Supporting Information

The Surprisingly Facile Formation of Pd(I)-Phosphido Complexes from *ortho*-Biphenylphosphines and Palladium Acetate

Michelle Montgomery, Harry M. O'Brien, Carolina Méndez-Gálvez, Caitlin R. Bromfield, Jack P. M. Roberts, Anna M. Winnicka, David Elorriaga, Hazel. A. Sparks and Robin B. Bedford*

Contents

1. General Considerations	
2. Synthesis of Palladium Complexes	
3. Solvent Screen for the Formation of 4a	S6
4. Variable Temperature NMR	
5. Amination	
6. IR Spectra	
7. NMR Spectra	S11
8. Single Crystal X-Ray Diffraction	
9. References	

1. General Considerations

All reactions were performed under an inert atmosphere of nitrogen using standard Schlenk-line techniques unless specified otherwise. All other manipulations were performed under air. All reagents were purchased from commercial suppliers and used as received without further purification. CH₂Cl₂ and toluene and were dried using an Anhydrous Engineering alumina column drying system and all other solvents were either purchased as their anhydrous grade or dried over 3 or 4 Å molecular sieves. Morpholine was filtered through a plug of activated alumina and dried over 4 Å molecular sieves. Column chromatography was performed using technical grade silica gel, pore size 60 Å, 230-400 mesh particle size, 43-60 µm particle size. NMR spectra were recorded on Jeol ECS 300, Bruker Nano 400, Varian VNMRS500 or Bruker Advance III HD 500 cryo spectrometers. Chemical shifts (δ) are quoted in parts per million (ppm), referenced to the residual solvent peak and coupling constants (J) are given in Hz. Multiplicities are abbreviated as: a (apparent), br (broad), s (singlet), d (doublet), t (triplet), q (quartet), h (heptet), m (multiplet) or combinations thereof. Mass spectrometry was performed by the University of Bristol mass spectrometry service using a Synapt G2S (nanospray ionisation). GC analysis was performed on an Agilent 7820A equipped with a 5977B MSD. Infrared spectra were recorded using a Perkin Elmer Spectrum Two FT-IR spectrometer. Experimental details for single crystal X-ray diffraction are given in Section 8.

2. Synthesis of Palladium Complexes

2.1 Synthesis of 1a

A dry Schlenk-tube equipped with a magnetic stirrer bar was charged with $Pd(OAc)_2$ (336.8 mg, 1.5 mmol) and SPhos (615.8 mg, 1.5 mmol) under air. The atmosphere was evacuated and refilled with nitrogen (x 3) and anhydrous toluene (9 ml) added. The Schlenk-tube was sealed and the mixture stirred at 60 °C for 2 h before being cooled to room temperature. The volatiles were removed *in vacuo*, Et₂O added and the resulting suspension filtered and washed with Et₂O to afford the desired product as an air-stable dark-grey solid (282.0 mg, 33%). Crystals suitable for analysis by X-ray diffraction were grown from a solution of **1a** in toluene.

¹**H NMR** (500 MHz, CD₂Cl₂) δ 7.28 (t, J = 8.4 Hz, 2H), 7.26 – 7.21 (m, 2H), 7.06 (t, J = 7.5 Hz, 2H), 6.79 (dd, J = 7.6, 3.1 Hz, 2H), 6.59 (d, J = 8.4 Hz, 4H), 3.64 (s, 12H), 2.01 (s, 6H), 1.78 – 1.52 (bm, 24H), 1.22 – 0.98 (bm, 24H); ¹³C{¹H} **NMR** (126 MHz, CD₂Cl₂) δ 178.9, 158.5, 141.1 (d, J = 41.0 Hz), 138.5, 135.9, 133.7 (d, J = 28.7 Hz), 129.7, 129.5, 129.3, 128.7, 128.2, 128.0 (d, J = 8.8 Hz), 125.8, 118.7 (d, J = 4.3 Hz), 104.0, 55.9, 32.2 (d, J = 22.3 Hz), 29.8, 28.8, 27.3 (at, J = 15.5 Hz), 26.4, 24.7, 21.7; ³¹P{¹H} **NMR** (122 MHz, CD₂Cl₂) δ -47.7; **IR** (neat) v_{max}/cm^{-1} 2925, 2852, 1588, 1470, 1411, 1248, 1110, 728; **HMRS** (nanospray) calculated for C₅₄H₇₁O₆P₂¹⁰⁶Pd₂ [M-C₂O₂H₃]⁺: 1089.2817, found 1089.2811.

