Magnesium, Calcium and Zinc [N₂N'] Heteroscorpionate Complexes

Mariana Luna Barros, Michael G. Cushion, Andrew D. Schwarz, Zoë R. Turner* and Philip Mountford *

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.

SUPPORTING INFORMATION

Table of Contents

General considerations	S2
Additional synthetic details	S 3
Representative NMR spectra	S10
Additional X-ray crystallographic data	S19
Density functional theory calculations	S30
References	S40

General considerations

All manipulations were carried out under an inert atmosphere of argon or dinitrogen using standard Schlenk-line or drybox procedures. Solvents were pre-dried over activated 4 Å molecular sieves and refluxed over sodium (toluene), sodium/potassium (pentane, diethyl ether), or calcium hydride (dichloromethane) under a dinitrogen atmosphere and collected by distillation. Alternatively, solvents were degassed by sparging with dinitrogen and dried by passing through a column of activated alumina. Deuterated solvents were dried over potassium (C_6D_6) or P₂O₅ (CD₂Cl₂), distilled under reduced pressure, and stored under dinitrogen in J. Young Teflon valve ampoules. Solution NMR samples were prepared under a dinitrogen atmosphere in a drybox, in 5 mm Wilmad NMR tubes possessing Young's Teflon valves. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 300 spectrometer or a Bruker AVII 500 spectrometer. ¹H and ¹³C{¹H} NMR spectra were referenced internally to residual protio-solvent (¹H) or solvent (¹³C) resonances, and are reported relative to tetramethylsilane ($\delta =$ 0 ppm). ⁷Li NMR spectra are referenced relative to LiCl. Chemical shifts are quoted in δ (ppm) and coupling constants in Hz. Where necessary, ¹H and ¹³C assignments were assisted by the use of two-dimensional ¹H-¹H and ¹H-¹³C correlation experiments. IR spectra were recorded on a Perkin-Elmer 1710 or Nicolet magna 560 FTIR spectrometer. Samples were prepared in a drybox as Nujol mulls between NaCl plates. IR data are quoted as wavenumbers (cm⁻¹) within the range 4000–400 cm⁻¹. Mass spectra were recorded by the mass spectrometry service of the University of Oxford Inorganic Chemistry Laboratory. Elemental analyses were carried out by the Elemental Analysis Service at the London Metropolitan University. The compounds $H_2C(Bu_2pz)_{2,1}$ $HC(Me_2pz)_2SiMe_2N(H)/Pr^2$, $Ca\{N(SiMe_3)_2\}(thf)_2^3$, $Mg\{N(SiMe_3)_2\}_2^3$ and $Mg\{N(SiHMe_2)_2\}_2^3$ were prepared according to literature procedures. E-Caprolactone was dried over freshly ground CaH2, stored over molecular sieves (4 Å)at 4 °C and distilled before use. rac-lactide was recrystallized twice from toluene and subsequently sublimed twice prior to use. All other reagents were purchased and used without further purification. All other reagents were purchased and used without further purification. Polymer molecular weights (M_{n}, M_{w}) were determined by GPC using a Polymer Laboratories Plgel Mixed-D column (300 mm length, 7.5 mm diameter) and a Polymer Laboratories PL-GPC50 Plus instrument equipped with a refractive index detector. Tetrahydrofuran (HPLC grade) was used as an eluent at 30 °C with a rate of 1 mL min⁻¹. Linear polystyrenes were used as primary calibration standards, and Mark-Houwink corrections for $poly(\epsilon-CL)$ or poly(rac-LA) in thf were applied for the experimental samples.⁴

Additional synthetic details

HC(Me2pz)2SiMe2N(H)'Bu

To a stirred solution of HC(Me₂pz)₂SiMe₂Cl (4.00 g, 13.5 mmol) in Et₂O (60 mL) at 0 °C, was added NH₂^tBu (4.25 mL, 40.4 mmol). The resultant white suspension was stirred for 4 h at 0 °C, filtered, dried under reduced pressure and extracted into pentane (3 x 20 mL). The volatiles were removed under reduced pressure to afford HC(Me₂pz)₂SiMe₂N(H)/Bu as a clear yellow oil. Yield: 3.82 g (85%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 6.06 (1 H, s, <u>HC</u>(Me₂pz)₂), 5.65 (2 H, s, N₂C₃<u>H</u>Me₂), 2.17 (6 H, s, 3-N₂C₃<u>HMe₂), 1.89 (6 H, s, 5-N₂C₃<u>HMe₂), 1.12 (9 H, s, CMe₃), 0.45 (6 H, s, SiMe). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 146.5 (3-N₂C₃<u>HMe₂), 140.1 (5-N₂C₃<u>HMe₂), 106.4 (4-N₂C₃<u>HMe₂), 69.6 (HC</u>(Me₂pz)₂), 49.6 (<u>CMe₃), 33.9 (CMe₃), 13.7 (3-N₂C₃<u>HMe₂), 10.9 (5-N₂C₃<u>HMe₂), 1.7 (SiMe). IR (NaCl plates, Nujol mull, cm⁻¹): 3368 (m), 2959 (s), 2867 (s), 1551 (m), 1463 (s), 1417 (s) 1358 (m), 1322 (m), 1274 (m), 1246 (m), 1226 (m), 1027 (m), 972 (w), 860 (m), 800 (s), 777 (m), 691 (s). EI-MS: *m/z* = 333 (100%) [M]⁺, 238 (15%) [M-Me₂pz]⁺. Anal. found (calcd. for C₁₇H₃₁N₅Si): C, 60.6 (61.2); H, 9.4 (9.4); N, 21.0 (20.4)%.</u></u></u></u></u></u></u>

HC('Bu2pz)2SiMe2N(H)'Bu

To a stirred solution of HC('Bu₂pz)₂SiMe₂Cl (4.00 g, 8.60 mmol) in Et₂O (60 mL) at 0 °C, was added NH₂'Bu (2.71 mL, 25.8 mmol). The resultant colourless suspension was stirred at 40 °C for 6 days. The suspension was filtered, dried under reduced pressure and extracted into pentane (3 x 20 mL). The volatiles were removed under reduced pressure to afford HC('Bu₂pz)₂SiMe₂N(H)'Bu as a thick, colourless oil. Yield: 4.27 g (99%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.07 (1 H, s, HC('Bu₂pz)₂), 6.03 (2 H, s, N₂C₃H'Bu₂), 2.14 (1 H, s, NH), 1.42 (9 H, s, CMe₃), 1.17 (18 H, s, 3-N₂C₃H'Bu₂), 1.16 (18 H, s, 5-N₂C₃H'Bu₂), 0.50 (6 H, s, SiMe). ¹³C {¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 158.2 (3-N₂C₃H'Bu₂), 154.2 (5-N₂C₃H'Bu₂), 102.5 (4-N₂C₃H'Bu₂), 76.1-(HC('Bu₂pz)₂), 49.8 (CMe₃), 34.1 (CMe₃), 32.4 (3-N₂C₃H(CMe₃)₂), 32.4 (5-N₂C₃H(CMe₃)₂), 30.9 (3-N₂C₃H(CMe₃)₂), 30.5 (5-N₂C₃H(CMe₃)₂), 3.5 (SiMe). IR (NaCl plates, Nujol mull, cm⁻¹): 3335 (w), 2710 (w), 2600 (w), 1536 (s), 1360 (s), 1343 (s), 1318 (w), 1275 (s), 1234 (s), 1177 (w), 1157 (w), 1067 (m), 1021 (s), 1003 (s), 931 (w), 868 (m). EI-MS: *m/z* = 501 (6%) [M]⁺, 444 (100%) [M-'Bu]⁺, 429 (6%) [M-N(H)'Bu]⁺. Anal. found (calcd. for C₂₉H₅₅N₅Si): C, 69.5 (69.4); H, 11.0 (11.1); N, 14.0 (14.0)%.

