## Effects of a strong $\pi$ -accepting ancillary ligand on the water oxidation activity of weakly coupled binuclear ruthenium catalysts

Tiago A. Matias<sup>\*</sup>,<sup>[a]</sup> Francisca N. Rein,<sup>[b]</sup> Reginaldo C. Rocha,<sup>[b]</sup> André Luiz Barboza Formiga,<sup>[c]</sup> Henrique E. Toma,<sup>[a]</sup> Koiti Araki<sup>\*</sup>[a]</sup>

[a] Department of Chemistry, Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.

[b] Los Alamos National Laboratory, Los Alamos, New Mexico, NM 87545, USA.

[c] Institute of Chemistry, University of Campinas – UNICAMP, P.O. Box 6154, Campinas, SP 13083-970, Brazil.

E-mail: tiagomatias@usp.br; koiaraki@iq.usp.br

## **Electronic supplementary information (ESI)**



Figure S1: Differential pulse voltammogram of a 1.0 mM solution of  $[{RuCl(bpz)}_2(tpy_2ph)](PF_6)_2$  in DMF (0.10 M Bu<sub>4</sub>NClO<sub>4</sub>; v = 10 mV s<sup>-1</sup>).



Scheme S1: Proposed catalytic mechanism for  $[{Ru(H_2O)(bpz)}_2(tpy_2ph)]^{4+}$ .

Table S1. Cartesian coordinates for the complex  $[{Ru^V(O)(bpy)}_2(tpy_2ph))]^{6+}$  obtained by BP86/SDD.

|    | Х         | У         | Z         |
|----|-----------|-----------|-----------|
| Ru | 6.684818  | 0.123225  | -2.477071 |
| 0  | 6.400569  | 1.506975  | -3.564251 |
| Ru | -6.687368 | 0.131895  | -2.492099 |
| 0  | -6.411830 | 1.502426  | -3.597756 |
| С  | 6.672127  | -2.195574 | -0.372390 |
| Ν  | 7.354352  | -1.591573 | -1.355122 |
| С  | 8.576694  | -2.041729 | -1.730648 |
| С  | 9.149510  | -3.151360 | -1.093579 |
| С  | 8.444447  | -3.789589 | -0.066360 |
| С  | 7.185226  | -3.306092 | 0.302262  |
| Ν  | 8.532440  | -0.243837 | -3.331687 |
| С  | 9.033380  | 0.507296  | -4.334866 |
| С  | 10.281248 | 0.235161  | -4.884404 |
| С  | 11.019761 | -0.844946 | -4.376257 |
| Н  | 8.417310  | 1.337788  | -4.696098 |
| Н  | 10.664435 | 0.859470  | -5.696491 |
| Η  | 11.056851 | -2.461363 | -2.936862 |
| Η  | 10.134898 | -3.517874 | -1.392344 |
| Η  | 6.600514  | -3.774257 | 1.099064  |
| Н  | 5.689062  | -1.799211 | -0.099762 |
| С  | 10.489134 | -1.617907 | -3.337678 |
| С  | 9.228846  | -1.301554 | -2.818281 |
| Ν  | 7.166797  | 1.399944  | -0.881471 |
| С  | 8.381081  | 1.941141  | -0.729687 |
| С  | 8.652072  | 2.800012  | 0.338777  |
| С  | 7.629494  | 3.093283  | 1.247624  |
| С  | 6.362801  | 2.527660  | 1.065097  |
| С  | 6.147326  | 1.677679  | -0.024921 |
| С  | 4.869173  | 1.044658  | -0.359774 |
| Ν  | 4.912145  | 0.285806  | -1.474124 |
| С  | 3.835934  | -0.372500 | -1.953985 |
| С  | 2.612708  | -0.272394 | -1.288061 |
| С  | 2.504934  | 0.508231  | -0.113932 |
| С  | 3.668469  | 1.169891  | 0.343422  |
| С  | 4.110326  | -1.150020 | -3.165416 |
| Ν  | 5.392212  | -1.080957 | -3.614129 |
| С  | 5.783622  | -1.710071 | -4.728292 |
| С  | 4.884528  | -2.487322 | -5.463344 |
| С  | 3.561133  | -2.590794 | -5.021097 |
| С  | 3.167959  | -1.915367 | -3.860485 |
| Η  | 9.163595  | 1.692813  | -1.453364 |
| Η  | 9.655893  | 3.220940  | 0.446363  |
| Η  | 7.813200  | 3.763592  | 2.093026  |
| Η  | 5.547919  | 2.752178  | 1.759024  |

