaoyong, Y. Zhang, D. Peng and Z. Huang, *Angew. Chem. Int. Ed.*, 2016, 55, 6671.
- 7 D. Peng, Y. Zhang, X. Du, L. Zhang, X. Leng, M.D. Walter and Z. Huang, J. Am. Chem. Soc., 2013, **135**, 19154.
- 8 C. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel, B. Q. Mercado, D. J. Weix and P. L. Holland, *J. Am. Chem. Soc.*, 2015, **137**, 13244.
- 9 For references to PhSiH_x(OCH₂Ph)_y, see: Neary, P. J. Quinlivan, G. Parkin, *Inorg. Chem.*, 2018, **57**, 374 and references therein.
- 10 C. Ghosh, T. K. Mukhopadhyay, M. Flores, T. L. Groy and R. J. Trovitch, *Inorg. Chem.*, 2015, **54**, 10398.
- D. V. Gutsulyak, S. F. Vyboishchikov and G. I. Nikonov, J. Am. Chem. Soc., 2010, 132, 5950.
- 12 W. Sattler, S. Ruccolo, M. R. Chaijan, T. N. Allah and G. Parkin, *Organometallics*, 2015, **34**, 4717.
- 13 I. Ojima, M. Nihonyanagi, T. Kogure, M. Kumagai, S. Horiuchi, K. Nakatsugawa and Y. Nagai, *J. Organomet. Chem.*, 1975, **94**, 449.
- (a) E. Peterson, A. Y. Khalimon, R. Simionescu, L. G. Kuzmina, J. A. K. Howard and G. I. Nikonov, *J. Am. Chem. Soc.*, 2009, **131**, 908-909; (b) A. Y. Khalimon, R. Simionescu and G. I. Nikonov, *J. Am. Chem. Soc.*, 2011, **133**, 7033-7053; (c) A. Y. Khalimon, S. K. Ignatov, L. G. Kuzmina, J. A. K. Howard and G. I. Nikonov, *Inorg. Chem.*, 2012, **51**, 754-756; (d) A. Rit, A. Zanardi, T. P. Spaniol, L. Maron and J. Okuda, Angew. Chem., Int. Ed., 2014, 53, 13273-13277;
- (a) B. L. Tran, M. Pink and D. Mindiola, Organometallics, 2009, 28, 2234-2243;
 (b) S. Park and M. Brookhart, Organometallics, 2010, 29, 6057-6064;
 (c) J. L. Smeltz, P. D. Boyle and E. A. Ison, Organometallics, 2012, 31, 5994-5997;
 (d) T. Sawano, Z. Lin, D. Boures, B. An, C. Wang, W. Lin, J. Am. Chem. Soc., 2016, 138,

9783-9786; (*e*) T. Godou, C. Chauvier, P. Thuéry and T. Cantat, *Synlett*, 2017, **28**, 2473-2477; (*f*) C. Chauvier, T. Godou and T. Cantat, Chem. Commun., 2017, 53, 11697-11700.

- (a) T. Bolano, M. A. Esteruelas, M. P. Gay, E. Onate, I. M. Pastor and M. Yus, *Organometallics*, 2015, 34, 3902-3908; (b) Y. Liu, X. Ma, Y. Ding, Z. Yang, H. W. Roesky, *Organometallics*, 2018, 37, 3839-3845; (c) Z. Zhu, X. Wu, X. Xu, Z. Wu, M. Xue, Y. Yao, Q. Shen and X. Bao, *J. Org. Chem.*, 2018, 83, 10677-10683; (d) S. Khoo, J. Cao, F. Ng, C.-W. So, *Inorg. Chem.*, 2018, 57, 12452-12455.
- T. J. Hadlington, M. Hermann, G. Frenking and C. Jones, J. Am. Chem. Soc., 2014, 136, 3028-3031.
- 18 D. Mukherjee, H. Osseili, T. P. Spaniol and J. Okuda, J. Am. Chem. Soc., 2016, 138, 10790-10793.
- 19 M. Arrowsmith, T. J. Hadlington, M. S. Hill and G. Kociok-Kohn, *Chem. Commun.*, 2012, **48**, 4567.
- (a) M. Kr. Barman, A. Baishya and S. Nembenna, *Dalton Trans.*, 2017, 46, 4152-4156; (b) J. R. Lawson, L. C. Wilkins and R. L. Melen, *Chem. Eur. J.*, 2017, 23, 10997-11000; (c) S. Kisan, V. Krishnakumar and C. Guananathan, *ACS Catal.*, 2018, 8, 4772-4776.
- (a) A. Kaithal, B. Chatterjee, C. Gunanathan, J. Org. Chem., 2016, 81, 11153-11161; (b) M. Ito, M. Itazaki and H. Nakazawa, *Inorg. Chem.*, 2017, 56, 13709-13714; (c) H. Ben-Daat, C. L. Rock, M. Flores, T. L. Groy, A. C. Bowman and R. J. Trovich, *Chem. Commun.*, 2017, 53, 7333-7336.
- 22 Bruker. APEXII. Bruker AXS Inc., Madison, Wisconsin, USA, 2008.
- 23 Sheldrick G. M., SADABS. University of Göttingen, Germany, 1997.
- 24 G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 25 G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- (a) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396-1396; (b) Adamo and V. Barone, *J. Chem. Phys.*, 1999, **110**, 6158-6170; (c) A. Schäfer, H. Horn and R. Ahlrichs, *J. Chem. Phys.*, 1992, **97**, 2571-2577; (d) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305; (e) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057-1065.
- 27 TURBOMOLE V7.1 2016, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com