HC(^tBu₂pz)₂SiMe₂N(H)Ph

To a stirred solution of NH₂Ph (0.78 mL, 8.60 mmol) in Et₂O (20 mL), was added NEt₃ (2.40 mL, 17.2 mmol). This mixture was slowly added to a stirred solution of HC('Bu₂pz)₂SiMe₂Cl (4.00 g, 8.60 mmol) in Et₂O (50 mL). The resultant white suspension was stirred for 20 days. The suspension was filtered, the solid washed with Et₂O (3 x 10 mL) and the volatiles removed under reduced pressure to afford a colourless, oily solid which was extracted into pentane (3 x 10 mL) and dried under reduced pressure. The colourless solid was recrystallised from pentane (20 mL) at -30 °C, filtered and dried under reduced pressure to afford HC('Bu₂pz)₂SiMe₂N(H)Ph as a colourless solid. Yield: 4.40 g (98%). Diffraction-quality crystals were grown from a saturated pentane solution at -30 °C. ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.17–7.12 (3 H, overlapping t and s, 3-C₆H₅ and <u>HC</u>('Bu₂pz)₂), 6.82 (2 H, d, ³J_{HH} = 8.2 Hz, 2-C₆H₅), 6.76 (1 H, t, ³J_{HH} = 7.3 Hz, 4-C₆H₅), 6.02 (2 H, s, N₂C₃<u>H</u>'Bu₂), 5.03 (1 H, s, NH), 1.40 (18 H, s, 3-N₂C₃<u>H</u>'Bu₂), 1.10 (18 H, s, 5-N₂C₃<u>H</u>'Bu₂), 0.52 (6 H, s, SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 158.9 (3-N₂C₃<u>H</u>'Bu₂), 154.3 (5-N₂C₃<u>H</u>'Bu₂), 147.5

(1-C₆H₅), 129.6 (3-C₆H₅), 118.2 (4-C₆H₅), 117.1 (2-C₆H₅), 102.7 (4-N₂C₃H^{*i*}Bu₂), 74.6 (H<u>C</u>(^{*i*}Bu₂pz)₂), 32.2 (3-N₂C₃H(<u>C</u>Me₃)₂), 32.2 (5-N₂C₃H(<u>C</u>Me₃)₂), 30.7 (3-N₂C₃H(C<u>Me₃)₂), 30.3 (5-N₂C₃H(C<u>Me₃)₂), 0.0 (SiMe). IR</u> (NaCl plates, Nujol mull, cm⁻¹): 3315 (w), 1602 (m), 1586 (w), 1535 (m), 1499 (s), 1398 (m), 1342 (m), 1319 (m), 1298 (s), 1238 (m), 1212 (m), 1177 (w), 1153 (w), 1069 (m), 1004 (m), 996 (m), 904 (m), 882 (w), 868 (w), 750 (m), 690 (w). EI-MS: m/z = 429 (66%) [M-N(H)Ph]⁺. Anal. found (calcd. for C₃₁H₅₁N₅Si): C, 71.3 (71.4); H, 9.8 (9.9); N, 13.3 (13.4)%.</u>

$[Li{HC(^{t}Bu_{2}pz)_{2}SiMe_{2}N^{t}Pr}]_{n} (1)$

HC('Bu₂pz)₂SiMe₂N(H)'Pr (0.970 g, 2.00 mmol) was dissolved in pentane (60 mL) and cooled to -78 °C. "BuLi (1.5 mL, 2.4 mmol; 1.6 M in hexanes) was diluted with pentane (10 mL), similarly cooled and then added dropwise to the pro-ligand solution to afford a clear, colourless solution. The reaction mixture was stirred for 6 h, during which time a colourless precipitate formed. The reaction mixture was allowed to stand overnight before the solid was filtered off, washed with cold (-78 °C) pentane (3 x 10 mL) and dried under reduced pressure. NMR spectral analysis showed the presence of a small amount of protio ligand. "BuLi (1.25 mL, 2.00 mmol; 1.6 M in hexanes) was added to reaction mixture, redissolved in pentane (60 mL) at -78 °C. This was allowed to stir for 6 h, concentrated to 40 mL and allowed to stand overnight before the colourless solid was filtered off, washed with cold (-78 °C) pentane (3 x 5 mL) and dried under reduced pressure to yield complex **1** as a colourless powder. Yield: 0.05 g (5%).¹H NMR (C₅D₅N, 299.9 MHz, 293 K): 6.73 (1 H, s, <u>HC</u>('Bu₂pz)₂, 6.22 (2 H, s, N₂C₃<u>H</u>'Bu₂), 3.74 (1 H, m, <u>HC</u>Me₂), 1.46 (18 H, s, 3-N₂C₃H'<u>Bu₂</u>), 1.35 (18 H, s, 5-N₂C₃H'<u>Bu₂</u>), 1.18 (6 H, d, ³*J*_{HH} = 6.2 Hz, HC<u>Me₂</u>), 0.32 (6 H, s, SiMe) ppm. IR (NaCl plates, Nujol): 1536 (w), 1461 (s), 1365 (m), 1319 (w), 1249 (w), 1235 (w), 1211 (w), 1157 (w), 1113 (w), 1025 (m), 881 (w), 795 (m) cm⁻¹. Anal. Found (calcd for C₂₈H₃₅LiN₅Si): C, 67.9 (68.1); H, 10.6 (10.6); N, 14.2 (14.2)%.