| Η | 3.632322   | 1.807972  | 1.229903  |
|---|------------|-----------|-----------|
| Н | 1.749999   | -0.822562 | -1.671963 |
| Н | 2.136125   | -1.977362 | -3.503487 |
| Н | 2.834920   | -3.190975 | -5.577982 |
| Н | 5.232199   | -3.000691 | -6.364440 |
| Н | 6.824633   | -1.612142 | -5.051719 |
| С | 1.224918   | 0.636375  | 0.608993  |
| С | -1.220100  | 0.919007  | 1.989341  |
| Η | -2.158898  | 1.017620  | 2.543342  |
| С | -0.002686  | 0.498787  | -0.069137 |
| Η | 0.000884   | 0.329911  | -1.150192 |
| С | -0.010524  | 1.035651  | 2.679125  |
| Η | -0.013892  | 1.224683  | 3.757095  |
| С | 1.202924   | 0.907419  | 1.998909  |
| Н | 2.138192   | 0.996153  | 2.560450  |
| С | -6.656912  | -2.156135 | -0.353730 |
| Ν | -7.343397  | -1.571926 | -1.345257 |
| С | -8.565000  | -2.032927 | -1.709580 |
| С | -9.132559  | -3.132826 | -1.050890 |
| С | -8.423647  | -3.749310 | -0.013101 |
| С | -7.164980  | -3.255372 | 0.343061  |
| Ν | -8.534408  | -0.258371 | -3.337099 |
| С | -9.041558  | 0.473245  | -4.351261 |
| С | -10.286190 | 0.181178  | -4.898045 |
| С | -11.015134 | -0.898674 | -4.375351 |
| Η | -8.432877  | 1.303750  | -4.724765 |
| Η | -10.674427 | 0.789785  | -5.719615 |
| Η | -11.039474 | -2.493094 | -2.911644 |
| Η | -10.117606 | -3.507668 | -1.340193 |
| Н | -6.577107  | -3.706195 | 1.147508  |
| Η | -5.673964  | -1.752795 | -0.091009 |
| С | -10.479025 | -1.650536 | -3.324486 |
| С | -9.222328  | -1.314571 | -2.808294 |
| Ν | -7.172144  | 1.420090  | -0.907631 |
| С | -8.386231  | 1.961942  | -0.757430 |
| С | -8.657354  | 2.825446  | 0.307384  |
| C | -7.635132  | 3.122287  | 1.215084  |
| C | -6.368359  | 2.556279  | 1.034398  |
| C | -6.152258  | 1.702427  | -0.052441 |
| C | -4.872607  | 1.069980  | -0.384905 |
| N | -4.913723  | 0.308684  | -1.497621 |
| C | -3.837416  | -0.352114 | -1.974121 |
| C | -2.615605  | -0.252014 | -1.305968 |
| C | -2.509555  | 0.529215  | -0.131551 |
| C | -3.672771  | 1.195851  | 0.320124  |
| C | -4.112441  | -1.138155 | -3.180951 |
| Ν | -5.396035  | -1.079451 | -3.626167 |

