Supporting Information: K-doped FeOOH/Fe₃O₄ nanoparticles gown on stainless steel substrate with

superior and increasing specific capacity

Haiqiang Luo, Keyu Tao and Yun Gong*

Department of Applied Chemistry, College of Chemistry and Chemical Engineering,

Chongqing University, Chongqing 401331, P. R. China.

*Corresponding author's email: gongyun7211@cqu.edu.cn

Figure S1 Cross section image of K-doped FeOOH/Fe₃O₄/SS.

100nm

(b)

(a)

Figure S2 SEM image of the bare SS (**a**), EDS and the corresponding elemental mappings for the bare SS within two randomly selected areas (**b**, **c**).

Atom %	Bare SS	K-doped FeOOH/Fe ₃ O ₄ / SS before GCD cycles	K-doped FeOOH/Fe ₃ O ₄ / SS after 10000 GCD cycles	K-doped FeOOH /SS	FeOOH /SS
Fe	55 0 a /53 3 b	36 3 ° /43 3 d	42 4 °	26.6 f	40.9g
10	55.0 755.5	50.5 745.5	72.7	20.0	10.9
С	12.0 ^a /12.2 ^b	25.2 ° /13.2 d	18 °	20.8 ^f	11.8 g
0	2.4 ^a /2.4 ^b	15.9 ° /19.7 d	18.6 °	41.6 ^f	24.3 g
Ni	12.5 a/14.3 b	11.4 ° /11.9 d	7.9 °	5.7 ^f	11.0 g
Cr	16.4 ^a /16.1 ^b	8.9 ° /10.0 d	11.8 °	3.4 ^f	10.3 g
Мо	0.7 ^a /0.7 ^b	1.4 °	/	/	/
Mn	/	1.1 ^d	1.2 °	/	0.8 g
Si	1.0 ^a /1.0 ^b	0.8 c /0.7 d	/	0.3 f	0.4 g
K	/	0.1 ° /0.1 d	0.1 e	1.5 f	/
S	/	/	/	0.2 ^f	0.5 ^g

Table S1 The atom % in the bare SS and K-doped FeOOH/Fe $_3O_4$ /SS sample beforeand after electrochemical measurements.

^{*a*} The percentages of the atoms are calculated based on the EDS data in Figure S2b;

^b The percentages of the atoms are calculated based on the EDS data in Figure S2c;

^c The percentages of the atoms are calculated based on the EDS data in Figure 2b;

^d The percentages of the atoms are calculated based on the EDS data in Figure 2c;

^e The percentages of the atoms are calculated based on the EDS data in Figure 8a;

^fThe percentages of the atoms are calculated based on the EDS data in Figure S14a;

^g The percentages of the atoms are calculated based on the EDS data in Figure S14b.

(b)

(c)

(d)

(e)

Figure S3 HRTEM (a, b) and SAED images (c-e) for K-doped FeOOH/Fe₃O₄/SS nanocomposite.

Figure S4 The XPS fine spectra of C 1s (a), Ni 2p (b) and Cr 2p (c) for K-doped FeOOH/Fe₃O₄/SS before (above) and after (below) 10000 GCD cycles.

Figure S5 Nitrogen adsorption-desorption isotherms (**a**) and pore size distribution (**b**) curves of K-doped Fe₃O₄@FeOOH/SS.

Figure S6 CV at 10 mV s⁻¹ (**a**) and GCD curves at 1 A g⁻¹ (**b**) for the bare SS and K-doped Fe₃O₄/FeOOH/SS.

1500

Time (s)

2000

2500

3000

1000

(b)

-1.2 -

0

500

Table	S2	The	electrochemical	behaviors	for	iron	oxides/hydroxides	based	anode
materi	als r	eport	ed previously.						

