Synthesis, structure and DFT calculations of 1,2-N-substituted o-carboranes

Ronglin Pang[#], Junxia Li[#], Zhongzheng Cui, Cheng Zheng, Zhifang Li, Weifeng Chen, Fan Qi, Li Su, Xu-Qiong Xiao*

Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Hangzhou, 311121, Zhejiang (China) E-mail: <u>xqxiao@hznu.edu.cn</u>

Electronic Supplementary Information

Table of Contents:

(1) NMR Spectra	2
(2) X-ray crystallography	17
(3) Computational details	19
(4) References	19

Fig. S1. ¹H NMR (Acetone-D6, 400.13 MHz) spectrum of Compound **2a**. (*:H₂O)

Fig. S2. ¹³C{¹H} NMR (Acetone-D₆, 100.62 MHz) spectrum of Compound **2a**.

Fig. S3. ¹¹B NMR (Acetone-D₆, 160.46 MHz) spectrum of Compound **2a**.

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 -1.0 -1.5 -2.0 -2.5

Fig. S4. ¹H NMR (Acetone-D₆, 400.13 MHz) spectrum of Compound **2b**. (*:H₂O; #: TMS)

Fig. S5. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (Acetone-D₆, 100.62 MHz) spectrum of Compound 2b.

Fig. S6. ¹¹B NMR (Acetone-D₆, 160.46 MHz) spectrum of Compound **2b**.

Fig. S8. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (Acetone-D₆, 100.62 MHz) spectrum of Compound 2c.

Fig. S9. ¹¹B NMR (Acetone-D₆, 160.46 MHz) spectrum of Compound 2c.

Fig. S10. ¹H NMR (Acetone-D₆, 400.13 MHz) spectrum of Compound **2d**. (*:H₂O)

Fig. S11. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (Acetone-D₆, 100.62 MHz) spectrum of Compound 2d.

Fig. S12. ¹¹B NMR (Acetone-D₆, 160.46 MHz) spectrum of Compound **2d**.

Fig. S14. ¹³C{¹H} NMR (CDCl₃, 100.62 MHz) spectrum of Compound **3a**.

Fig. S16. ¹H NMR (Acetone-D₆, 400.13 MHz) spectrum of Compound **3b**. (*:H₂O; #:Hexane)

Fig. S17. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (Acetone-D_6, 100.62 MHz) spectrum of Compound 3b.

-9.68
 -10.62
 -11.93
 -12.85
 17.11
 -17.11
 -18.04

Fig. S18. ¹¹B NMR (Acetone-D₆, 160.46 MHz) spectrum of Compound **3b**.

Fig. S19. ¹H NMR (Acetone-D₆, 400.13 MHz) spectrum of Compound **3c**. (#:Hexane)

Fig. S20. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (Acetone-D_6, 100.62 MHz) spectrum of Compound 3c.

Fig. S21. ¹¹B NMR (Acetone-D₆, 160.46 MHz) spectrum of Compound **3c**.

Fig. S22. ¹H NMR (Acetone-D₆, 400.13 MHz) spectrum of Compound **3d**. (*:H₂O; #:Hexane)

Fig. S24. ^{11}B NMR (Acetone-D_6, 160.46 MHz) spectrum of Compound 3d.

Fig. S26. ${}^{13}C{}^{1}H$ NMR (Acetone-D₆, 100.62 MHz) spectrum of Compound **4a**.

Fig. S27. ¹¹B NMR (Acetone-D₆, 160.46 MHz) spectrum of Compound **4a**.

Fig. S28. ¹H NMR (Acetone-D₆, 400.13 MHz) spectrum of Compound **4d**.

Fig. S29. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (Acetone-D_6, 100.62 MHz) spectrum of Compound 4d.

~ -8.00
~ -8.86
− -11.59
~ -14.59
~ -15.27

Fig. S30. $^{\rm 11}{\rm B}$ NMR (Acetone-D₆, 160.46 MHz) spectrum of Compound ${\rm 4d}.$

(2) X-ray crystallography.

Molecular structures of **2b**, **2c**, **3a**, **3b**, **3d** and **4a**, as well as the pertinent structure parameters, were given in Fig. S31-S36. Crystal data, data collection parameters, and the results of the analysis of these compounds are listed in Tables S1. Two crystallographically independent molecules were found in the asymmetric units of **3a**, both of which were plotted in Fig. S33. In asymmetric units of **3a** and **4a**, there are disorders in *t*Bu groups. Therefore, PART, SIMU, DFIX and/or DELU instructions were used to refine the structures to convergence.

Fig. S31. Molecular structure of **2b** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level.) Selected bond lengths (pm) and angles(°): C(1)-C(2) 171.8(3), C(1)-N(2) 141.4(3), C(2)-N(1) 141.4(3), N(1)-C(3) 126.2(3), N(2)-C(4) 125.8(4); N(2)-C(1)-C(2) 112.7(2), N(1)-C(2)-C(1) 113.04(19), C(3)-N(1)-C(2) 118.8(2), C(4)-N(2)-C(1) 120.1(2), N(1)-C(3)-C(5) 121.4(2), N(2)-C(4)-C(11) 120.5(3).

Fig. S32. Molecular structure of **2c** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level.) Selected bond lengths (pm) and angles(°): C(1)-C(2) 172.3(2), C(1)-N(1) 141.4(2), C(2)-N(2) 141.6(2), N(1)-C(3) 126.9(2), C(11)-N(2) 126.1(2); N(1)-C(1)-C(2) 120.69(13), N(2)-C(2)-C(1) 112.38(12), C(3)-N(1)-C(1) 121.45(15), C(11)-N(2)-C(2) 120.61(15), N(2)-C(11)-C(12) 122.25(16), N(1)-C(3)-C(4) 121.31(16).

