Supporting Information

Unraveling the relationship between morphologies of metal-organic frameworks and properties of their derived carbon materials

Qiao Wu,^{ab} Jun Liang,^a Jun-Dong Yi,^a Dong-Li Meng,^a Peng-Chao Shi,^a Yuan-Biao Huang*^{ac} and Rong Cao*^{ac}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
^bCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

Physical and chemical characterization

Powder X-ray diffraction (PXRD) patterns were recorded on a RigakuDmax 2500 diffractometer equipped with Cu-Ka radiation (λ = 1.54056 Å) over the 2 θ range of 4-50° for MOFs and 4-80° for carbon materials with a scan speed of 3° min⁻¹ at room temperature. Thermogravimetric analyses (TGA) were performed under a nitrogen atmosphere with a heating rate of 10 °C min⁻¹ by using an SDT Q600 thermogravimetric analyser. N₂ sorption isotherms for MOFs and the derived carbon materials were measured by using a Micrometrics ASAP 2020 instrument at 77 K. Before the measurement, the samples were activated at 393 K in vacuum for 12 h. The transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) images were obtained on a FEIT 20 instrument at an accelerating voltage of 200 kV. Raman spectra of dried samples were obtained on Lab-RAM HR800 with excitation by an argon ion laser (532 nm). Elemental analyses of C, H, and N were carried out on an ElementarVario EL III analyzer. The morphologies of MOFs were studied using a (JSM-6700F) scanning electron microscope (SEM) working at 10 KV. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher) using an Al Kα source (15 kV, 10 mA).

Fig. S1 Size distribution of 45 nm spherical shape ZIF-7-S (from a total number of 400).

Fig. S2 Size distribution of 125 nm polyhedral shape ZIF-7-D (from a total number of 300).

Fig. S3 Rod ZIF-7-R with (a) $3\mu m$ in length and (b) 0.6 μm in diameter.

Fig. S4 PXRD patterns of ZIF-7-S, ZIF-7-D and ZIF-7-R.

Fig. S5 N_2 sorption isotherms of ZIF-7-S, ZIF-7-D and ZIF-7-R.

Fig. S6 Thermogravimetric analysis (TGA) of ZIF-7-S, ZIF-7-D and ZIF-7-R.

Fig. S7 Liner sweep voltammetry (LSV) curves for NC-D-700, NC-D-800 and NC-D-900 at an RDE rotation rate of 1600 rpm with a scan rate of 5 mVs⁻¹.

We have investigated the effect of different carbonization temperatures for NC-D-x (x = 700, 800, 900) materials on the performance of ORR reactions. The LSV measurement results of the NC-D-x prepared at different temperatures were shown in Fig. S7. NC-D-800 showed the most positive onset (0.87 V vs RHE), which was superior to NC-D-700 (0.77 V) and NC-D-900 (0.83 V), suggesting a pronounced electrocatalytic activity of NC-D-800 for ORR.

Sample	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)		
NC-S-800	352	0.43		
NC-D-800	538	0.41		
NC-R-800	272	0.17		
NC-D-NH ₃	636	0.54		

Table S1 Textural properties of ZIF-derived porous N-doped carbon materials.

Fig. S8 Pore size distributions of NC-S-800, NC-D-800 and NC-R-800, respectively.

Sample	Ncontent	Ncontent	pyridinic-N	pyrrolic-N	graphitic-N	pyridine-N-oxide
	(wt%) ^a	(wt%) ^b	(%)	(%)	(%)	(%)
NC-S-800	11.05	9.91	37.7	30.9	25.3	6.1
NC-D-800	10.30	9.42	39.5	23.3	30.4	6.8
NC-R-800	10.24	8.58	38.3	25.7	28.4	7.6
NC-D-NH ₃	2.28	2.09	19.1	13.2	54.6	13.1

Table S2 Nitrogen atom percentage of obtained porous N-doped carbon materials.

^aBased on elemental analysis results.

^bBased on X-ray photoelectron spectroscopy (XPS).

Fig. S9 (a) LSV curve of NC-D-800 at different rotation rates, (b) Linear fitting curve of K-L plots.

Fig. S10 (a) LSV curve of NC-S-800 at different rotation rates, (b) Linear fitting curve of K-L plots.

Fig. S11 (a) LSV curve of NC-R-800 at different rotation rates, (b) Linear fitting curve of K-L plots.

Fig. S12 Liner sweep voltammetry (LSV) curves for NC-D-800, NC-D-NH₃(800) and NC-D-NH₃(1000) at an RDE rotation rate of 1600 rpm with a scan rate of 5 mVs⁻¹.

NC-D-800 was treated at 800 °C for 30 min under flowing NH₃ to obtain NC-D-NH₃(800), while treated at 1000 °C for 30 min under flowing NH₃ to obtain NC-D-NH₃(1000).

The LSV measurement results of the NC-D-NH₃(x) (x = 800, 1000) prepared at different temperatures were shown in Fig. S12. NC-D-NH₃(1000) showed the best ORR activity with the most positive onset of 1.0 V (vs RHE) and half-wave potentials of 0.82 V, which was superior to NC-D-NH₃(800) with positive onset of 0.89 V and half-wave potentials of 0.77 V. Furthermore, compared with the NC-D-NH₃(800), NC-D-NH₃(1000) showed higher diffusion-limiting current density of 5.65 mA cm⁻² at 0.2 V, indicating that NC-D-NH₃(1000) obtained at 1000 degrees with NH₃ atmosphere has better ORR activity.

Fig. S13 The NC-D-NH $_3$ of (a-b) SEM images with different scale bars, (c) TEM image (d) HRTEM image.

Fig. S14 (a) N₂ sorption isotherms and (b) pore size distributions for NC-D-NH₃. Solid symbols denote adsorption, open symbols denote desorption (P/P_0 = partial pressure).

Fig. S15 N 1s spectra of NC-D-NH $_3$ with four kinds of nitrogen species (pyridinic-N, pyrrolic-N, graphitic-N, and pyridinic-N-oxide)