Sample	Electrolyte	Current density (A g ⁻¹)	Specific capacity (F g ⁻¹)	Energy density	Capacity retention	Ref.
FeOOH/C	6 M KOH	0.5	396	/	/	1
Dy ³⁺ -doped Fe ₃ O ₄	1 M Na ₂ SO ₄	0.5	202	/	/	2
α-Fe ₂ O ₃ /rGO	1 M KOH	1	903	/	/	3
Fe ₃ O ₄ NRs/NH ₂ - rGO	1 M Na ₂ SO ₄	1	145	/	/	4
Fe ₃ C/Fe ₃ O ₄ /C	6 M KOH	0.5	315	/	/	5
(AC)-Fe ₃ O ₄	6 М КОН	0.5	37.9	/	/	6
Fe ₂ O ₃ /N-rGO	1 М КОН	0.5	618	/	/	7
Fe ₂ O ₃ NDs@NG	2 М КОН	1	274	/	/	8
FeO _x -CNFs	6 М КОН	1	460	/	/	9
FeOOH QDs	1 M Li ₂ SO ₄	1	365	/	/	10
α-Fe ₂ O ₃ /C	1 M Na ₂ SO ₄	1	391.8	0.64 mWh cm ⁻³ at 14.8mW cm ⁻³	71.8% (4000 cycles at 200 mV s ⁻ ¹)	11
PEDOP@Fe ₃ O ₄ NSs	1 M LiClO ₄ /PC/ 15 wt% PMMA based gel	1	673	93 Wh kg ⁻¹ at 0.5 kW kg ⁻¹	83% (5000 cycles at 1 A g ⁻¹)	12
Fe ₂ O ₃ /MWCNTs	1 M Na ₂ SO ₄	2	437.5	38 Wh kg ⁻¹ at 800 W kg ⁻¹	65 % (500 cycles at 2 A g ⁻¹)	13
G@Fe ₃ O ₄	2 М КОН	2	732	82.8 Wh kg ⁻ ¹ at 2047 W kg ⁻¹	88.3% (10000 cycles at	14

					20 A g ⁻¹)	
Fe ₃ O ₄ @C	6 М КОН	0.5	586	18.3 Wh kg ⁻ ¹ at 351 W kg ⁻¹	66.7% (1000 cycles at 5 A g ⁻¹)	15
Fe ₃ O ₄ @CNF _{Mn}	Gel Na ₂ SO ₄ /PV A	1	306	13 Wh kg ⁻¹ at 65 W kg ⁻¹	85% (2000 cycles at 0.5 A g ⁻¹)	16
MnO ₂ @Fe ₂ O ₃	Gel Na2SO4/C MC	0.69	91	41.8 Wh kg ⁻ ¹ at 1276 W kg ⁻¹	91% (3000 cycles at 100 mV s ⁻ ¹)	17
FeOOH	2 М КОН	1	1066	104 Wh kg ⁻¹ at 1.27 kW kg ⁻¹	91% (10000 cycles at 30 A g ⁻¹)	18
FeOOH/RGO	1 M Li ₂ SO ₄	1	142.0	16 Wh kg ⁻¹ at 0.6 kW kg ⁻¹	90% (1000 cycles at 40 A g ⁻¹)	19
Co–Fe ₃ O ₄ NS@NG	3 М КОН	1	775	89.1 Wh kg ⁻¹ at 0.901 kW kg ⁻¹	97.1% (10000 cycles at 1 A g ⁻¹)	20
K-doped FeOOH/Fe ₃ O ₄ /SS	2 М КОН	1	1296 (396 mAh g ⁻¹)	74.38 Wh kg ⁻¹ at 3.64 W kg ⁻¹	85.6 % (3000 cycles at 30 A g ⁻¹)	This work

Figure S7 Niquist plots for the bare SS and K-doped FeOOH/Fe $_3O_4$ / SS

Sample	$R_{\rm ct}(\Omega \ {\rm cm}^{-2})$	$R_{\rm s}(\Omega~{ m cm}^{-2})$
bare SS	85.3	0.9698
K-doped FeOOH/Fe ₃ O ₄ /SS	376.8	2.754
K-doped FeOOH/Fe ₃ O ₄ /SS after 5000 GCD cycles	49.1	0.8743
K-doped FeOOH/Fe ₃ O ₄ /SS after 10000 GCD cycles	92.1	1.038

Table S3 Parameters obtained from the simulation of the Nyquist plots for the bareSS and K-doped FeOOH/Fe₃O₄/SS before and after 5000/10000 GCD cycles.

Figure S8 The comparative TDOS for the K-doped and –undoped FeOOH.

(f)

Figure S9 SEM images of K-doped FeOOH/Fe₃O₄/SS composites prepared under different reaction temperatures: 140 $^{\circ}$ C (**a**, **b**), 160 $^{\circ}$ C (**c**, **d**) and 180 $^{\circ}$ C (**e**, **f**).

Figure S10 SEM images of K-doped FeOOH/Fe₃O₄/SS composites prepared with different amounts of KOH: 0.50 mmol (\mathbf{a}), 0.75 mmol (\mathbf{b}) and 1.00 mmol (\mathbf{c}).