Fig. S33. Molecular structure of **3a** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level.) Selected bond lengths (pm) and angles(°): C(1)-C(1A) 188.2(13), C(7)-C(7A) 185.3(13), N(1)-C(2) 139.4(9), N(1)-C(1) 139.9(9), N(2)-C(8) 144.4(15); C(2)-N(1)-C(1) 123.4(8), N(1)-C(1)-C(1A) 115.5(4), N(2)-C(7)-C(7A) 118.2(5), C(7)-N(2)-C(8) 116.6(12).

Fig. S34. Molecular structure of **3b** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level.) Selected bond lengths (pm) and angles(°): C(1)-C(2) 187.1(3), C(1)-N(1) 139.2(2), C(2)-N(2) 138.5(2), N(1)-C(10) 146.1(3), N(2)-C(3) 145.5(3); N(1)-C(1)-C(2) 113.19(15), N(2)-C(2)-C(1) 116.41(16), C(1)-N(1)-C(10) 120.70(17), C(2)-N(2)-C(3) 122.76(19).

Fig. S35. Molecular structure of **3d** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level.) Selected bond lengths (pm) and angles(°): C(1)-C(2) 193.2(3), C(1)-N(1) 138.0(3), C(2)-N(2) 137.4(3), C(3)-N(1) 145.6(3), C(11)-N(2) 146.2(3); N(1)-C(1)-C(2) 116.85(17), N(2)-C(2)-C(1) 113.81(15), C(1)-N(1)-C(3) 121.26(19), C(2)-N(2)-C(11) 122.59(18).

Fig. S36. Molecular structure of **4a** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level.) Selected bond lengths (pm) and angles(°): C(2)-C(1) 162.4(3), N(2)-C(1) 140.5(3), N(2)-C(3) 160.1(10), C(2)-N(1) 141.4(3), N(1)-C(3) 148.7(10); C(9)-N(2)-C(1) 124.2(3), C(9)-N(2)-C(3) 126.1(5), C(1)-N(2)-C(3) 106.3(3), N(1)-C(2)-C(1) 104.81(17), N(2)-C(1)-C(2) 105.95(18), C(2)-N(1)-C(4) 119.1(2), C(2)-N(1)-C(3) 109.9(3), C(4)-N(1)-C(3) 128.8(5), N(1)-C(3)-N(2) 100.3(7).

	2b	2c	За	3b	3d	4a
CCDC Nos.	1881761	1881762	1881763	1881764	1881765	1881766
Empirical formula	$C_{16}H_{20}B_{10}CI_2N_2$	$C_{18}H_{26}B_{10}N_2$	$C_{12}H_{34}B_{10}N_2$	$C_{16}H_{24}B_{10}CI_2N_2$	$C_{18}H_{30}B_{10}N_2O_2$	$C_{13}H_{34}B_{10}N_2$
Formula weight	419.34	378.51	314.51	423.37	414.54	326.52
Temperature (K)	296(2)	296(2)	296(2)	296(2)	296(2)	296(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Orthorhombic	Triclinic	Orthorhombic	Triclinic
space group	P ₋₁	P2(1)/c	Fdd2	P ₋₁	<i>P</i> na2(1)	P ₋₁
a (Å)	7.133(2)	7.4532(17)	11.268(8)	7.3966(11)	26.797(6)	8.829(5)
b (Å)	12.872(4)	13.427(3)	19.419(14)	11.6224(18)	7.6904(17)	11.088(5)
c (Å)	13.741(4)	22.271(5)	39.46(3)	13.104(2)	11.398(3)	12.660(6)
α (°)	66.302(4)	90	90	85.700(2)	90	107.034(9)
β (°)	75.196(5)	92.261(6)	90	82.407(2)	90	98.560(9)
γ (°)	83.836(5)	90	90	85.925(2)	90	109.841(6)
V (Å ³)	1117.0(5)	2227.1(9)	8635(11)	1111.3(3)	2348.8(9)	1071.4(10)
Z	2	4	16	2	4	2
D _{calcd} (Mg / m ³)	1.247	1.129	0.968	1.265	1.172	1.012
μ (mm ⁻¹)	0.297	0.059	0.049	0.299	0.067	0.052
F(000)	428	792	2720	436	872	352
θ range (°)	1.664 to 25.493	1.771 to 27.543	2.06 to 27.52	1.571 to 27.503	1.520 to 28.108	1.75 to 25.09

Table S1. Details of crystallographic data for 2b, 2c, 3a, 3b, 3d and 4a.

Limiting indices	-8<=h<=8,	-6<=h<=9,	-12<=h<=14, -	-9<=h<=9,	-29<=h<=34,	-10<=h<=10, -
	-15<=k<=15, -	-17<=k<=17, -	24<=k<=24, -50<=l<=51	-15<=k<=14, -	-9<=k<=9,	9<=k<=13,
	16<=l<=16	28<=I<=28		13<=l<=16	-14<= <=14	-15<=l<=15
Ref. collected/unique	7071 / 4112	14217 / 5087	15542 / 4916	8385 / 5046	15891 / 5315	<mark>6571 / 3725</mark>
R _{int}	0.0283	0.0359	0.1175	0.0185	0.0273	0.0389
Completeness to θ [%]	98.6	99.5	99.8	99.1	99.2	<mark>97.7</mark>
Data / restraints / parameters	4112/0/351	5087/0/313	4916 / 56 / 242	5046 / 0 / 319	5315 / 3 / 340	<mark>3725 / 16 / 318</mark>
GOOF ^a	1.003	1.013	1.121	1.035	1.035	<mark>1.001</mark>
Final R indices $[I > 2\sigma(I)]^{b}$	R ₁ = 0.0618,	R ₁ = 0.0496,	R ₁ = 0.0960,	R ₁ = 0.0555,	R ₁ = 0.0395,	R ₁ = 0.0754,
	wR ₂ = 0.1943	wR ₂ = 0.1219	wR ₂ = 0.1791	wR ₂ = 0.1610	$wR_2 = 0.1052$	wR ₂ = 0.2098
R indices (all data)	R ₁ = 0.0791,	R ₁ = 0.0962,	R ₁ = 0.2832,	R ₁ = 0.0664,	R ₁ = 0.0460,	R ₁ = 0.1288,
	wR ₂ = 0.2156	wR ₂ = 0.1470	wR ₂ = 0.2295	wR ₂ = 0.1736	wR ₂ = 0.1109	wR ₂ = 0.2463
$\Delta \rho_{max, min}$ (e/Å ³)	0.393 and -0.428	0.144 and -0.149	0.184 and -0.117	1.071 and -0.770	0.277 and -0.208	0.206 and -0.162