| С | -5.786982  | -1.719429 | -4.734184 |
|---|------------|-----------|-----------|
| С | -4.886439  | -2.497238 | -5.466553 |
| С | -3.561038  | -2.590163 | -5.027806 |
| С | -3.167988  | -1.903568 | -3.873870 |
| Η | -9.169285  | 1.710382  | -1.479400 |
| Η | -9.661140  | 3.246626  | 0.413518  |
| Η | -7.819224  | 3.794934  | 2.058381  |
| Η | -5.554202  | 2.783501  | 1.728163  |
| Η | -3.636905  | 1.834574  | 1.206381  |
| Η | -1.752453  | -0.805601 | -1.683964 |
| Η | -2.134797  | -1.957485 | -3.519795 |
| Η | -2.833032  | -3.190533 | -5.582147 |
| Η | -5.233868  | -3.018836 | -6.363005 |
| Η | -6.829437  | -1.627438 | -5.055049 |
| С | -1.233687  | 0.648118  | 0.599343  |
| Η | -11.997209 | -1.155007 | -4.784578 |
| Η | -8.855041  | -4.608180 | 0.510072  |
| Н | 12.005098  | -1.085523 | -4.787301 |
| Н | 8.879093   | -4.657361 | 0.439167  |
|   |            |           |           |

Table S2. Cartesian coordinates for the complex  $[{Ru^V(O)(bpz)}_2(tpy_2ph)]^{6+}$  obtained by BP86/SDD.

|    | Х         | У         | Z         |
|----|-----------|-----------|-----------|
| Ru | 6.621207  | 0.137155  | -2.490948 |
| 0  | 6.198678  | 1.479289  | -3.565830 |
| Ru | -6.609878 | 0.076499  | -2.525372 |
| 0  | -6.166600 | 1.335154  | -3.689094 |
| С  | 6.897851  | -2.273915 | -0.461874 |
| Ν  | 7.485440  | -1.561485 | -1.423212 |
| С  | 8.753317  | -1.839068 | -1.802535 |
| С  | 9.447025  | -2.881360 | -1.150418 |
| Ν  | 8.837160  | -3.585929 | -0.220368 |
| С  | 7.597405  | -3.326974 | 0.154005  |
| Ν  | 8.534639  | -0.023968 | -3.355892 |
| С  | 8.974623  | 0.764744  | -4.344304 |
| С  | 10.260531 | 0.563365  | -4.869007 |
| Ν  | 11.028965 | -0.390318 | -4.368429 |
| Н  | 8.320238  | 1.561326  | -4.714509 |
| Н  | 10.633734 | 1.207240  | -5.676577 |
| Н  | 11.262153 | -1.998577 | -3.056507 |
| Η  | 10.493170 | -3.108613 | -1.400230 |
| Η  | 7.109956  | -3.942420 | 0.921985  |
| Н  | 5.867325  | -2.050229 | -0.167325 |
| С  | 10.603020 | -1.197256 | -3.419408 |
| С  | 9.315843  | -1.019838 | -2.868247 |
| Ν  | 7.112553  | 1.415454  | -0.890780 |

