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Physical and chemical characterization 

Powder X-ray diffraction (PXRD) patterns were recorded on a RigakuDmax 2500 
diffractometer equipped with Cu-Kα radiation (λ= 1.54056 Å) over the 2θ range of 4-
50° for MOFs and 4-80° for carbon materials with a scan speed of 3° min−1 at room 
temperature. Thermogravimetric analyses (TGA) were performed under a nitrogen 
atmosphere with a heating rate of 10 °C min−1 by using an SDT Q600 
thermogravimetric analyser. N2 sorption isotherms for MOFs and the derived carbon 
materials were measured by using a Micrometrics ASAP 2020 instrument at 77 K. 
Before the measurement, the samples were activated at 393 K in vacuum for 12 h. 
The transmission electron microscopy (TEM) and high resolution transmission 
electron microscopy (HRTEM) images were obtained on a FEIT 20 instrument at an 
accelerating voltage of 200 kV. Raman spectra of dried samples were obtained on 
Lab-RAM HR800 with excitation by an argon ion laser (532 nm). Elemental analyses 
of C, H, and N were carried out on an ElementarVario EL III analyzer. The 
morphologies of MOFs were studied using a (JSM-6700F) scanning electron 
microscope (SEM) working at 10 KV. X-ray photoelectron spectroscopy (XPS) 
measurements were performed on an ESCALAB 250Xi X-ray photoelectron 
spectrometer (Thermo Fisher) using an Al Kα source (15 kV, 10 mA).

Fig. S1 Size distribution of 45 nm spherical shape ZIF-7-S (from a total number of 
400).



Fig. S2 Size distribution of 125 nm polyhedral shape ZIF-7-D (from a total number of 
300).

Fig. S3 Rod ZIF-7-R with (a) 3μm in length and (b) 0.6 μm in diameter.



Fig. S4 PXRD patterns of ZIF-7-S, ZIF-7-D and ZIF-7-R.

Fig. S5 N2 sorption isotherms of ZIF-7-S, ZIF-7-D and ZIF-7-R.



Fig. S6 Thermogravimetric analysis (TGA) of ZIF-7-S, ZIF-7-D and ZIF-7-R.

Fig. S7 Liner sweep voltammetry (LSV) curves for NC-D-700, NC-D-800 and NC-D-
900 at an RDE rotation rate of 1600 rpm with a scan rate of 5 mVs−1.

We have investigated the effect of different carbonization temperatures for NC-D-x 

(x = 700, 800, 900) materials on the performance of ORR reactions. The LSV 

measurement results of the NC-D-x prepared at different temperatures were shown in 

Fig. S7. NC-D-800 showed the most positive onset (0.87 V vs RHE), which was 

superior to NC-D-700 (0.77 V) and NC-D-900 (0.83 V), suggesting a pronounced 

electrocatalytic activity of NC-D-800 for ORR. 



Table S1 Textural properties of ZIF-derived porous N-doped carbon materials.
Sample BET surface

area (m2 g−1)
Total pore volume

(cm3 g−1)

NC-S-800 352 0.43

NC-D-800 538 0.41

NC-R-800 272 0.17

NC-D-NH3 636 0.54

Fig. S8 Pore size distributions of NC-S-800, NC-D-800 and NC-R-800, respectively.



Table S2 Nitrogen atom percentage of obtained porous N-doped carbon materials.

Sample Ncontent

(wt%)a

Ncontent

(wt%)b

pyridinic-N

(%)

pyrrolic-N 

(%)

graphitic-N 

(%)

pyridine-N-oxide 

(%)

NC-S-800 11.05 9.91 37.7 30.9 25.3 6.1

NC-D-800 10.30 9.42 39.5 23.3 30.4 6.8

NC-R-800 10.24 8.58 38.3 25.7 28.4 7.6

NC-D-NH3 2.28 2.09 19.1 13.2 54.6 13.1

aBased on elemental analysis results.
bBased on X-ray photoelectron spectroscopy (XPS).

Fig. S9 (a) LSV curve of NC-D-800 at different rotation rates, (b) Linear fitting curve 
of K-L plots.



Fig. S10 (a) LSV curve of NC-S-800 at different rotation rates, (b) Linear fitting 
curve of K-L plots.

Fig. S11 (a) LSV curve of NC-R-800 at different rotation rates, (b) Linear fitting 
curve of K-L plots.



Fig. S12 Liner sweep voltammetry (LSV) curves for NC-D-800, NC-D-NH3(800) and 
NC-D-NH3(1000) at an RDE rotation rate of 1600 rpm with a scan rate of 5 mVs−1.

NC-D-800 was treated at 800 oC for 30 min under flowing NH3 to obtain NC-D-

NH3(800), while treated at 1000 oC for 30 min under flowing NH3 to obtain NC-D-

NH3(1000).

The LSV measurement results of the NC-D-NH3(x) (x = 800, 1000) prepared at 

different temperatures were shown in Fig. S12. NC-D-NH3(1000) showed the best 

ORR activity with the most positive onset of 1.0 V (vs RHE) and half-wave potentials 

of 0.82 V, which was superior to NC-D-NH3(800) with positive onset of 0.89 V and 

half-wave potentials of 0.77 V. Furthermore, compared with the NC-D-NH3(800), 

NC-D-NH3(1000) showed higher diffusion-limiting current density of 5.65 mA cm−2 

at 0.2 V, indicating that NC-D-NH3(1000) obtained at 1000 degrees with NH3 

atmosphere has better ORR activity.



Fig. S13 The NC-D-NH3 of (a-b) SEM images with different scale bars, (c) TEM 
image (d) HRTEM image.

Fig. S14 (a) N2 sorption isotherms and (b) pore size distributions for NC-D-NH3. 
Solid symbols denote adsorption, open symbols denote desorption (P/P0 = partial 
pressure).



Fig. S15 N 1s spectra of NC-D-NH3 with four kinds of nitrogen species (pyridinic-N, 
pyrrolic-N, graphitic-N, and pyridinic-N-oxide)