^a Goodness-of-fit on F^2 ^b $R_1 = ||F_0| - |F_c||/|F_0|$, $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$

(3) Computational details

All quantum chemical calculations were carried out using the Gaussian09/Gaussian16 package.^[1] The molecular structure optimizations were performed using the B3LYP, B3LYP-D3, B3PW91 or B3PW91-D3 functional along with the cc-pVTZ basis set.^[2] Every stationary point was identified by a subsequent frequency calculation either as minimum (Number of imaginary frequencies NIMAG: 0) or transition state (NIMAG: 1).

Compound	Functionals	E(SCF) [a.u.]	NIMAG, \tilde{v} [cm ⁻¹]	G ²⁹⁸ [a.u.]
2c	B3PW91-D3	-1059.736150	0	-1059.358841
2c'	B3PW91-D3	-1059.735843	0	-1059.360276
TS1	B3PW91-D3	-1059.734026	1, -48.7	-1059.355783
2b	B3LYP	-1900.664431	0	-1900.360226
2b	B3LYP-D3	-1900.726192	0	-1900.421351
2b	B3PW91	-1900.189432	0	-1899.884279
2b	B3PW91-D3	-1900.258326	0	-1899.952647
3b	B3LYP	-1903.098634	0	-1902.750006
3b	B3LYP-D3	-1903.169470	0	-1902.818507
3b	B3PW91	-1902.629611	0	-1902.279805
3b	B3PW91-D3	-1902.709776	0	-1902.357177

Table S2. SCF energies, E(SCF), and free Gibbs enthalpies, G²⁹⁸, for calculated compounds.

Compound **2c** at B3PW91-D3/cc-pVTZ level.

Center	Atomic	Atomic	Cod	ordinates (A	ngstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.216053	-1.102214	-0.058754
2	6	0	2.118642	0.627200	-0.029284
3	7	0	1.056869	-1.868569	-0.214499
4	5	0	3.387096	1.274053	0.902591
5	5	0	2.647547	-0.194670	-1.454029
6	5	0	3.429040	1.292563	-0.871349
7	5	0	3.609827	-1.573239	-0.910186
8	5	0	4.321438	-0.118122	1.463524
9	5	0	2.568786	-0.219065	1.392313
10	5	0	4.408164	-0.075616	-1.418488
11	5	0	3.544952	-1.601798	0.863018

12	5	0	4.869799	0.822617	0.050259
13	5	0	4.972984	-0.951358	0.027025
14	6	0	-1.215983	-2.401281	0.298050
15	6	0	0.556578	2.342056	-0.028599
16	1	0	1.356045	3.086309	0.043942
17	6	0	0.018349	-1.653542	0.491030
18	1	0	-0.009939	-0.891136	1.270611
19	6	0	-1.907878	1.993224	-0.186952
20	1	0	-1.738078	0.927295	-0.269847
21	6	0	-0.807636	2.849965	-0.064662
22	6	0	-3.418528	3.883667	-0.109680
23	6	0	-2.320531	4.729921	0.009932
24	1	0	-2.476388	5.799494	0.087206
25	6	0	-2.325042	-2.088167	1.082227
26	1	0	-2.248000	-1.303775	1.827265
27	6	0	-1.030621	4.221945	0.031182
28	1	0	-0.186574	4.896132	0.125753
29	6	0	-3.187192	2.506543	-0.207868
30	1	0	-4.031303	1.832943	-0.304604
31	6	0	-1.331274	-3.410706	-0.663457
32	1	0	-0.471073	-3.647953	-1.276033
33	6	0	-3.522381	-2.766482	0.914327
34	1	0	-4.375510	-2.510333	1.531686
35	6	0	-3.642027	-3.774948	-0.037213
36	6	0	-2.524728	-4.083218	-0.821855
37	1	0	-2.603143	-4.864559	-1.569496
38	6	0	-4.818124	4.419571	-0.144852
39	1	0	-5.283600	4.224078	-1.114339
40	1	0	-4.843306	5.495067	0.028569
41	1	0	-5.441130	3.938296	0.612410
42	6	0	-4.926018	-4.526696	-0.221466
43	1	0	-4.806407	-5.573803	0.068747
44	1	0	-5.239061	-4.518425	-1.267842
45	1	0	-5.731696	-4.103225	0.377904
46	7	0	0.806968	1.096614	-0.073383
47	1	0	1.781281	-0.260931	2.270819
48	1	0	3.145014	2.258567	1.515382
49	1	0	3.211859	2.291673	-1.469735
50	1	0	5.822081	1.528049	0.088680
51	1	0	3.526591	-2.577578	-1.527238
52	1	0	3.432131	-2.621426	1.451264
53	1	0	5.015901	-0.021854	-2.434759
54	1	0	4.866613	-0.102720	2.516131
55	1	0	6.005254	-1.533721	0.052078