| С | 8.292476   | 2.025615  | -0.732485 |
|---|------------|-----------|-----------|
| С | 8.527709   | 2.876192  | 0.351400  |
| С | 7.502775   | 3.088462  | 1.279353  |
| С | 6.269860   | 2.452714  | 1.096371  |
| С | 6.090781   | 1.616499  | -0.011220 |
| С | 4.839419   | 0.919773  | -0.331379 |
| Ν | 4.897211   | 0.167971  | -1.448449 |
| С | 3.851491   | -0.544314 | -1.923700 |
| С | 2.632615   | -0.502276 | -1.243503 |
| С | 2.504892   | 0.274013  | -0.068158 |
| С | 3.641494   | 0.983243  | 0.386982  |
| С | 4.154447   | -1.314362 | -3.137142 |
| Ν | 5.428263   | -1.191746 | -3.602871 |
| С | 5.834300   | -1.829291 | -4.705396 |
| С | 4.964929   | -2.660328 | -5.418198 |
| С | 3.651539   | -2.812865 | -4.961312 |
| С | 3.240363   | -2.133851 | -3.808631 |
| Η | 9.080183   | 1.842351  | -1.469099 |
| Η | 9.505916   | 3.353973  | 0.456956  |
| Η | 7.657797   | 3.747180  | 2.139388  |
| Η | 5.453673   | 2.610619  | 1.806775  |
| Η | 3.582929   | 1.612494  | 1.278491  |
| Η | 1.790100   | -1.091278 | -1.614640 |
| Н | 2.216552   | -2.238493 | -3.438900 |
| Η | 2.947513   | -3.455917 | -5.498444 |
| Н | 5.325390   | -3.175340 | -6.313234 |
| Η | 6.867598   | -1.690651 | -5.039777 |
| С | 1.223643   | 0.367005  | 0.656354  |
| С | -1.219845  | 0.638992  | 2.041432  |
| Η | -2.162331  | 0.739315  | 2.589111  |
| С | -0.000851  | 0.225442  | -0.024716 |
| Η | 0.002138   | 0.061764  | -1.106748 |
| С | -0.013082  | 0.744964  | 2.736324  |
| Η | -0.017761  | 0.924094  | 3.815818  |
| С | 1.199505   | 0.625925  | 2.054566  |
| Η | 2.135726   | 0.715154  | 2.614567  |
| С | -6.929957  | -2.169043 | -0.319966 |
| Ν | -7.503088  | -1.523751 | -1.335983 |
| С | -8.775466  | -1.807267 | -1.695536 |
| С | -9.487696  | -2.784535 | -0.967388 |
| Ν | -8.892497  | -3.424149 | 0.017558  |
| С | -7.649616  | -3.156962 | 0.375434  |
| Ν | -8.524226  | -0.118919 | -3.381396 |
| С | -8.948061  | 0.597744  | -4.429904 |
| С | -10.234771 | 0.375781  | -4.944202 |
| Ν | -11.020326 | -0.523396 | -4.374159 |
| Η | -8.279817  | 1.353308  | -4.856959 |

| Н | -10.595067 | 0.960159  | -5.801377 |
|---|------------|-----------|-----------|
| Н | -11.285331 | -2.020160 | -2.942278 |
| Η | -10.536364 | -3.014319 | -1.203572 |
| Η | -7.174794  | -3.717415 | 1.191883  |
| Η | -5.895654  | -1.942206 | -0.041353 |
| С | -10.611129 | -1.260784 | -3.363131 |
| С | -9.322495  | -1.062515 | -2.822342 |
| Ν | -7.078611  | 1.470836  | -1.018435 |
| С | -8.242263  | 2.122385  | -0.913586 |
| С | -8.464926  | 3.045033  | 0.112439  |
| С | -7.444225  | 3.286429  | 1.038050  |
| С | -6.227014  | 2.608590  | 0.908919  |
| С | -6.059296  | 1.701333  | -0.143154 |
| С | -4.821685  | 0.958943  | -0.409916 |
| Ν | -4.887557  | 0.144726  | -1.482035 |
| С | -3.854622  | -0.616351 | -1.906683 |
| С | -2.638404  | -0.557134 | -1.222748 |
| С | -2.505211  | 0.278973  | -0.090444 |
| С | -3.628737  | 1.036400  | 0.315918  |
| С | -4.168296  | -1.455976 | -3.070077 |
| Ν | -5.439355  | -1.342237 | -3.545390 |
| С | -5.853808  | -2.039695 | -4.607637 |
| С | -4.997090  | -2.927333 | -5.265426 |
| С | -3.687547  | -3.073729 | -4.795687 |
| С | -3.267121  | -2.331457 | -3.686189 |
| Η | -9.026781  | 1.914368  | -1.647223 |
| Η | -9.430449  | 3.554978  | 0.176304  |
| Η | -7.590322  | 4.000648  | 1.854216  |
| Η | -5.413229  | 2.790121  | 1.616351  |
| Η | -3.562877  | 1.710800  | 1.173633  |
| Η | -1.803847  | -1.181140 | -1.553051 |
| Η | -2.246231  | -2.430587 | -3.307120 |
| Η | -2.993145  | -3.760253 | -5.289873 |
| Н | -5.364665  | -3.490294 | -6.128124 |
| Н | -6.884052  | -1.905070 | -4.952947 |
| С | -1.229992  | 0.375502  | 0.644392  |