2.2 Synthesis of 1b

A dry Schlenk-tube equipped with a magnetic stirrer bar was charged with $Pd(OAc)_2$ (336.8 mg, 1.5 mmol) and RuPhos (700.0 mg, 1.5 mmol) under air. The atmosphere was evacuated and refilled with nitrogen (x 3) and anhydrous toluene (9 ml) added. The Schlenk-tube was sealed and the mixture stirred at 60 °C for 2 h before being cooled to room temperature. The volatiles were removed *in vacuo*, Et₂O added and the resulting suspension filtered and washed with Et₂O to afford the desired product as an air-stable dark-grey solid (200.0 mg, 21%).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.22 – 7.17 (m, 4H), 7.05 (t, *J* = 7.6 Hz, 2H), 6.80 (dd, *J* = 4.7, 2.4 Hz, 2H), 6.61 (d, *J* = 8.3 Hz, 4H), 4.32 (hept, *J* = 5.9 Hz, 4H), 2.01 (s, 6H), 1.88 – 1.27 (bm, 44H), 1.15 (d,

J = 6.0 Hz, 12H), 1.00 (d, J = 5.9 Hz, 12H); ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ 179.0, 157.9, 141.0 (d, J = 41.2 Hz), 136.7, 133.0 (d, J = 28.8 Hz), 129.5, 129.1, 128.7, 128.3 (d, J = 8.7 Hz), 128.0, 125.8, 124.1, 109.6, 73.1, 32.1 (d, J = 22.5 Hz), 29.6, 28.6, 27.4 (at, J = 14.2 Hz), 26.2, 24.7, 23.1, 22.2; ³¹P{¹H} NMR (162 MHz, CD₂Cl₂) δ -47.7; **IR** (neat) v_{max}/cm^{-1} 2978, 2923, 2852, 1587, 1538, 1456, 1413, 1236, 1108, 1052, 730; **HMRS** (nanospray) calculated for C₆₂H₈₇O₆P₂¹⁰⁶Pd₂ [M-C₂O₂H₃]⁺: 1201.4048, found 1201.4058.

2.3 Synthesis of 3

A dry Schlenk-tube equipped with a magnetic stirrer bar was charged with **1a** (57.5 mg, 0.05 mmol) and SPhos (51.3 mg, 0.125 mmol) under air. The atmosphere was evacuated and refilled with nitrogen (x 3) and anhydrous toluene (3 ml) added. The Schlenk-tube was sealed and the mixture stirred at room temperature for 2 days. The solvent was removed *in vacuo* to afford a dark-grey solid (a mixture of **3** and SPhos) which was analysed by ³¹P NMR and HRMS.

³¹**P** NMR (162 MHz, C_7H_8) δ 49.7 (d, J = 394.7 Hz), -49.2 (d, J = 394.7 Hz); HMRS (nanospray) calculated for $C_{52}H_{69}O_4P_2^{106}Pd$ [M- $C_2O_2H_3$]⁺: 925.3706, found 925.3743.

2.4 Synthesis of 4a

A dry 25 ml Young's tube equipped with a magnetic stirrer bar was charged with $Pd(OAc)_2$ (224.5 mg, 1 mmol) and SPhos (615.8 mg, 1.5 mmol) under air. The atmosphere was evacuated and refilled with nitrogen (x 3) and anhydrous methanol (5 ml) added. The tube was sealed and the reaction stirred vigorously at 85 °C for 2 h before being cooled to room temperature. The crude mixture was filtered through a pad of Celite, eluting with EtOAc. The volatiles were removed from the filtrate under reduced pressure and methanol (15 ml) added. To the stirred solution, NaPF₆ (839.8 mg, 5 mmol) was added portion-wise and the reaction left stirring overnight at room temperature. The volatiles were removed under reduced pressure and the crude product purified by column chromatography (CH₂Cl₂, collecting the first yellow band) to afford the desired product as an air-stable yellow/orange solid (266.3 mg, 39%).