$[Li{HC(^{t}Bu_{2}pz)_{2}SiMe_{2}N^{t}Bu}]_{n} (2)$

HC('Bu₂pz)₂SiMe₂N(H)'Bu (0.60 g, 1.20 mmol) was dissolved in pentane (40 mL) and cooled to -78 °C. "BuLi (0.74 mL, 1.5 mmol; 1.6 M in hexanes) was diluted with pentane (10 mL), similarly cooled and then added dropwise to the pro-ligand solution to afford a clear, colourless solution. The reaction mixture was stirred for 6 h and was then concentrated under reduced pressure to the point of the precipitation of a colourless solid. The reaction mixture was allowed to stand overnight, whereby crystallisation occurred. The colourless solid was filtered off, washed with cold (-78 °C) pentane (3 x 10 mL) and dried under reduced pressure to afford complex **2** as a colourless powder. Yield: 0.08 g (13%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): 6.44 (1 H, s, $\underline{HC}('Bu_2pz)_2$, 5.93 (2 H, s, $N_2C_3\underline{H'Bu}_2$), 1.60 (18 H, s, $3-N_2C_3H'\underline{Bu}_2$), 1.30 (9 H, s, \underline{HNCMe}_3), 1.27 (18 H, s, $5-N_2C_3H'\underline{Bu}_2$), 0.25 (6 H, s, SiMe). ¹³C {¹H} NMR (C₆D₆, 75.4 MHz, 293 K): 152.8 ($3-N_2C_3H'\underline{Bu}_2$), 150.9 ($5-N_2C_3H'\underline{Bu}_2$), 120.9 ($\underline{HC}('Bu_2pz)_2$), 52.2 (\underline{HNCMe}_3), 39.2 (\underline{HNCMe}_3), 32.8 ($5-N_2C_3\underline{HC}(CMe_3)_2$), 32.2 ($3-N_2C_3\underline{HC}(CMe_3)_2$), 31.9 ($5-N_2C_3\underline{HC}(CMe_3)_2$), 30.5 ($3-N_2C_3\underline{HC}(CMe_3)_2$), 5.5 (SiMe). IR (NaCl plates, Nujol): 1536 (w), 1342 (m), 1303 (w), 1247 (m), 1227 (m), 1109 (m), 1064 (w), 1023 (w), 855 (w), 751 (w) cm⁻¹. EI-MS: *m/z*: 429 [M-LiN'Bu]+ (35%). Anal. Found (calcd for C₂₉H₅₄LiN₅Si): C, 68.6 (68.6); H, 10.8 (10.7); N, 13.7 (13.8)%.

[Li{HC('Bu2pz)2SiMe2NPh}]n (3)

HC('Bu₂pz)₂SiMe₂N(H)Ph (0.50 g, 0.96 mmol) was dissolved in pentane (40 mL) and cooled to -78 °C. ^{*n*}BuLi (0.750 mL, 1.20 mmol; 1.6 M in hexanes) was diluted with pentane (10 mL), similarly cooled and then added

dropwise to the pro-ligand solution to afford a colourless precipitate and pale-yellow solution. The reaction mixture was stirred for 6 h. The reaction mixture was allowed to stand overnight, whereby crystallisation occurred. The white solid was filtered off, washed with cold (-78 °C) pentane (3 x 10 mL) and dried under reduced pressure to afford complex **3** as a colourless powder. Yield: 0.04 g (8%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): 7.35 (2 H, app. t, app. ${}^{3}J_{HH} = 7.2$ and 7.7 Hz, 3-C₆H₅), 6.89 (2 H, dd, ${}^{3}J_{HH} = 7.2$ Hz and ${}^{4}J_{HH} = 1.1$ Hz, 2-C₆H₅), 6.72 (1 H, tt, ${}^{3}J_{HH} = 7.7$ Hz and ${}^{4}J_{HH} = 1.1$ Hz, 4-C₆H₅), 6.50 (1 H, s, <u>HC</u>('Bu₂pz)₂), 5.92 (2 H, s, N₂C₃<u>H</u>'Bu₂), 1.22 (18 H, s, 3-N₂C₃<u>H</u>'<u>Bu₂</u>), 1.19 (18 H, s, 5-N₂C₃<u>H</u>'<u>Bu₂</u>), 0.24 (6 H, s, SiMe) ppm. ${}^{13}C$ {¹H} NMR (C₆D₆, 75.4 MHz, 293 K): 160.9 (1-C₆H₅), 159.9 (3-N₂C₃<u>H</u>'<u>Bu₂</u>), 153.4 (5-N₂C₃<u>H</u>'<u>Bu₂</u>), 129.7 (3-C₆H₅), 121.8 (2-C₆H₅), 111.8 (4-C₆H₅), 101.4 (4-N₂C₃<u>H</u>'<u>Bu₂</u>), 71.4 (HC('Bu₂pz)₂), 32.8 (5-N₂C₃<u>H</u>(<u>C</u>Me₃)₂), 32.1 (3-N₂C₃<u>H</u>(<u>C</u>Me₃)₂), 31.7 (3-N₂C₃<u>H</u>(C<u>Me₃)₂), 30.2 (5-N₂C₃<u>H</u>(C<u>Me₃)₂), 0.39 (SiMe). IR (NaCl plates, Nujol): 1587 (m), 1535 (m), 1363 (m), 1320 (m), 1237 (s), 1209 (m), 1171 (w), 1028 (w), 1011 (m), 998 (s), 883 (w), 849 (w), 823 (m), 749 (w), 699 (m), 641 (w), 571 (w) cm⁻¹. EI-MS: *m/z*: 430 [M-LiNPh]⁺ (100%), 371 [M-SiMe₂N(Li)Ph]⁺ (32%). Anal. Found (calcd for C₃₁H₅₀LiN₅Si): C, 70.6 (70.6); H, 9.6 (9.6); N, 13.2 (13.3)%.</u></u>

Mg{HC(^tBu₂pz)₂SiMe₂NPh}Me (6)

To a stirred solution of HC('Bu₂pz)₂SiMe₂N(H)Ph (0.50 g, 0.96 mmol) in benzene (30 mL), was added MeMgCl (0.96 mL, 2.87 mmol; 3.0 M in thf). The resultant yellow solution was stirred for 30 h. Volatiles were removed under reduced pressure to afford a colourless solid, which was extracted into pentane (3 x 10 mL) and dried under reduced pressure to afford complex **6** as a colourless solid. Yield = 0.36 g (67%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.34–7.27 (4 H, overlapping 2 x m, 2-C₆H₅ and 3-C₆H₅), 6.77 (1 H, m, 4-C₆H₅), 6.52 (1 H, s, <u>H</u>C('Bu₂pz)₂), 5.96 (2 H, s, N₂C₃<u>H</u>'Bu₂), 1.46 (18 H, s, 3-N₂C₃<u>H</u>'<u>Bu₂</u>), 1.10 (18 H, s, 5-N₂C₃<u>H</u>'<u>Bu₂</u>), 0.17 (6 H, s, SiMe), -0.11 (3 H, s, MgMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 164.1 (3-N₂C₃<u>H</u>'<u>Bu₂</u>), 157.1 (1-C₆H₅), 153.9 (5-N₂C₃<u>H</u>'<u>Bu₂</u>), 129.2 (3-C₆H₅), 123.3 (2-C₆H₅), 115.4 (4-C₆H₅), 103.4 (4-N₂C₃<u>H</u>'<u>Bu₂</u>), 69.3 (H<u>C</u>('Bu₂pz)₂), 33.0 (3-N₂C₃<u>H</u>(<u>C</u>Me₃)₂), 32.3 (5-N₂C₃<u>H</u>(<u>C</u>Me₃)₂), 31.5 (3-N₂C₃<u>H</u>(C<u>Me₃)₂), 30.7 (5-N₂C₃<u>H</u>(C<u>Me₃)₂), 0.1 (SiMe), -4.8 (MgMe). IR (NaCl plates, Nujol mull, cm⁻¹): 1587 (m), 1543 (w), 1491 (m), 1367 (m), 1355 (m), 1281 (s), 1245 (s), 1209 (m), 1183 (w), 1056 (m), 1025 (m), 991 (m), 949 (s), 867 (m), 831 (m), 766 (m), 754 (m). EI-MS: m/z = 429 (35%) [HC('Bu₂pz)₂)SiMe₂]⁺. Anal. found (calcd. for C₃₂H₅₃MgN₅Si): C, 68.2 (68.6); H, 9.4 (9.5); N, 12.2 (12.5)%.</u></u>