56 1 0 1.887480 -0.220626 -2.355407

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.854588	1.886494	0.000062
2	6	0	0.854594	1.886492	-0.000045
3	7	0	-1.424709	0.613346	0.000034
4	5	0	1.433224	3.220097	-0.885493
5	5	0	0.000090	2.325630	1.427541
6	5	0	1.433333	3.220023	0.885438
7	5	0	-1.433216	3.220028	0.885616
8	5	0	-0.000084	4.092095	-1.443557
9	5	0	-0.000083	2.325745	-1.427488
10	5	0	0.000094	4.091978	1.443751
11	5	0	-1.433323	3.220098	-0.885314
12	5	0	0.888725	4.651602	0.000065
13	5	0	-0.888713	4.651604	0.000174
14	6	0	-3.334916	-0.819365	0.000060
15	6	0	2.689998	0.486698	-0.000233
16	1	0	3.358106	1.354327	-0.000329
17	6	0	-2.689995	0.486703	0.000113
18	1	0	-3.358101	1.354333	0.000216
19	6	0	2.593473	-2.005891	-0.000061
20	1	0	1.512961	-1.942986	-0.000013
21	6	0	3.334917	-0.819372	-0.000217
22	6	0	4.634255	-3.308863	-0.000268
23	6	0	5.365638	-2.125352	-0.000557
24	1	0	6.448536	-2.166524	-0.000897
25	6	0	-4.726061	-0.895093	0.000186
26	1	0	-5.311775	0.017587	0.000335
27	6	0	4.726060	-0.895102	-0.000499
28	1	0	5.311776	0.017576	-0.000795
29	6	0	3.236980	-3.225212	-0.000120
30	1	0	2.653014	-4.138905	-0.000141
31	6	0	-2.593476	-2.005885	-0.000098
32	1	0	-1.512965	-1.942983	-0.000170
33	6	0	-5.365642	-2.125339	0.000146
34	1	0	-6.448540	-2.166509	0.000265
35	6	0	-4.634260	-3.308854	-0.000032

36	6	0	-3.236987	-3.225206	-0.000137	
37	1	0	-2.653023	-4.138900	-0.000239	
38	6	0	5.311365	-4.646553	0.000991	
39	1	0	5.033697	-5.222984	0.886905	
40	1	0	6.396700	-4.549740	-0.011462	
41	1	0	5.014125	-5.235162	-0.870315	
42	6	0	-5.311388	-4.646536	-0.000293	
43	1	0	-5.022297	-5.230120	0.877167	
44	1	0	-5.025516	-5.228048	-0.880203	
45	1	0	-6.396787	-4.549662	0.001761	
46	7	0	1.424712	0.613343	-0.000105	
47	1	0	-0.000139	1.540971	-2.307605	
48	1	0	2.437885	3.053243	-1.489685	
49	1	0	2.438069	3.053112	1.489490	
50	1	0	1.533224	5.646775	0.000066	
51	1	0	-2.437878	3.053124	1.489793	
52	1	0	-2.438060	3.053239	-1.489381	
53	1	0	0.000159	4.668282	2.479605	
54	1	0	-0.000148	4.668481	-2.479364	
55	1	0	-1.533211	5.646778	0.000253	
56	1	0	0.000145	1.540785	2.307594	

	TS1	at	B3PW91	-D3/	'cc-pVTZ	level.
--	-----	----	--------	------	----------	--------

		Standard	orientation:	:		
Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	1.997606	-1.228353	-0.169891	
2	6	0	2.116239	0.464663	-0.040741	
3	7	0	0.731916	-1.780411	-0.428848	
4	5	0	3.430488	0.893602	0.964795	
5	5	0	2.599051	-0.312605	-1.500762	
6	5	0	3.541706	1.012201	-0.800452	
7	5	0	3.336978	-1.840077	-1.009434	
8	5	0	4.163337	-0.635317	1.469337	
9	5	0	2.416894	-0.502567	1.349421	
10	5	0	4.352911	-0.437738	-1.402602	
11	5	0	3.217834	-1.962581	0.761297	
12	5	0	4.873588	0.303569	0.130206	
13	5	0	4.741862	-1.467198	0.001700	
14	6	0	-1.401337	-2.576877	0.289610	
15	6	0	0.801856	2.367355	0.003944	

16	1	0	1.699321	2.991059	0.068435	
17	6	0	-0.076152	-2.022385	0.523184	
18	1	0	0.182223	-1.824729	1.567428	
19	6	0	-1.689592	2.382042	-0.110277	
20	1	0	-1.675391	1.302416	-0.188013	
21	6	0	-0.474347	3.068456	-0.006966	
22	6	0	-2.905103	4.474190	-0.019347	
23	6	0	-1.693450	5.150479	0.082417	
24	1	0	-1.689609	6.231507	0.157811	
25	6	0	-2.235161	-2.829817	1.377538	
26	1	0	-1.884343	-2.616628	2.381294	
27	6	0	-0.492024	4.458419	0.087882	
28	1	0	0.443247	5.001478	0.167532	
29	6	0	-2.879733	3.077923	-0.115706	
30	1	0	-3.815407	2.536070	-0.197115	
31	6	0	-1.869521	-2.852337	-0.999816	
32	1	0	-1.221929	-2.650599	-1.843176	
33	6	0	-3.506170	-3.348695	1.186494	
34	1	0	-4.142141	-3.539468	2.042963	
35	6	0	-3.976478	-3.628036	-0.093278	
36	6	0	-3.135157	-3.368660	-1.181365	
37	1	0	-3.488626	-3.577857	-2.184806	
38	6	0	-4.211943	5.208824	-0.031619	
39	1	0	-4.745778	5.037039	-0.969642	
40	1	0	-4.072431	6.283314	0.084354	
41	1	0	-4.862392	4.862368	0.775007	
42	6	0	-5.342113	-4.205897	-0.313647	
43	1	0	-5.271677	-5.240146	-0.661155	
44	1	0	-5.887138	-3.647837	-1.077843	
45	1	0	-5.935245	-4.200783	0.600600	
46	7	0	0.872468	1.099026	-0.056554	
47	1	0	1.602292	-0.463801	2.201937	
48	1	0	3.287375	1.865877	1.626168	
49	1	0	3.482419	2.066558	-1.336974	
50	1	0	5.908200	0.872213	0.240675	
51	1	0	3.144355	-2.789599	-1.686745	
52	1	0	2.944347	-2.995590	1.270121	
53	1	0	5.000312	-0.412685	-2.395190	
54	1	0	4.671542	-0.746379	2.534703	
55	1	0	5.685779	-2.184434	0.012469	
56	1	0	1.872241	-0.193889	-2.421054	

Compound **2b** at **B3LYP**/cc-pVTZ level.