Table S3. Kohn-Sham orbitals obtained by  $[{Ru^V(O)(bpy)}_2(tpy_2ph)]^{6+}$  obtained by BP86/SDD. The frontier orbitals of each set are in boldface.

| alpha | (       | Contribu | tion / % | I    | oeta |         | Contribu | tion / % |      |
|-------|---------|----------|----------|------|------|---------|----------|----------|------|
| - #   | E / eV  | Ru       | 0        | L    | #    | E / eV  | Ru       | 0        | L    |
| 170   | -0.2905 | 8.2      | 5        | 86.7 | 170  | -0.2874 | 2.1      | 0.5      | 97.3 |
| 171   | -0.2904 | 8.1      | 4.9      | 87   | 171  | -0.2873 | 2.2      | 0.5      | 97.3 |
| 172   | -0.2884 | 3.8      | 2.4      | 93.8 | 172  | -0.2806 | 0.2      | 1.3      | 98.5 |
| 173   | -0.2882 | 8.7      | 5.8      | 85.5 | 173  | -0.2764 | 5.9      | 2.6      | 91.6 |
| 174   | -0.2874 | 29.2     | 19.3     | 51.6 | 174  | -0.2745 | 65.6     | 0        | 34.3 |
| 175   | -0.286  | 27.6     | 17.3     | 55.1 | 175  | -0.2743 | 62.8     | 0.2      | 37   |
| 176   | -0.278  | 52       | 25       | 22.9 | 176  | -0.2186 | 40.3     | 33.4     | 26.3 |
| 177   | -0.2777 | 52.3     | 25.2     | 22.6 | 177  | -0.218  | 40.4     | 33       | 26.6 |
| 178   | -0.2759 | 35.9     | 16.1     | 48   | 178  | -0.2166 | 47.4     | 37.5     | 15   |
| 179   | -0.2719 | 30.4     | 12       | 57.7 | 179  | -0.2163 | 47.4     | 37.5     | 15.1 |
| 180   | -0.1797 | 5        | 0.4      | 94.7 | 180  | -0.1754 | 11       | 2.5      | 86.4 |
| 181   | -0.1795 | 4.5      | 0.4      | 95   | 181  | -0.1752 | 10.8     | 2.5      | 86.8 |
| 182   | -0.1674 | 4        | 0.2      | 95.8 | 182  | -0.1642 | 1.4      | 0.1      | 98.6 |
| 183   | -0.1673 | 2.7      | 0.2      | 97.1 | 183  | -0.1641 | 1.3      | 0.1      | 98.6 |
| 184   | -0.1672 | 38.6     | 0.4      | 61   | 184  | -0.1621 | 5.6      | 1        | 93.5 |
| 185   | -0.1666 | 38.7     | 0.4      | 60.9 | 185  | -0.162  | 5.7      | 1        | 93.3 |
| 186   | -0.165  | 1.6      | 0        | 98.4 | 186  | -0.1495 | 39       | 0.3      | 60.7 |
| 187   | -0.1649 | 2.8      | 0        | 97.3 | 187  | -0.1488 | 39       | 0.3      | 60.7 |
| 188   | -0.1351 | 1.1      | 0        | 98.8 | 188  | -0.1336 | 1        | 0.1      | 98.9 |
| 189   | -0.1348 | 0.8      | 0        | 99.1 | 189  | -0.1329 | 1.3      | 0.1      | 98.7 |
| 190   | -0.1346 | 0.8      | 0        | 99.1 | 190  | -0.1328 | 1.2      | 0.1      | 98.7 |

Table S4. Kohn-Sham orbitals obtained by  $[{Ru^V(O)(bpz)}_2(tpy_2ph)]^{6+}$  obtained by BP86/SDD. The frontier orbitals of each set are in boldface.