Mg{HC(Me₂pz)₂SiMe₂NⁱPr}ⁿBu (7)

To a stirred solution of HC(Me₂pz)₂SiMe₂N(H)^{*i*}Pr (0.500 g, 1.56 mmol) in benzene (30 mL), was added Mg^{*n*}Bu₂ (1.56 mL, 1.56 mmol; 1.0 M in heptanes). The resultant orange solution was stirred for 12 h. Volatiles were removed under reduced pressure, the solid washed with cold pentane (3 x 5 mL, -78 °C) and dried under reduced pressure to afford complex 7 as a bright orange solid. Yield = 0.41 g (66%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 5.29 (2 H, s, N₂C₃<u>H</u>Me₂), 5.10 (1 H, s, <u>HC</u>(Me₂pz)₂), 3.66 (1 H, sept, ³J_{HH} = 6.1 Hz, <u>HCMe₂), 2.33 (2 H, m, 2-Mg^{*n*}Bu), 2.15 (6 H, s, 3-N₂C₃<u>HMe₂), 1.95 (2 H, sext</u>, ³J_{HH} = 7.3 Hz, 3-Mg^{*n*}Bu), 1.61 (6 H, s, 5-N₂C₃<u>HMe₂), 1.54 (6 H, d, ³J_{HH} = 6.3 Hz, HCMe₂), 1.35 (3 H, t, ³J_{HH} = 7.3 Hz, 4-Mg^{*n*}Bu), 0.41 (2 H, m, 1-Mg^{*n*}Bu), 0.00 (6 H, s, SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 150.2 (3-N₂C₃<u>HMe₂), 139.0 (5-N₂C₃<u>HMe₂), 105.5 (4-N₂C₃<u>HMe₂), 63.8 (HC(Me₂pz)₂), 46.9 (HCMe₂), 33.8 (2-Mg^{*n*}Bu), 33.0 (3-Mg^{*n*}Bu), 32.3 (HCMe₂), 14.7 (1-Mg^{*n*}Bu), 13.0 (3-N₂C₃<u>HMe₂), 10.4 (5-N₂C₃<u>HMe₂), 8.9 (4-Mg^{*n*}Bu), 0.13 (SiMe). IR</u></u></u></u></u></u></u>

(NaCl plates, Nujol mull, cm⁻¹): 2361 (m), 1558 (s), 1533 (w), 1521 (m), 1457 (s), 1377 (s), 1309 (m), 1282 (w), 1259 (m), 1239 (m), 1189 (m), 1162 (m), 1043 (s), 978 (m), 902 (s), 817 (w), 801 (m), 755 (w), 723 (m). EI-MS: m/z = 356 (40%) [M-^{*i*}Pr]⁺, 203 (20%) [HC(Me₂pz)₂]⁺. Anal. found (calcd. for C₂₀H₃₇MgN₅Si): C, 59.9 (60.0); H, 9.3 (9.3); N, 17.4 (17.5)%.

Mg{HC(Me2pz)2SiMe2N'Bu}ⁿBu (8)

To a stirred solution of HC(Me₂pz)₂SiMe₂N(H)'Bu (0.500 g, 1.49 mmol) in benzene (30 mL), was added Mg^{*n*}Bu₂ (1.49 mL, 1.49 mmol; 1.0 M in heptanes). The resultant yellow solution was stirred for 16 h. Volatiles were removed under reduced pressure, the solid washed with cold pentane (3 x 5 mL, -78 °C) and dried under reduced pressure to afford complex **8** as a thick, orange oil. Yield = 0.25 g (41%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 5.30 (2 H, s, N₂C₃HMe₂), 5.02 (1 H, s, HC(Me₂pz)₂), 2.26 (2 H, m, 2-Mg^{*n*}Bu), 2.18 (6 H, s, 3-N₂C₃H<u>Me₂</u>), 1.91 (2 H, app. sext, app. ³J_{HH} = 7.5 Hz, 3-Mg^{*n*}Bu), 1.63 (6 H, s, 5-N₂C₃H<u>Me₂</u>), 1.61 (9 H, s, C<u>Me₃</u>), 1.32 (3 H, t, ³J_{HH} = 7.3 Hz, 4-Mg^{*n*}Bu), 0.36 (2 H, m, 1-Mg^{*n*}Bu), 0.05 (6 H, s, SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 149.3 (3-N₂C₃HMe₂), 138.9 (5-N₂C₃HMe₂), 105.6 (4-N₂C₃HMe₂), 64.5 (HC(Me₂pz)₂), 51.6 (CMe₃), 37.9 (C<u>Me₃</u>), 33.7 (2-Mg^{*n*}Bu), 33.1 (3-Mg^{*n*}Bu), 14.6 (1-Mg^{*n*}Bu), 12.9 (3-N₂C₃H<u>Me₂</u>), 10.4 (5-N₂C₃H<u>Me₂</u>), 9.6 (4-Mg^{*n*}Bu), 3.4 (SiMe). IR (NaCl plates, Nujol mull, cm⁻¹): 2357 (m), 1562 (s), 1501 (s), 1441 (m), 1352 (s), 1301 (s), 1224 (m), 1208 (w), 1177 (m), 1130 (m), 1031 (m), 915 (m), 897 (m), 858 (w), 814 (m), 763 (m), 744 (m). EI-MS: *m*/z = 413 (40%) [M]⁺. Anal. found (calcd. for C₂₁H₃₉MgN₅Si): C, 60.7 (60.9); H, 9.5 (9.5); N, 17.1 (16.9)%.