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.867727	2.253835	0.000082	
2	6	0	0.867727	2.253835	-0.000017	
3	7	0	-1.446658	0.978348	0.000069	
4	5	0	1.435765	3.591405	-0.886677	
5	5	0	0.000079	2.692190	1.427611	
6	5	0	1.435864	3.591345	0.886669	
7	5	0	-1.435765	3.591346	0.886831	
8	5	0	-0.000081	4.458683	-1.444136	
9	5	0	-0.000080	2.692286	-1.427517	
10	5	0	0.000081	4.458586	1.444348	
11	5	0	-1.435864	3.591404	-0.886515	
12	5	0	0.887892	5.021486	0.000075	
13	5	0	-0.887892	5.021486	0.000175	
14	6	0	-3.363839	-0.462476	0.000119	
15	6	0	2.712417	0.846508	-0.000167	
16	1	0	3.383634	1.708887	-0.000158	
17	6	0	-2.712417	0.846508	0.000142	
18	1	0	-3.383634	1.708887	0.000213	
19	6	0	2.629236	-1.654228	-0.000128	
20	1	0	1.550181	-1.601323	-0.000091	
21	6	0	3.363839	-0.462476	-0.000170	
22	6	0	4.665645	-2.915506	-0.000186	
23	6	0	5.417117	-1.748787	-0.000226	
24	1	0	6.495753	-1.798794	-0.000264	
25	6	0	-4.759262	-0.527406	0.000203	
26	1	0	-5.337886	0.387592	0.000284	
27	6	0	4.759262	-0.527405	-0.000216	
28	1	0	5.337886	0.387592	-0.000247	
29	6	0	3.273074	-2.877566	-0.000136	
30	1	0	2.711303	-3.800036	-0.000105	
31	6	0	-2.629236	-1.654228	0.000015	
32	1	0	-1.550181	-1.601323	-0.000051	
33	6	0	-5.417117	-1.748787	0.000186	
34	1	0	-6.495753	-1.798794	0.000252	
35	6	0	-4.665645	-2.915506	0.000083	
36	6	0	-3.273074	-2.877567	-0.000004	
37	1	0	-2.711303	-3.800036	-0.000084	
38	7	0	1.446657	0.978348	-0.000088	

39	1	0	-0.000129	1.919234	-2.312052	
40	1	0	2.435102	3.434733	-1.492976	
41	1	0	2.435269	3.434631	1.492846	
42	1	0	1.528843	6.013178	0.000073	
43	1	0	-2.435102	3.434634	1.493119	
44	1	0	-2.435269	3.434731	-1.492702	
45	1	0	0.000139	5.033509	2.475460	
46	1	0	-0.000139	5.033674	-2.475209	
47	1	0	-1.528843	6.013178	0.000243	
48	1	0	0.000129	1.919079	2.312094	
49	17	0	5.478723	-4.461285	-0.000196	
50	17	0	-5.478723	-4.461285	0.000059	

Compound **2b** at **B3LYP-D3**/cc-pVTZ level.

23	6	0	5.356016	-1.785321	-0.000252
24	1	0	6.433290	-1.858011	-0.000297
25	6	0	-4.722607	-0.551011	0.000182
26	1	0	-5.319473	0.352211	0.000234
27	6	0	4.722607	-0.551011	-0.000206
28	1	0	5.319473	0.352211	-0.000215
29	6	0	3.189283	-2.872103	-0.000182
30	1	0	2.610457	-3.783887	-0.000173
31	6	0	-2.569950	-1.636587	0.000053
32	1	0	-1.492004	-1.561525	0.00006
33	6	0	-5.356016	-1.785321	0.000176
34	1	0	-6.433290	-1.858011	0.000222
35	6	0	-4.581345	-2.937110	0.000108
36	6	0	-3.189283	-2.872103	0.000046
37	1	0	-2.610457	-3.783887	-0.000006
38	7	0	1.434227	0.999442	-0.000042
39	1	0	-0.000100	1.934766	-2.309288
40	1	0	2.438666	3.449890	-1.490474
41	1	0	2.438794	3.449814	1.490421
42	1	0	1.529699	6.037164	0.000078
43	1	0	-2.438666	3.449815	1.490632
44	1	0	-2.438794	3.449889	-1.490263
45	1	0	0.000108	5.058513	2.478038
46	1	0	-0.000108	5.058638	-2.477799
47	1	0	-1.529699	6.037164	0.000210
48	1	0	0.000100	1.934649	2.309370
49	17	0	5.364029	-4.498992	-0.000297
50	17	0	-5.364029	-4.498992	0.000099

Compound **2b** at **B3PW91**/cc-pVTZ level.