(a)

(c)

different reaction times: 12 h (**a**, **b**) and 24 h (**c**, **d**).

Figure S12 XRD patterns of the samples prepared in the absence of H_2O_2 (a) or KOH (b) in comparison with K-doped FeOOH/Fe₃O₄/SS (c).

(b)

Figure S13 EDS and elemental mapping images of K-doped FeOOH/SS (**a**) and FeOOH/SS (**b**) prepared in the absence of H_2O_2 or KOH, respectively.

(e)

(f)

Figure S14 SEM images K-doped FeOOH/SS (a, b) and FeOOH/SS (c-f).

(a)

(b)

Figure S15 CVs at different scan rates (a) and GCD curves at different current densities for Co-Mo-O/Ni₃S₂/NF (b).

Figure S16 CV curves of the Co-Mo-O/Ni $_3S_2$ /NF // K-doped FeOOH/Fe $_3O_4$ /SS device at 20 mV s⁻¹ in different voltage windows.

Reference

- 1. M. Aghazadeh and M. R. Ganjali, Ceramics International, 2018, 44, 520-529.
- 2. J. Li, D. Chen, Q. Wu, X. Wang, Y. Zhang and Q. Zhang, New Journal of Chemistry, 2018, 42, 4513-4519.

- 3. D. Chen, S. Zhou, H. Quan, R. Zou, W. Gao, X. Luo and L. Guo, *Chemical Engineering Journal*, 2018, **341**, 102-111.
- 4. F. Zhu, International Journal of Electrochemical Science, 2017, 12, 7197-7204.
- L. Yao, J. Yang, P. Zhang and L. Deng, *Bioresource Technology*, 2018, 256, 208-215.
- 6. X. Du, C. Wang, M. Chen, Y. Jiao and J. Wang, *The Journal of Physical Chemistry C*, 2009, **113**, 2643-2646.
- 7. Z. Ma, X. Huang, S. Dou, J. Wu and S. Wang, *The Journal of Physical Chemistry C*, 2014, **118**, 17231-17239.
- 8. L. Liu, J. Lang, P. Zhang, B. Hu and X. Yan, *ACS Applied Materials & Interfaces*, 2016, **8**, 9335-9344.
- 9. R. Pai, A. Singh, S. Simotwo and V. Kalra, *Advanced Engineering Materials*, 2018, **0**, 1701116.
- J. Liu, M. Zheng, X. Shi, H. Zeng and H. Xia, Advanced Functional Materials, 2015, 26, 919-930.
- 11. H. Quan, B. Cheng, Y. Xiao and S. Lei, *Chemical Engineering Journal*, 2016, **286**, 165-173.
- 12. B. N. Reddy, S. Deshagani, M. Deepa and P. Ghosal, *Chemical Engineering Journal*, 2018, **334**, 1328-1340.
- 13. S. S. Raut and B. R. Sankapal, New Journal of Chemistry, 2016, 40, 2619-2627.
- 14. J. Lin, H. Liang, H. Jia, S. Chen, J. Guo, J. Qi, C. Qu, J. Cao, W. Fei and J. Feng, *Journal of Materials Chemistry A*, 2017, **5**, 24594-24601.
- 15. H. Fan, R. Niu, J. Duan, W. Liu and W. Shen, ACS Applied Materials & Interfaces, 2016, 8, 19475-19483.
- 16. N. Iqbal, X. Wang, A. A. Babar, G. Zainab, J. Yu and B. Ding, Scientific Reports, 2017, 7, 15153.
- 17. G. S. Gund, D. P. Dubal, N. R. Chodankar, J. Y. Cho, P. Gomez-Romero, C. Park and C. D. Lokhande, *Scientific Reports*, 2015, **5**, 12454.
- 18. K. A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou and L. Mai, *Nature Communications*, 2017, 8, 14264.
- H.-W. Chang, C.-L. Dong, Y.-R. Lu, Y.-C. Huang, J.-L. Chen, C. L. Chen, W.-C. Chou, Y.-C. Tsai, J.-M. Chen and J.-F. Lee, ACS Sustainable Chemistry & Engineering, 2017, 5, 3186-3194.
- 20. M. Guo, J. Balamurugan, X. Li, H. Kim Nam and H. Lee Joong, *Small*, 2017, **13**, 1701275.