Mg{HC(Me₂pz)₂SiMe₂NAd}ⁿBu (9)

To a stirred solution of HC(Me₂pz)₂SiMe₂N(H)Ad (0.500 g, 1.21 mmol) in benzene (30 mL), was added Mg^{*n*}Bu₂ (1.21 mL, 1.21 mmol; 1.0 M in heptanes). The resultant orange solution was stirred for 16 h. Volatiles were removed under reduced pressure, the solid washed with cold pentane (3 x 5 mL, -78 °C) and dried under reduced pressure to afford complex **9** as a thick, dark orange oil. Yield = 0.32 g (54%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 5.30 (2 H, s, N₂C₃<u>H</u>Me₂), 5.02 (1 H, s, <u>H</u>C(Me₂pz)₂), 2.26 (2 H, m, 2-Mg^{*n*}Bu), 2.19 (6 H, s, 3-N₂C₃<u>HMe₂), 2.07 (6 H, m, Ad), 1.93 (2 H, app. sext, app. ³J_{HH} = 7.2 Hz, 3-Mg^{*n*}Bu), 1.82 (3 H, m, Ad), 1.70 (6 H, m, Ad) 1.64 (6 H, s, 5-N₂C₃<u>HMe₂), 1.33 (3 H, t</u>, ³J_{HH} = 7.2 Hz, 4-Mg^{*n*}Bu), 0.36 (2 H, m, 1-Mg^{*n*}Bu), 0.08 (6 H, s, SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 149.3 (3-N₂C₃<u>HMe₂), 138.9 (5-N₂C₃<u>HMe₂), 105.6 (4-N₂C₃<u>HMe₂), 64.7 (HC</u>(Me₂pz)₂), 52.0 (Ad, 3 C, 6 H), 51.7 (Ad, 1 C, 0 H), 37.3 (Ad, 3 C, 6 H), 33.9 (2-Mg^{*n*}Bu), 31.5 (Ad, 3 C, 3 H), 14.7 (1-Mg^{*n*}Bu), 13.0 (3-N₂C₃<u>HMe₂), 10.4 (5-N₂C₃<u>HMe₂), 9.8 (4-Mg^{*n*}Bu), 4.1 (SiMe). IR (NaCl plates, Nujol mull, cm⁻¹): 2312 (m), 1570 (m), 1416 (m), 1374 (s), 1261 (s), 1190 (m), 1161 (w), 1076 (w), 1016 (m), 954 (m), 871 (w), 812 (s), 781 (m), 739 (w). EI-MS: *m/z* = 342 (30%) [M-NAd]⁺, 275 (10%) [HC(Me₂pz)₂SiMe₂]⁺. Anal. found (calcd. for C₂₇H₄₅MgN₅Si): C, 65.8 (65.9); H, 9.2 (9.2); N, 14.1 (14.2)%.</u></u></u></u></u>

$Mg{HC(^{t}Bu_{2}pz)_{2}SiMe_{2}N^{i}Pr}^{n}Bu$ (11)

To a stirred solution of HC('Bu₂pz)₂SiMe₂N(H)'Pr (0.500 g, 1.02 mmol) in benzene (30 mL), was added Mg^{*n*}Bu₂ (2.04 mL, 2.04 mmol; 1.0 M in heptanes). The resultant yellow solution was stirred for 4 days. Volatiles were removed under reduced pressure to afford a colourless solid, which was washed with cold pentane (3 x 5 mL, - 78 °C) and dried under reduced pressure. The solid was recrystallised from pentane (15 mL) at -80 °C, filtered and dried under reduced pressure to afford complex **11** as a colourless solid. Yield = 0.27 g (47%). ¹H NMR

(C₆D₆, 299.9 MHz, 293 K): δ 6.48 (1 H, s, <u>H</u>C('Bu₂pz)₂), 5.94 (2 H, s, N₂C₃<u>H</u>'Bu₂), 3.66 (1 H, sept, ³J_{HH} = 6.2 Hz, <u>H</u>CMe₂), 2.27 (2 H, m, 2-MgⁿBu), 2.00 (2 H, m, 3-MgⁿBu), 1.54 (6 H, d, ³J_{HH} = 6.2 Hz, HC<u>Me₂</u>), 1.50 (18 H, s, 3-N₂C₃<u>H</u>'<u>Bu₂</u>), 1.26 (3 H, m, 4-MgⁿBu), 1.14 (18 H, s, 5-N₂C₃<u>H</u>'<u>Bu₂</u>), 0.47 (2 H, m, 1-MgⁿBu), 0.06 (6 H, s, SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 165.2 (3-N₂C₃<u>H</u>'<u>Bu₂</u>), 154.1 (5-N₂C₃<u>H</u>'<u>Bu₂</u>), 103.8 (4-N₂C₃<u>H</u>'<u>Bu₂</u>), 67.8 (<u>HC</u>('Bu₂pz)₂), 48.1 (<u>HC</u>Me₂), 33.5 (<u>HCMe₂</u>), 33.3 (3-N₂C₃<u>H</u>(<u>CMe₃</u>)₂), 33.1 (2-MgⁿBu), 32.9 (3-MgⁿBu), 32.6 (5-N₂C₃<u>H</u>(<u>CMe₃</u>)₂), 31.8 (3-N₂C₃<u>H</u>(C<u>Me₃</u>)₂), 30.9 (5-N₂C₃<u>H</u>(C<u>Me₃</u>)₂), 16.1 (1-MgⁿBu), 14.9 (4-MgⁿBu), 0.42 (SiMe). IR (NaCl plates, Nujol mull, cm⁻¹): 1543 (s), 1363 (m), 1312 (s), 1229 (s), 1206 (w), 1134 (w), 1023 (w), 1003 (w), 967 (w), 930 (w), 774 (s), 686 (w). EI-MS: *m/z* = 429 (80%) [HC('Bu₂pz)₂SiMe₂]⁺. Anal. found (calcd. for C₃₂H₆₁MgN₅Si): C, 67.1 (67.6); H, 10.8 (10.8); N, 12.3 (12.3)%.

$Mg{HC(Me_2pz)_2SiMe_2NPh}{N(SiHMe_2)_2}$ (15)