Crystals suitable for X-ray diffraction were obtained from a CH_2Cl_2 solution of **4a** layered with hexane at -18 °C.

¹**H** NMR (400 MHz, CD₂Cl₂) δ 7.71 (t, *J* = 7.0 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.55 – 7.41 (m, 5H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 6.97 – 6.90 (bm, 1H), 6.75 (d, *J* = 8.4 Hz, 2H), 5.29 (d, *J* = 7.1 Hz, 2H), 3.77 (s, 6H), 3.26 (s, 6H), 2.33 – 2.24 (m, 2H), 2.19 – 2.10 (m, 2H), 1.98 – 1.59 (bm, 32H), 1.41 – 0.87 (bm, 30H); ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ 158.4, 149.9, 144.5 (d, *J* = 31.7 Hz), 142.7 (d, *J* = 25.8 Hz), 138.6, 137.7 (d, *J* = 26.1 Hz), 134.4, 133.8, 132.7 (at, *J* = 13.7 Hz), 132.3, 130.5, 129.8, 128.8, 126.1 (d, *J* = 13.9 Hz), 119.5, 104.5, 93.4, 88.5, 55.9, 37.1 (d, *J* = 16.2 Hz), 36.9, 36.2 (d, *J* = 18.9 Hz), 32.9 (d, J = 27.1 Hz), 32.3, 30.5 (d, J = 6.6 Hz), 30.2, 29.3, 27.9 (d, J = 12.0 Hz), 27.5 (at, J = 12.1 Hz), 26.7, 26.5; ³¹P{¹H} NMR (162 MHz, CD₂Cl₂) δ 280.1 (dd, *J* = 85.4, 70.8 Hz), 46.9 (dd, *J* = 91.4, 85.8 Hz), 45.1 (dd, *J* = 91.3, 70.7 Hz), -144.5 (hept, *J* = 710.4 Hz); IR (neat) v_{max}/cm^{-1} 2976, 2852, 1457, 1419, 1241, 1099, 836, 731, 557; HMRS (nanospray) calculated for C₆₄H₉₂O₄P₃¹⁰⁶Pd₂[M]⁺: 1229.4278, found 1229.4304.

2.5 Synthesis of 4b

A dry 25 ml Young's tube equipped with a magnetic stirrer bar was charged with $Pd(OAc)_2$ (224.5 mg, 1 mmol) and RuPhos (700 mg, 1.5 mmol) under air. The atmosphere was evacuated and refilled with nitrogen (x 3) and anhydrous methanol (5 ml) added. The tube was sealed and the reaction stirred vigorously at 85 °C for 2 h before being cooled to room temperature. The crude mixture was filtered through a pad of Celite, eluting with EtOAc. The volatiles were removed from the filtrate under reduced pressure and methanol (15 ml) added. To the stirred solution, NaPF₆ (839.8 mg, 5 mmol) was added portion-wise and the reaction left stirring overnight at room temperature. The volatiles were removed under reduced pressure and the crude product purified by column chromatography (CH₂Cl₂, collecting the first yellow band) to afford the desired product as an air-stable yellow/orange solid (452.6 mg, 61%). Crystals suitable for X-ray diffraction were obtained from a CH₂Cl₂ solution of **4b** at room temperature.