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-0.856157	2.221905	0.000080	
2	6	0	0.856157	2.221905	-0.000028	
3	7	0	-1.437737	0.950522	0.000066	
4	5	0	1.431820	3.556127	-0.884366	
5	5	0	0.000088	2.661462	1.426980	
6	5	0	1.431929	3.556061	0.884337	
7	5	0	-1.431820	3.556063	0.884516	
8	5	0	-0.000090	4.427312	-1.441459	
9	5	0	-0.000088	2.661566	-1.426895	
10	5	0	0.000090	4.427207	1.441673	
11	5	0	-1.431929	3.556126	-0.884188	
12	5	0	0.887322	4.986810	0.000072	
13	5	0	-0.887323	4.986810	0.000182	
14	6	0	-3.372395	-0.457968	0.000118	
15	6	0	2.704706	0.838995	-0.000197	
16	1	0	3.362442	1.713777	-0.000188	
17	6	0	-2.704706	0.838995	0.000150	
18	1	0	-3.362442	1.713777	0.000229	
19	6	0	2.653838	-1.656661	-0.000114	
20	1	0	1.572690	-1.615704	-0.000074	
21	6	0	3.372395	-0.457968	-0.000179	
22	6	0	4.704128	-2.889483	-0.000159	
23	6	0	5.439496	-1.713854	-0.000222	
24	1	0	6.520100	-1.750866	-0.000263	
25	6	0	-4.766530	-0.503263	0.000213	
26	1	0	-5.332710	0.421223	0.000309	
27	6	0	4.766530	-0.503263	-0.000229	
28	1	0	5.332710	0.421223	-0.000277	
29	6	0	3.312561	-2.869795	-0.000104	
30	1	0	2.763111	-3.801346	-0.000056	
31	6	0	-2.653838	-1.656661	-0.000005	
32	1	0	-1.572690	-1.615704	-0.000080	
33	6	0	-5.439496	-1.713854	0.000189	
34	1	0	-6.520100	-1.750866	0.000264	
35	6	0	-4.704128	-2.889483	0.000066	
36	6	0	-3.312561	-2.869795	-0.000032	
37	1	0	-2.763111	-3.801346	-0.000127	

38	7	0	1.437737	0.950522	-0.000103	
39	1	0	-0.000143	1.881995	-2.310950	
40	1	0	2.434674	3.392855	-1.490930	
41	1	0	2.434859	3.392743	1.490764	
42	1	0	1.532413	5.980238	0.000068	
43	1	0	-2.434674	3.392746	1.491067	
44	1	0	-2.434858	3.392852	-1.490627	
45	1	0	0.000154	5.001229	2.477522	
46	1	0	-0.000154	5.001410	-2.477267	
47	1	0	-1.532413	5.980238	0.000257	
48	1	0	0.000143	1.881827	2.310977	
49	17	0	5.531590	-4.413407	-0.000146	
50	17	0	-5.531590	-4.413407	0.000034	

Compound **2b** at **B3PW91-D3**/cc-pVTZ level.

Standard	orientation:

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.854056	2.253559	0.000089	
2	6	0	0.854057	2.253559	0.000041	
3	7	0	-1.424591	0.979850	0.000074	
4	5	0	1.433470	3.586302	-0.885459	
5	5	0	0.000038	2.691688	1.428106	
6	5	0	1.433518	3.586266	0.885561	
7	5	0	-1.433470	3.586269	0.885640	
8	5	0	-0.000039	4.457998	-1.443906	
9	5	0	-0.000037	2.691742	-1.427959	
10	5	0	0.000039	4.457943	1.444121	
11	5	0	-1.433517	3.586300	-0.885380	
12	5	0	0.888695	5.017733	0.000094	
13	5	0	-0.888695	5.017733	0.000142	
14	6	0	-3.330192	-0.455480	0.000112	
15	6	0	2.689199	0.853984	-0.000045	
16	1	0	3.358671	1.720116	-0.000122	
17	6	0	-2.689199	0.853984	0.000115	
18	1	0	-3.358670	1.720116	0.000175	
19	6	0	2.580785	-1.635705	-0.000055	
20	1	0	1.500884	-1.566586	0.000058	
21	6	0	3.330192	-0.455480	-0.000126	
22	6	0	4.599640	-2.919153	-0.000251	
23	6	0	5.364494	-1.762214	-0.000332	

24	1	0	6.443616	-1.827115	-0.000440	
25	6	0	-4.722291	-0.534865	0.000187	
26	1	0	-5.312265	0.374606	0.000248	
27	6	0	4.722291	-0.534866	-0.000268	
28	1	0	5.312265	0.374606	-0.000325	
29	6	0	3.208311	-2.864650	-0.000118	
30	1	0	2.636459	-3.782431	-0.000059	
31	6	0	-2.580785	-1.635705	0.000033	
32	1	0	-1.500884	-1.566586	-0.000027	
33	6	0	-5.364494	-1.762213	0.000183	
34	1	0	-6.443616	-1.827115	0.000241	
35	6	0	-4.599640	-2.919152	0.000103	
36	6	0	-3.208311	-2.864650	0.000028	
37	1	0	-2.636459	-3.782431	-0.000034	
38	7	0	1.424591	0.979850	0.000018	
39	1	0	-0.000062	1.906174	-2.307347	
40	1	0	2.437937	3.418121	-1.489489	
41	1	0	2.438018	3.418056	1.489529	
42	1	0	1.533283	6.012498	0.000096	
43	1	0	-2.437938	3.418062	1.489662	
44	1	0	-2.438017	3.418114	-1.489355	
45	1	0	0.000068	5.033490	2.480071	
46	1	0	-0.000068	5.033584	-2.479835	
47	1	0	-1.533283	6.012498	0.000177	
48	1	0	0.000062	1.906085	2.307464	
49	17	0	5.388460	-4.463452	-0.000355	
50	17	0	-5.388461	-4.463451	0.000102	

Compound **3b** at **B3LYP**/cc-pVTZ level.

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	1.571536	-2.201455	0.131377	
2	6	0	-0.392529	-2.422635	-0.078569	
3	5	0	0.715878	-2.642608	-1.334128	
4	5	0	2.256662	-3.404243	-0.776987	
5	5	0	2.150084	-3.530368	0.990654	
6	5	0	0.579051	-2.756725	1.368157	
7	5	0	-0.627495	-3.790699	-1.034204	
8	5	0	0.960620	-4.394432	-1.481967	
9	5	0	1.795994	-4.945473	0.000475	