To a stirred solution of Mg{N(SiHMe₂)₂} (0.400 g, 1.41 mmol) in benzene (20 mL), was added a solution of HC(Me₂pz)₂SiMe₂N(H)Ph (0.500 g, 1.41 mmol) in benzene (20 mL). The resultant orange solution was stirred for 16 h. Volatiles were removed under reduced pressure, the solid washed with cold pentane (3 x 5 mL, -78 °C) and dried under reduced pressure to afford complex **15** as an orange solid. Yield = 0.51 g (71%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.32 (2 H, app. t, app. ³J_{HH} = 7.8 Hz, 3-C₆H₅), 7.01 (2 H, app. d, app. ³J_{HH} = 7.5 Hz, 2-C₆H₅), 6.82 (1 H, app. t, app. ³J_{HH} = 7.2 Hz, 4-C₆H₅), 5.34–5.30 (4 H, overlapping m and s, N(Si<u>H</u>Me₂)₂ and N₂C₃<u>H</u>Me₂), 4.99 (1 H, s, <u>HC</u>(Me₂pz)₂), 2.38 (6 H, s, 3-N₂C₃<u>HMe₂</u>), 1.49 (6 H, s, 5-N₂C₃<u>HMe₂</u>), 0.52 (12 H, d, ³J_{HH} = 3.0 Hz, N(Si<u>HMe₂</u>)₂), -0.09 (6 H, s, SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 156.8 (1-C₆H₅), 150.8 (3-N₂C₃<u>HMe₂</u>), 139.9 (5-N₂C₃<u>HMe₂</u>), 10.3 (5-N₂C₃<u>HMe₂</u>), 4.0 (N(SiHMe₂)₂), -1.2 (SiMe). IR (NaCl plates, Nujol mull, cm⁻¹): 2960 (w), 2361 (m), 2099 (s), 2040 (m), 1587 (s), 1556 (s), 1464 (s), 1419 (m), 1378 (m), 1312 (m), 1281 (s), 1240 (s), 1172 (m), 1150 (w), 1017 (s), 995 (w), 930 (m), 889 (s), 832 (m), 794 (m), 770 (m), 690 (m). EI-MS: *m/z* = 508 (85%) [M]⁺, 376 (70%) [M-N(SiHMe₂)₂]⁺. Anal. found (calcd. for C₂₃H₄₀MgN₆Si₃): C, 54.1 (54.2); H, 7.8 (7.9); N, 16.4 (16.5)%.

$Mg\{HC(Me_2pz)_2SiMe_2NPh\}\{N(SiMe_3)_2\} (19)$

To a stirred solution of Mg {N(SiMe₃)₂} (0.480 g, 1.41 mmol) in benzene (20 mL), was added a solution of HC(Me₂pz)₂SiMe₂N(H)Ph (0.500 g, 1.41 mmol) in benzene (20 mL). The resultant yellow solution was stirred for 14 h. Volatiles were removed under reduced pressure, the solid washed with cold pentane (3 x 5 mL, -78 °C) and dried under reduced pressure to afford complex **19** as an light orange solid. Yield = 0.58 g (77%). Diffraction-quality crystals were grown from slow diffusion of diethyl ether into a concentrated toluene solution.¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.30 (2 H, t, ³J_{HH} = 7.6 Hz, 3-C₆H₅), 6.98 (2 H, d, ³J_{HH} = 7.5 Hz, 2-C₆H₅), 6.83 (1 H, t, ³J_{HH} = 7.2 Hz, 4-C₆H₅), 5.37 (2 H, s, N₂C₃<u>H</u>Me₂), 4.99 (1 H, s, <u>H</u>C(Me₂pz)₂), 2.42 (6 H, s, 3-N₂C₃<u>HMe₂</u>), 1.49 (6 H, s, 5-N₂C₃<u>HMe₂</u>), 0.41 (18 H, s, N(SiMe₃)₂), -0.13 (SiMe). ¹³C {¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 157.0 (1-C₆H₅), 150.6 (3-N₂C₃<u>HMe₂</u>), 140.0 (5-N₂C₃<u>HMe₂</u>), 10.4 (5-N₂C₃<u>HMe₂</u>), 6.3 (N(SiMe₃)₂), -1.1 (SiMe). IR (NaCl plates, Nujol mull, cm⁻¹): 2972 (w), 2728 (m), 1581 (s), 1521 (s), 1419 (m), 1377 (s), 1312 (s), 1243 (s), 1172 (m), 1096 (s), 1005 (s), 959 (m), 882 (m), 826 (s), 773 (m). EI-MS: *m/z* = 536 (40%) [M]⁺, 376 (85%) [M-N(SiMe₃)₂]⁺. Anal. found (calcd. for C₂₅H₄₄MgN₆Si₃): C, 55.8 (55.9); H, 8.3 (8.3); N, 15.6 (15.7)%.

$Ca{HC(Me_2pz)_2SiMe_2N^iPr}{N(SiMe_3)_2}(thf) (21)$

To a stirred solution of Ca {N(SiMe₃)₂}₂(thf₂) (0.780 g, 1.56 mmol) in benzene (20 mL), was added a solution of HC(Me₂pz)₂SiMe₂N(H)/Pr (0.500 g, 1.56 mmol) in benzene (20 mL). The resultant orange solution was stirred for 12 h. Volatiles were removed under reduced pressure, the solid washed with cold pentane (3 x 5 mL, -78 °C) and dried under reduced pressure to afford complex **21** as a light orange solid. Yield = 0.63 g (63%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 5.46 (2 H, s, N₂C₃<u>H</u>Me₂), 5.12 (1 H, s, <u>H</u>C(Me₂pz)₂), 3.90 (4 H, br s, OC<u>H₂CH₂</u>), 3.80 (1 H, sept, ³*J*_{HH} = 6.3 Hz, <u>H</u>CMe₂), 2.36 (6 H, s, 3-N₂C₃<u>HMe₂</u>), 1.70 (6 H, s, 5-N₂C₃<u>HMe₂</u>), 1.43 (4 H, br s, OCH₂C<u>H₂</u>), 1.42 (6 H, d, ³*J*_{HH} = 6.3 Hz, HC<u>Me₂</u>), 0.45 (18 H, s, N(SiMe₃)₂), 0.03 (SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 153.6 (3-N₂C₃<u>HMe₂</u>), 139.3 (5-N₂C₃<u>HMe₂</u>), 105.8 (4-N₂C₃<u>HMe₂</u>), 69.2 (OCH₂CH₂), 65.7 (HC(Me₂pz)₂), 48.4 (HCMe₂), 32.0 (HC<u>Me₂</u>), 25.2 (OCH₂CH₂), 14.2 (3-N₂C₃<u>HMe₂</u>), 11.0 (5-N₂C₃<u>HMe₂</u>), 6.2 (N(SiMe₃)₂), 3.3 (SiMe). IR (NaCl plates, Nujol mull, cm⁻¹): 2965 (w), 1557 (m), 1456 (s), 1376 (s), 1316 (s), 1285 (w), 1234 (m), 1177 (m), 1042 (s), 979 (w), 879 (m), 816 (m), 785 (w), 746 (w), 726 (m). EI-MS: *m*/*z* = 357 (30%) [M-(N(SiMe₃)₂)(thf)]⁺. Anal. found (calcd. for C₂₆H₅₃CaN₆OSi₃): C, 52.8 (52.9); H, 8.9 (9.0); N, 14.0 (14.2)%.