| alpha |         | Contribution / % |      |      | beta |         | Contribution / % |      |      |
|-------|---------|------------------|------|------|------|---------|------------------|------|------|
| #     | E / eV  | Ru               | 0    | L    | #    | E / eV  | Ru               | 0    | L    |
| 170   | -0.2919 | 1                | 0.6  | 98.3 | 170  | -0.2829 | 5.7              | 0.4  | 93.9 |
| 171   | -0.2919 | 1                | 0.6  | 98.3 | 171  | -0.2806 | 25.7             | 0.8  | 73.6 |
| 172   | -0.2897 | 3.6              | 3.3  | 93.2 | 172  | -0.2805 | 23.8             | 0.5  | 75.6 |
| 173   | -0.2889 | 7.6              | 7.3  | 85.1 | 173  | -0.2789 | 5                | 1.7  | 93.3 |
| 174   | -0.2873 | 2.7              | 2    | 95.4 | 174  | -0.2777 | 36.3             | 0.3  | 63.3 |
| 175   | -0.2869 | 3                | 2.4  | 94.7 | 175  | -0.2773 | 33.8             | 0.8  | 65.4 |
| 176   | -0.2687 | 52.2             | 24.7 | 23.1 | 176  | -0.2128 | 40.1             | 31.6 | 28.4 |
| 177   | -0.268  | 53.8             | 25.3 | 20.9 | 177  | -0.2123 | 40.3             | 31.2 | 28.5 |
| 178   | -0.2672 | 55.1             | 26.4 | 18.5 | 178  | -0.2111 | 43.3             | 32   | 24.7 |
| 179   | -0.2665 | 51.7             | 24   | 24.4 | 179  | -0.211  | 43.3             | 31.8 | 24.9 |
| 180   | -0.1909 | 4.4              | 0.4  | 95.1 | 180  | -0.1865 | 9.7              | 4    | 86.4 |
| 181   | -0.1909 | 4.4              | 0.4  | 95.2 | 181  | -0.1865 | 9.7              | 4    | 86.4 |
| 182   | -0.1793 | 5.6              | 0.5  | 94   | 182  | -0.1731 | 14.3             | 3.7  | 82   |
| 183   | -0.1784 | 5.9              | 0.5  | 93.6 | 183  | -0.1729 | 14.5             | 3.8  | 81.7 |
| 184   | -0.1647 | 1.4              | 0.1  | 98.5 | 184  | -0.1621 | 3.1              | 0.5  | 96.4 |
| 185   | -0.1646 | 1.4              | 0.1  | 98.4 | 185  | -0.162  | 3.2              | 0.5  | 96.4 |
| 186   | -0.1562 | 8.2              | 0.2  | 91.6 | 186  | -0.1536 | 2.1              | 0.2  | 97.8 |
| 187   | -0.1562 | 8                | 0.2  | 91.8 | 187  | -0.1536 | 2.1              | 0.2  | 97.7 |
| 188   | -0.154  | 3.2              | 0.1  | 96.7 | 188  | -0.1515 | 2.6              | 0.7  | 96.7 |
| 189   | -0.154  | 2.8              | 0.1  | 97   | 189  | -0.1515 | 2.5              | 0.7  | 96.8 |
| 190   | -0.1522 | 35.3             | 0.2  | 64.5 | 190  | -0.1377 | 36.6             | 0.2  | 63.2 |

Table S5. Mulliken and Löwdin (in parentheses) spin populations on the  $Ru^VO^{3+}$  fragment for the complexes  $[Ru^V(O)(L)(tpy_2ph)Ru^V(O)(L)]^{6+}$  obtained by BP86/SDD and BP86/B3LYP/SDD.

|            | L = bpy     | L = bpz     |
|------------|-------------|-------------|
| BP86       |             |             |
| Ru         | 1.63 (1.57) | 1.41 (1.35) |
| 0          | 0.99 (0.98) | 0.97 (0.96) |
|            |             |             |
| BP86/B3LYP |             |             |
| Ru         | 1.67 (1.67) | 1.70 (1.64) |
| 0          | 1.13 (1.11) | 1.14 (1.11) |