10	5	0	0.747991	-4.517801	1.388068
11	5	0	-0.751124	-3.807847	0.743212
12	5	0	0.052585	-5.144831	-0.134897
13	1	0	0.702074	-1.848417	-2.207874
14	1	0	3.256444	-3.155316	-1.350576
15	1	0	3.069554	-3.318446	1.700430
16	1	0	0.421411	-2.048668	2.298370
17	1	0	-1.573757	-3.757200	-1.736227
18	1	0	1.125631	-4.912117	-2.530349
19	1	0	2.537946	-5.864436	0.001239
20	1	0	0.712449	-5.131891	2.396068
21	1	0	-1.777674	-3.844174	1.324093
22	1	0	-0.457686	-6.207681	-0.204369
23	7	0	1.990327	-0.880776	0.230906
24	7	0	-1.157924	-1.284889	-0.122230
25	1	0	2.121387	-0.580900	1.185959
26	1	0	-0.994459	-0.678818	-0.909612
27	6	0	3.002467	-0.335996	-0.684061
28	6	0	-1.760944	-0.650919	1.047549
29	1	0	2.667881	-0.527792	-1.703375
30	1	0	3.965145	-0.841263	-0.561692
31	1	0	-1.030677	-0.064102	1.611519
32	1	0	-2.112113	-1.444914	1.707044
33	6	0	3.175954	1.145425	-0.458725
34	6	0	2.162939	2.043986	-0.797967
35	6	0	2.314457	3.406850	-0.591850
36	6	0	3.496767	3.880396	-0.035016
37	6	0	4.519421	3.011470	0.311688
38	6	0	4.349710	1.647791	0.096909
39	1	0	1.243493	1.674292	-1.232617
40	1	0	1.530479	4.098645	-0.863034
41	1	0	5.433471	3.393838	0.741536
42	1	0	5.149773	0.968960	0.363726
43	6	0	-2.914856	0.237139	0.645635
44	6	0	-3.999311	-0.278355	-0.066941
45	6	0	-5.069974	0.528642	-0.420975
46	6	0	-5.057799	1.870435	-0.058385
47	6	0	-3.993438	2.408244	0.647958
48	6	0	-2.926666	1.585239	0.992871
49	1	0	-4.005861	-1.322709	-0.349802
50	1	0	-5.908427	0.125082	-0.969430
51	1	0	-3.996691	3.453115	0.921374
52	1	0	-2.094360	2.004869	1.543654
53	17	0	3.695545	5.599562	0.228338

Center	Atomic	Atomic	Cod	ordinates (A	ngstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.818384	0.811982	0.203526
2	6	0	2.497691	-1.084148	-0.111718
3	5	0	2.941660	0.011008	-1.333659
4	5	0	4.119203	1.240146	-0.744093
5	5	0	4.290829	0.962412	0.999840
6	5	0	3.161415	-0.385756	1.349872
7	5	0	3.676143	-1.617307	-1.184263
8	5	0	4.675762	-0.217781	-1.594417
9	5	0	5.513538	0.324575	-0.106908
10	5	0	4.901061	-0.679609	1.244259
11	5	0	3.779883	-1.886997	0.571443
12	5	0	5.225412	-1.396976	-0.362249
13	1	0	2.117044	0.261780	-2.141117
14	1	0	4.100899	2.319286	-1.222337
15	1	0	4.366074	1.848127	1.777776
16	1	0	2.497907	-0.406795	2.323745
17	1	0	3.340241	-2.462101	-1.935357
18	1	0	5.158242	-0.126878	-2.669242
19	1	0	6.598828	0.792342	-0.124572
20	1	0	5.541460	-0.943276	2.201745
21	1	0	3.551520	-2.927950	1.079197
22	1	0	6.106368	-2.162392	-0.548872
23	7	0	1.659867	1.534362	0.439541
24	7	0	1.183198	-1.493472	-0.132178
25	1	0	1.486264	1.705919	1.418056
26	1	0	0.644600	-1.142373	-0.906680
27	6	0	1.223099	2.619083	-0.435837
28	6	0	0.407791	-1.776378	1.075237
29	1	0	1.448107	2.326801	-1.460828
30	1	0	1.777621	3.542873	-0.243643
31	1	0	0.326802	-0.895691	1.715420
32	1	0	0.935736	-2.544095	1.643795
33	6	0	-0.260474	2.860281	-0.284731
34	6	0	-1.159778	1.796425	-0.368585
35	6	0	-2.525813	1.999827	-0.253503

36	6	0	-3.002537	3.289421	-0.048202	
37	6	0	-2.131543	4.364712	0.041553	
38	6	0	-0.763607	4.140624	-0.075834	
39	1	0	-0.785747	0.793188	-0.513936	
40	1	0	-3.214542	1.170730	-0.323476	
41	1	0	-2.516913	5.359962	0.206942	
42	1	0	-0.083665	4.979678	-0.000337	
43	6	0	-0.971247	-2.245643	0.690979	
44	6	0	-1.145030	-3.431174	-0.024314	
45	6	0	-2.409442	-3.855735	-0.404669	
46	6	0	-3.514774	-3.083350	-0.065726	
47	6	0	-3.369123	-1.901074	0.644806	
48	6	0	-2.094112	-1.489372	1.016262	
49	1	0	-0.280317	-4.024925	-0.290214	
50	1	0	-2.543079	-4.774669	-0.956139	
51	1	0	-4.238069	-1.313130	0.901688	
52	1	0	-1.977700	-0.563255	1.563574	
53	17	0	-4.726578	3.554747	0.106696	
54	17	0	-5.113455	-3.611268	-0.544420	
						_

Compound **3b** at **B3PW91**/cc-pVTZ level.