Zn{HC(Me2pz)2SiMe2NiPr}Me (25)

To a stirred solution of HC(Me₂pz)₂SiMe₂N(H)/Pr (0.500 g, 1.56 mmol) in benzene (30 mL), was added ZnMe₂ (2.34 mL, 1.56 mmol; 2.0 M in toluene). The resultant clear, colourless solution was stirred for 15 h. Volatiles were removed under reduced pressure, the solid washed with cold hexanes (3 x 5 mL, -78 °C) and dried under reduced pressure to afford complex **25** as a colourless solid. Yield = 0.43 g (70%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 5.35 (2 H, s, N₂C₃<u>H</u>Me₂), 5.11 (1 H, s, <u>HC</u>(Me₂pz)₂), 3.70 (1 H, sept, ³*J*_{HH} = 6.2 Hz, <u>HCMe₂</u>), 2.14 (6 H, s, 3-N₂C₃<u>HMe₂</u>), 1.66 (6 H, s, 5-N₂C₃<u>HMe₂</u>), 1.49 (6 H, sept, ³*J*_{HH} = 6.0 Hz, HC<u>Me₂</u>), 0.04 (3 H, s, ZnMe), -0.18 (6 H, s, SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 149.5 (3-N₂C₃<u>HMe₂</u>), 138.1 (5-N₂C₃<u>HMe₂</u>), 105.4 (4-N₂C₃<u>HMe₂</u>), 63.0 (<u>HC</u>(Me₂pz)₂), 47.7 (<u>HC</u>Me₂), 31.5 (HC<u>Me₂</u>), 12.9 (3-N₂C₃<u>HMe₂</u>), 10.4 (5-N₂C₃<u>HMe₂</u>), -0.16 (SiMe), -9.3 (ZnMe). IR (NaCl plates, Nujol mull, cm⁻¹): 2920 (w), 2361 (m), 1555 (s), 1521 (w), 1458 (s), 1419 (w), 1377 (s), 1314 (m), 1241 (m), 1170 (m), 1136 (s), 1098 (m), 1040 (s), 996 (m), 898 (s), 827 (m), 780 (m), 763 (m), 667 (m). EI-MS: *m/z* = 281 (20%) [M-SiMe₂N/Pr]⁺. Anal. found (calcd. for C₁₇H₃₁N₅SiZn): C, 51.1 (51.2); H, 7.8 (7.8); N, 17.5 (17.5)%.

Zn{HC(Me₂pz)₂SiMe₂N'Bu}Me (26)

To a stirred solution of HC(Me₂pz)₂SiMe₂N(H)/Bu (0.500 g, 1.49 mmol) in benzene (30 mL), was added ZnMe₂ (2.25 mL, 4.49 mmol; 2.0 M in toluene). The resultant clear solution was stirred for 15 h. Volatiles were removed under reduced pressure, the solid washed with cold hexanes (3 x 5 mL, -78 °C) and dried under reduced pressure to afford complex **26** as a colourless solid. Yield = 0.47 g (77%). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 5.34 (2 H, s, N₂C₃<u>H</u>Me₂), 5.03 (1 H, s, <u>H</u>C(Me₂pz)₂), 2.15 (6 H, s, 3-N₂C₃<u>HMe₂), 1.66 (6 H, s, 5-N₂C₃<u>HMe₂), 1.63 (9 H, s, CMe₃), 0.12 (3 H, s, ZnMe), 0.10 (6 H, s, SiMe). ¹³C{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 148.3 (3-N₂C₃<u>HMe₂), 137.9 (5-N₂C₃<u>HMe₂), 105.3 (4-N₂C₃<u>HMe₂), 64.0 (HC</u>(Me₂pz)₂), 52.5 (<u>C</u>Me₃), 37.3 (<u>CMe₃), 12.9 (3-N₂C₃<u>HMe₂), 10.6 (5-N₂C₃<u>HMe₂), 3.2 (SiMe), -10.8 (ZnMe). IR (NaCl plates, Nujol mull, cm⁻¹): 2924 (w), 2361 (m), 1521 (s), 1506 (w), 1463 (w), 1419 (m), 1377 (s), 1314 (s), 1207 (s), 1225 (m), 1137 (s), 1101 (w), 1081 (m), 979 (m), 867 (s), 824 (m), 784 (m), 761 (m), 727 (m), 661 (w). EI-MS: *m/z* = 411</u></u></u></u></u></u></u>

(60%) $[M]^+$, 396 (100%) $[M-Me]^+$. Anal. found (calcd. for $C_{18}H_{33}N_5SiZn$): C, 52.2 (52.3); H, 8.0 (8.0); N, 17.0 (17.0)%.

Representative NMR spectra

Figure S1. ¹H NMR spectrum (C₆D₆, 299.9 MHz, 293 K) of HC(^{*i*}Bu₂pz)₂SiMe₂N(H)^{*i*}Pr. * denotes residual protio solvent.

Figure S2. ¹H NMR spectrum (C₆D₆, 299.9 MHz, 293 K) of HC('Bu₂pz)₂SiMe₂N(H)Xyl. * denotes residual protio solvent.

Figure S3. ¹H NMR spectrum (C₆D₆, 299.9 MHz, 293 K) of $[Li{HC('Bu_2pz)_2SiMe_2NPh}]_n$ (3). * denotes residual protio solvent.

Figure S4. ¹H NMR spectrum (C_6D_6 , 299.9 MHz, 293 K) of Mg{HC(iBu_2pz)_2SiMe_2N^{*i*}Pr}Me (5). * denotes residual protio solvent.

Figure S5. ¹H NMR spectrum (C_6D_6 , 299.9 MHz, 293 K) of Mg{HC($^{\prime}Bu_2pz$)₂SiMe₂NPh}^{*n*}Bu (12). * denotes residual protio solvent.

Figure S6. ¹H NMR spectrum (C_6D_6 , 299.9 MHz, 293 K) of Mg{HC(Me₂pz)₂SiMe₂NPh}{N(SiHMe₂)₂} (15). * denotes residual protio solvent.

Figure S7. ¹H NMR spectrum (C_6D_6 , 299.9 MHz, 293 K) of Mg{HC(Me₂pz)₂SiMe₂NPh} {N(SiMe₃)₂} (19). * denotes residual protio solvent.

Figure S8. ¹H NMR spectrum (C_6D_6 , 299.9 MHz, 293 K) of $Ca\{HC(^{T}Bu_2pz)_2SiMe_2NPh\}\{N(SiMe_3)_2\}$ (24). * denotes residual protio solvent.

Figure S9. ¹H NMR spectrum (C₆D₆, 299.9 MHz, 293 K) of Zn{HC('Bu₂pz)₂SiMe₂NPh}Me (28). * denotes residual protio solvent.

HC('Bu2pz)2SiMe2Cl

Single crystals of $HC(^{t}Bu_2pz)_2SiMe_2Cl$ suitable for an X-ray diffraction study were grown from a saturated pentane solution at 23 °C.

Figure S10. Thermal displacement ellipsoid drawing (23% probability ellipsoids) of HC(^{*t*}Bu₂pz)₂SiMe₂Cl. Hydrogen atoms have been omitted for clarity.

HC('Bu2pz)2SiMe2N(H)Ph

Single crystals of $HC({}^{t}Bu_{2}pz)_{2}SiMe_{2}N(H)Ph$ suitable for an X-ray diffraction study were grown from a saturated pentane solution at -30 °C.