¹**H NMR** (500 MHz, CD₂Cl₂) δ 7.66 (t, J = 6.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.49 – 7.43 (m, 3H), 7.37 – 7.33 (m, 2H), 7.26 (d, J = 7.7 Hz, 1H), 7.11 (s, 1H), 7.07 (d, J = 7.8 Hz, 1H), 6.71 (d, J = 8.4 Hz, 2H), 5.25 (d, J = 7.2 Hz, 2H), 4.55 (hept, J = 6.1 Hz, 2H), 4.07 (hept, J = 6.1 Hz, 2H), 2.27 – 1.58 (m, 38H), 1.38 – 0.97 (bm, 28H), 1.29 (d, J = 6.0 Hz, 6H), 1.09 (d, J = 6.2 Hz, 6H), 0.91 (d, J = 6.0 Hz, 6H), 0.89 (d, J = 5.8 Hz, 6H); ¹³C{¹H} **NMR** (126 MHz, CD₂Cl₂) δ 157.7, 149.3, 144.4 (at, J = 27.5 Hz), 139.7, 137.2 (d, J = 23.4 Hz), 134.5, 133.1, 132.5 (d, J = 12.0 Hz), 131.9, 130.0, 129.4, 128.2, 125.5 (d, J = 11.8 Hz), 122.9, 107.4, 103.9, 94.6, 89.5, 72.0 (d, J = 23.8 Hz), 37.1 (b), 36.8, 36.2 (d, J = 16.5 Hz), 32.9 (d, J = 26.8 Hz), 32.6 (b), 30.8, 30.3, 29.6, 28.0 (d, J = 10.1 Hz), 27.6 (d, J = 8.2 Hz), 27.2 (d, J = 9.7 Hz), 26.7, 26.6, 22.8, 22.6, 22.3, 21.2; ³¹P{¹H} NMR (162 MHz, CD₂Cl₂) δ 276.9 (dd, J = 82.5, 75.5 Hz), 46.8 (dd, J = 93.2, 83.8 Hz), 46.1 (dd, J = 94.0, 74.9 Hz), -144.5 (hept, J = 709.6 Hz); **IR** (neat) v_{max}/cm^{-1} 2922, 2852, 1432, 1238, 1107, 1056, 836, 733, 557; **HMRS** (nanospray) calculated for C₇₂H₁₀₈O₄P₃¹⁰⁶Pd₂ [M]⁺: 1341.5530, found 1341.5555.

Note: 2nd order effects observed in ³¹P NMR.

2.6 Synthesis of 4c

A dry 25 ml Young's tube equipped with a magnetic stirrer bar was charged with $Pd(OAc)_2$ (224.5 mg, 1 mmol) and MePhos (546.8 mg, 1.5 mmol) under air. The atmosphere was evacuated and refilled with nitrogen (x 3) and anhydrous methanol (5 ml) added. The tube was sealed and the reaction stirred vigorously at 85 °C for 2 h before being cooled to room temperature. The crude mixture was filtered through a pad of Celite, eluting with EtOAc. The volatiles were removed from the filtrate under reduced pressure and methanol (15 ml) added. To the stirred solution, NaPF₆ (839.8 mg, 5 mmol) was added portion-wise and the reaction left stirring overnight at room temperature. The volatiles were removed under reduced pressure and the crude product purified by column chromatography (CH₂Cl₂, collecting the first yellow band) to afford the desired product as an air-stable yellow/orange solid (67.3 mg, 10%).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.74 – 7.62 (bm, 2H), 7.62 – 7.47 (bm, 4H), 7.33 – 7.23 (bm, 2H), 7.07 (bs, 2H), 6.72 (bs, 4H), 5.33 (s, 2H), 2.24 – 1.56 (bm, 42H), 1.44 – 0.77 (bm, 30H); ¹³**C NMR**{¹**H**} (126 MHz, CD₂Cl₂) δ 145.8 (b), 136.2 (b), 133.1 (b), 131.2 (b), 128.1 (b), 37.1, 36.7, 36.2 (b), 33.1, 32.6, 32.4, 30.9, 30.5 (b), 30.4 (b), 30.2, 29.8 (b), 27.6, 27.5, 27.4, 26.9, 26.6, 26.4, 26.3, 21.2; ³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂) δ 290.4 (dd, J = 77.5, 77.1 Hz), 43.0 (bs), -144.5 (hept, J = 710.4 Hz); **IR** (neat) v_{max}/cm^{-1} 2922, 2849, 1446, 835, 762, 732, 556; **HMRS** (nanospray) calculated for C₆₂H₈₈P₃¹⁰⁶Pd₂ [M]⁺: 1137.4169, found 1137.4194.

Note: Due to the broad nature of the ${}^{13}C$ peaks, some resonances were not observed.