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	1.493043	-2.214456	0.143718	
2	6	0	-0.410577	-2.391771	-0.087200	
3	5	0	0.694575	-2.644198	-1.337476	
4	5	0	2.195921	-3.431806	-0.743962	
5	5	0	2.048000	-3.545382	1.015398	
6	5	0	0.486491	-2.759161	1.373825	
7	5	0	-0.677437	-3.749198	-1.051307	
8	5	0	0.900969	-4.398697	-1.473532	
9	5	0	1.696008	-4.959702	0.023575	
10	5	0	0.628665	-4.520199	1.387168	
11	5	0	-0.837773	-3.777967	0.715741	
12	5	0	-0.048822	-5.125517	-0.148443	
13	1	0	0.708655	-1.844232	-2.211002	
14	1	0	3.217316	-3.190316	-1.289515	
15	1	0	2.961060	-3.339646	1.741320	
16	1	0	0.329750	-2.043774	2.303160	
17	1	0	-1.615614	-3.685263	-1.768034	

18	1	0	1.072997	-4.918584	-2.523712	
19	1	0	2.425703	-5.892788	0.041418	
20	1	0	0.565982	-5.133483	2.398526	
21	1	0	-1.884758	-3.781810	1.268034	
22	1	0	-0.583347	-6.179305	-0.232643	
23	7	0	1.931295	-0.901390	0.252859	
24	7	0	-1.155177	-1.241518	-0.146968	
25	1	0	2.068084	-0.620265	1.212904	
26	1	0	-0.951084	-0.637450	-0.926227	
27	6	0	2.977214	-0.398099	-0.636304	
28	6	0	-1.735375	-0.592738	1.016013	
29	1	0	2.664940	-0.596033	-1.663434	
30	1	0	3.925500	-0.925026	-0.483714	
31	1	0	-0.995574	-0.007293	1.572322	
32	1	0	-2.089475	-1.378539	1.687003	
33	6	0	3.183419	1.077849	-0.428453	
34	6	0	2.179890	1.991963	-0.745315	
35	6	0	2.365026	3.351466	-0.559538	
36	6	0	3.572524	3.806715	-0.046589	
37	6	0	4.586457	2.920883	0.277226	
38	6	0	4.382194	1.560964	0.084178	
39	1	0	1.238662	1.635684	-1.146358	
40	1	0	1.586135	4.057804	-0.813206	
41	1	0	5.521941	3.290038	0.674996	
42	1	0	5.176256	0.866882	0.335197	
43	6	0	-2.883194	0.300273	0.621392	
44	6	0	-3.927526	-0.181947	-0.166011	
45	6	0	-4.996425	0.629715	-0.507540	
46	6	0	-5.023795	1.942248	-0.055896	
47	6	0	-3.998127	2.446233	0.726546	
48	6	0	-2.932515	1.619858	1.056617	
49	1	0	-3.902454	-1.205946	-0.518671	
50	1	0	-5.806261	0.251688	-1.116768	
51	1	0	-4.031116	3.471857	1.068173	
52	1	0	-2.127421	2.014677	1.666065	
53	17	0	3.812533	5.511684	0.189463	
54	17	0	-6.361656	2.966886	-0.482348	

Compound **3b** at **B3PW91-D3**/cc-pVTZ level.

Center	Atomic	Atomic	Coordinat	tes (Angstr	coms)
Number	Number	Туре	Х	Y	Z

1	6	0	2.824925	0.768304	0.239247
2	6	0	2.487900	-1.054366	-0.133543
3	5	0	2.943757	0.062433	-1.327954
4	5	0	4.134488	1.238322	-0.687760
5	5	0	4.300258	0.884191	1.036781
6	5	0	3.170205	-0.465019	1.345061
7	5	0	3.641893	-1.578168	-1.237645
8	5	0	4.670062	-0.185245	-1.600061
9	5	0	5.516524	0.283655	-0.096824
10	5	0	4.903504	-0.769592	1.210250
11	5	0	3.760889	-1.926924	0.496415
12	5	0	5.203245	-1.422137	-0.424332
13	1	0	2.112498	0.353716	-2.120439
14	1	0	4.119446	2.344583	-1.110126
15	1	0	4.380704	1.742155	1.850036
16	1	0	2.509196	-0.512733	2.324209
17	1	0	3.277869	-2.389425	-2.017777
18	1	0	5.146541	-0.058365	-2.677782
19	1	0	6.609858	0.741867	-0.097281
20	1	0	5.545416	-1.078650	2.157441
21	1	0	3.505937	-2.988798	0.953982
22	1	0	6.072079	-2.195724	-0.651833
23	7	0	1.678715	1.492853	0.513980
24	7	0	1.168689	-1.446686	-0.168084
25	1	0	1.530779	1.641529	1.500006
26	1	0	0.642435	-1.055756	-0.932397
27	6	0	1.251256	2.602404	-0.319611
28	6	0	0.392277	-1.703141	1.034426
29	1	0	1.507044	2.358046	-1.351974
30	1	0	1.789109	3.525941	-0.077282
31	1	0	0.313856	-0.813008	1.665663
32	1	0	0.913400	-2.467677	1.617012
33	6	0	-0.235420	2.822155	-0.206949
34	6	0	-1.113804	1.741424	-0.208436
35	6	0	-2.483758	1.929580	-0.144131
36	6	0	-2.985700	3.221728	-0.073372
37	6	0	-2.133702	4.315008	-0.066006
38	6	0	-0.762957	4.105961	-0.130872
39	1	0	-0.719252	0.735095	-0.248530
40	1	0	-3.157050	1.083183	-0.150252
41	1	0	-2.539584	5.315424	-0.003208
42	1	0	-0.097252	4.961531	-0.119166
43	6	0	-0.986698	-2.168589	0.658786

44	6	0	-1.162774	-3.262196	-0.186765	
45	6	0	-2.430957	-3.685574	-0.547803	
46	6	0	-3.538597	-3.007132	-0.056163	
47	6	0	-3.389467	-1.917942	0.787597	
48	6	0	-2.111157	-1.505025	1.136360	
49	1	0	-0.294451	-3.783500	-0.571373	
50	1	0	-2.566923	-4.534561	-1.203769	
51	1	0	-4.261799	-1.399089	1.161151	
52	1	0	-1.992353	-0.646424	1.786720	
53	17	0	-4.704334	3.469023	0.016614	
54	17	0	-5.132822	-3.529357	-0.508997	

(4) References

_

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 2 T. H. Dunning, J. Chem. Phys., 1989, **90**, 1007-1023.