3. Solvent Screen for the Formation of 4a

A dry Young's NMR tube was charged with $Pd(OAc)_2$ (3.0 mg, 0.013 mmol) and SPhos (8.2 mg, 0.02 mmol). The atmosphere was evacuated and refilled with nitrogen (x 3) and the desired anhydrous solvent (0.7 ml) was added. The NMR tube was sealed, shaken, and then heated at 85 °C for 2 h. The reaction was subsequently analysed by ³¹P NMR. The results are shown in Figure 1.

Figure 1: ³¹P NMR spectra of the reaction between Pd(OAc)₂ and SPhos in various solvents.

4. Variable Temperature NMR

Figure 3: Variable temperature ³¹P NMR (202 MHz, DMSO-*d*₆) of 4b.

5. Amination

A dry Schlenk-tube equipped with a magnetic stirrer bar was charged with either **4a** (6.9 mg, 0.01 mmol) or a mixture of Pd(OAc)₂ (4.5 mg, 0.02 mmol) and SPhos (8.2 mg, 0.02 mmol) under air. NaO'Bu (269.1 mg, 2.8 mmol) and 4-bromotoluene (342.1 mg, 2.0 mmol) were added and the atmosphere evacuated and refilled with nitrogen (x 3). Morpholine (245 μ l, 2.8 mmol) and anhydrous 1,4-dioxane (2 ml) were added, the Schlenk-tube sealed and the mixture stirred at 100 °C for 1 h. After cooling to room temperature, dodecane (454 μ l, 2.0 mmol) was added to the mixture and an aliquot removed and passed through a plug of Celite, eluting with EtOAc, for analysis by GC.

6. IR Spectra

4a:

4b:

7. NMR Spectra

1a (¹H NMR, 500 MHz, CD₂Cl₂):

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

1b (¹H NMR, 400 MHz, CD₂Cl₂):

1b (³¹P NMR, 162 MHz, CD₂Cl₂):

40 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -3 f1 (ppm)

4a (¹H NMR, 400 MHz, CD₂Cl₂):

S16

4a (³¹P NMR, 162 MHz, CD₂Cl₂):

4b (¹H NMR, 500 MHz, CD₂Cl₂):

S18

300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

4c (¹H NMR, 400 MHz, CD₂Cl₂):

4c (³¹P NMR, 162 MHz, CD₂Cl₂):

8. Single Crystal X-Ray Diffraction

X-ray diffraction experiments on **1a**, **2**, **4a** and **4b** were carried out at 100(2) K on a Bruker APEX II CCD diffractometer using Mo-K_a radiation ($\lambda = 0.71073$ Å). Intensities were integrated in SAINT¹ and absorption corrections based on equivalent reflections were applied using SADABS.² Structures **1a**, **2**, **4a** and **4b** were solved using ShelXT,³ all of the structures were refined by full matrix least squares against *F*² in ShelXL^{4,5} using Olex2.⁶ All of the non-hydrogen atoms were refined anisotropically, while all of the hydrogen atoms were located geometrically and refined using a riding model. In **4a** one of the PF₆⁻ was disordered and necessarily modelled at 50% occupancy. Squeeze within Platon^{7, 8} was used to remove disordered solvent from the lattice of **4b** that could not be sensibly modelled. Crystal structure and refinement data are given in Table 1. Crystallographic data for compounds **1a**, **2**, **4a** and **4b** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 1884584-1884587. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, e-mail: <u>deposit@ccdc.cam.ac.uk</u>].

Identification code	1a	2	4a	4b
Empirical formula	$C_{63}H_{82}O_8P_2Pd_2$	$C_{52}H_{68}Cl_2O_4P_2Pd_2$	$C_{64}H_{92}F_6O_4P_4Pd_2\\$	$C_{72}H_{108}F_6O_4P_4Pd_2\\$
Formula weight	1242.02	1102.70	1376.05	1488.26
Temperature/K	100(2)	100(2)	100(2)	100(2)
Crystal system	monoclinic	triclinic	monoclinic	triclinic
Space group	P2/n	<i>P</i> -1	C2/c	<i>P</i> -1
a/Å	12.7552(6)	9.3085(2)	28.2770(6)	11.5721(4)
b/Å	11.4178(6)	10.5148(3)	10.8401(2)	15.3228(5)
$c/ m \AA$	19.7866(11)	13.9103(3)	41.2461(9)	22.4790(7)
α/°	90	74.2420(10)	90	85.7858(14)
β/°	100.144(3)	72.2210(10)	98.0020(10)	75.7187(15)
γ/°	90	69.1100(10)	90	69.5539(15)
Volume/Å ³	2836.6(3)	1190.83(5)	12519.9(4)	3619.0(2)
Z	2	1	8	2
$\rho_{calc}g/cm^3$	1.454	1.538	1.460	1.366
μ/mm^{-1}	0.746	0.980	0.741	0.646
F(000)	1292.0	568.0	5712.0	1556.0
Crystal size/mm ³	$0.39 \times 0.29 \times 0.15$	$0.48 \times 0.40 \times 0.31$	$0.45 \times 0.44 \times 0.18$	$0.69 \times 0.52 \times 0.42$
Radiation	ΜοΚα	ΜοΚα	MoK α (λ = 0.71073) MoK α (λ = 0.71073)	
	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$		
2θ range for data collection/°	3.536 to 55.992	4.218 to 55.822	3.988 to 55.87	1.87 to 56.154

Table 1: Crystal data and structure refinement for 1a, 2, 4a and 4b.

Index ranges	$-16 \le h \le 15$,	$-12 \le h \le 12$,	$-37 \le h \le 21$,	$-15 \le h \le 15$,
	$-14 \le k \le 15$,	$-13 \le k \le 13$,	$-14 \le k \le 14$,	$-20 \leq k \leq 20,$
	$-26 \le l \le 25$	$-18 \le l \le 18$	$-54 \le l \le 54$	$-26 \le l \le 29$
Reflections collected	25647	21946	56350	67277
R_{int} / R_{sigma}	0.0444 / 0.0421	0.0166 / 0.0149	0.0569 / 0.0531	0.0229 / 0.0207
Data/restraints/parameters	6850/0/344	5702/0/282	14958/0/758	17529/0/804
Goodness-of-fit on F ²	1.006	1.073	1.032	1.031
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0312$,	$R_1 = 0.0199,$	$R_1 = 0.0412,$	$R_1 = 0.0263,$
	$wR_2 = 0.0646$	$wR_2 = 0.0508$	$wR_2 = 0.0893$	$wR_2 = 0.0600$
Final R indexes [all data]	$R_1 = 0.0449,$	$R_1 = 0.0217,$	$R_1 = 0.0603,$	$R_1 = 0.0305$,
	$wR_2 = 0.0702$	$wR_2 = 0.0518$	$wR_2 = 0.0970$	$wR_2 = 0.0618$
Largest diff. peak/hole / e Å ⁻³ 1.11/-0.54		0.56/-0.24	1.06/-0.64	1.45/-0.72

Figure 4: Crystal structure of **1a**, with hydrogen atoms and toluene solvent omitted for clarity. Symmetry code ⁱ $\frac{1}{2}$ -x, +y, $\frac{1}{2}$ -z.

Figure 5: Crystal structure of 2, with hydrogen atoms omitted for clarity. Symmetry code ⁱⁱ 1-x, -y, -z.

Figure 6: Crystal structure of 4a, with hydrogen atoms and PF_6^- counterions omitted for clarity.

Figure 7: Crystal structure of 4b, with hydrogen atoms and PF_6^- counterion omitted for clarity.

9. References

1. Bruker, SAINT+ v8.38A Integration Engine, Data Reduction Software, Bruker Analytical X-ray Instruments Inc., Madison, WI, USA, 2015.

2. Bruker, SADABS 2014/5, Bruker AXS area detector scaling and absorption correction, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 2014/5.

3. Sheldrick, G. M. Acta Crystallogr. Sect. A: Found. Crystallogr. 2015, 71, 3-8.

4. Sheldrick, G. M. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112-122.

5. Sheldrick, G. M. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3-8.

6. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339-341.

7. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7-13.

8. Spek, A. L. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2009, 65, 148-155.