Figure S11. Thermal displacement ellipsoid drawing (25% probability ellipsoids) of HC('Bu₂pz)₂SiMe₂N(H)Ph. Hydrogen atoms, apart from H(1), have been omitted for clarity. H(1) drawn as a sphere of arbitrary radius.

Table S1. Selected bond len	igths (Å) and angles	s (°) for HC(^t Bu ₂ pz) ₂ SiMe ₂	N(H)Ph
-----------------------------	----------------------	---	--------

H(1)-N(3)	2.286
N(4)-N(5)	1.3656(15)
N(2)-N(3)	1.3771(15)
Si(1)-N(1)	1.7326(12)
C(3)-Si(1)	1.9228(13)
N(4)-C(23)	1.3767(16)
N(3)-C(10)	1.3277(17)
N(4)-C(3)-N(2)	116.65(10)
N(4)-C(3)-Si(1)	116.65(10)
N(5)-N(4)-C(3)	116.36(10)
N(2)-C(3)-Si(1)	117.74(8)
N(3)-N(2)-C(3)	110.30(10)

Like $HC(Bu_2pz)_2SiMe_2Cl$, this structure shows an intramolecular interaction; a hydrogen bond between H(1) and N(3) in the pyrazole ring, over a length of 2.286 Å. This interaction is likely to have an effect on the

orientation of the pyrazole rings with the interplane angle now being only 76.0 °. Bond lengths within the pyrazole rings and the distance C(3)-Si(1) are all comparable to those in compound HC('Bu₂pz)₂SiMe₂Cl.

Mg{HC(Me2pz)2SiMe2NPh}2

Figure S12. Thermal displacement ellipsoid drawing (25% probability ellipsoids) of Mg{HC(Me₂pz)₂SiMe₂NPh}₂. Hydrogen atoms are omitted for clarity.

$Mg{HC(Me_2pz)_2SiMe_2N^{i}Pr}{N(SiMe_3)_2} (17)$

Single crystals of Mg{HC(Me₂pz)₂SiMe₂N^{*i*}Pr}{N(SiMe₃)₂} (17) suitable for an X-ray diffraction study were grown by slow diffusion of diethyl ether into a saturated toluene solution of 17 at 23 °C.

Figure S13. Thermal displacement ellipsoid drawing (20% probability ellipsoids) of Mg{HC(Me₂pz)₂SiMe₂NⁱPr} {N(SiMe₃)₂} (17). Hydrogen atoms and minor disorder omitted for clarity. Atoms carrying the suffix 'A' are related to their counterparts by the symmetry operator x,-y+3/2,z.

$Mg{HC(Me_2pz)_2SiMe_2NPh}{N(SiMe_3)_2} (19)$

Single crystals of $Mg\{HC(Me_2pz)_2SiMe_2NPh\}\{N(SiMe_3)_2\}$ (19) suitable for an X-ray diffraction study were grown by slow diffusion of diethyl ether into a saturated toluene solution of 19 at 23 °C.

Figure S14. Thermal displacement ellipsoid drawing (20% probability ellipsoids) of $Mg\{HC(Me_2pz)_2SiMe_2NPh\}\{N(SiMe_3)_2\}$ (19).

Zn{HC(Me₂pz)₂SiMe₂NⁱPr}Me (25)

Single crystals of $Zn\{HC(Me_2pz)_2SiMe_2N'Pr\}Me$ (25) suitable for an X-ray diffraction study were grown by slow diffusion of diethyl ether into a saturated toluene solution of 25 at 23 °C.

Figure S15. Thermal displacement ellipsoid drawing (30% probability ellipsoids) of Zn{HC(Me₂pz)₂SiMe₂N'Pr}Me (**25**). Hydrogen atoms are omitted for clarity.

	5	10	16	17	19	20
Chemical formula	C ₂₉ H ₅₅ MgN ₅ Si	$C_{23}H_{35}MgN_5Si$	$C_{35}H_{64}MgN_6Si_3 \cdot 0.75(C_5H_{12})$	$C_{22}H_{50}MgN_6Si_3$	$C_{25}H_{44}MgN_6Si_3$	$C_{37}H_{68}MgN_6Si_3$
$M_{ m r}$	526.18	433.96	731.61	507.24	537.23	705.55
Crystal system, space group	Orthorhombic, <i>Pbca</i>	Orthorhombic, $P2_12_12_1$	Monoclinic, $P2_1/c$	Monoclinic, $P12_1/m1$	Monoclinic, $P2_1/c$	Orthorhombic, $P2_12_12_1$
Temperature (K)	150	150	150	150	150	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.9775 (3), 19.4673 (3), 20.6194 (4)	8.7597 (2), 11.2019 (2), 25.3310 (6)	19.7490 (9), 11.0055 (5), 22.6313 (10)	10.3686 (2), 13.7276 (4), 11.7088 (3)	10.8767 (3), 17.7204 (5), 16.2958 (5)	13.9372 (2), 15.2750 (2), 20.1552 (2)
β (°)	90	90	110.253 (2)	113.6864 (15)	99.1999 (11)	90
$V(Å^3)$	6814.8 (2)	2485.61 (9)	4614.7 (4)	1526.19 (7)	3100.44 (16)	4290.85 (9)
Ζ	8	4	4	2	4	4
Radiation type	Μο Κα					
μ (mm ⁻¹)	0.11	0.14	0.15	0.20	0.20	0.16
Crystal size (mm)	$0.40 \times 0.30 \times 0.30$	$0.40 \times 0.40 \times 0.30$	$0.30 \times 0.20 \times 0.20$	$0.40 \times 0.30 \times 0.30$	$0.30 \times 0.10 \times 0.02$	$0.20\times0.20\times0.20$
Diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer
Absorption correction	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)
T_{\min}, T_{\max}	0.97, 0.97	0.95, 0.96	0.75, 0.97	0.93, 0.94	0.98, 1.00	0.97, 0.97
No. of measured, independent	15190, 7709, 4207	5198, 5174, 4225	31102, 10257, 4225	6618, 3604, 2428	12814, 7018, 3319	9765, 5371, 4450

 $\begin{array}{l} \textbf{Table S2. X-ray data collection and processing parameters for Mg \{HC('Bu_2pz)_2SiMe_2N'Pr\}Me (5), Mg \{HC(Me_2pz)_2SiMe_2NPh\}^{n}Bu (10), Mg \{HC('Bu_2pz)_2SiMe_2NPh\} \{N(SiHMe_2)_2\} \ (16), Mg \{HC(Me_2pz)_2SiMe_2N'Pr\} \{N(SiMe_3)_2\} \ (17), Mg \{HC(Me_2pz)_2SiMe_2NPh\} \{N(SiMe_3)_2\} \ (19), Mg \{HC('Bu_2pz)_2SiMe_2NPh\} \{N(SiMe_3)_2\} \ (20). \end{array}$

ndependent and

observed [I >

3.0 $\sigma(I)$] reflections						
$R_{ m int}$	0.044	0.000	0.116	0.025	0.061	0.022
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.649	0.649	0.648	0.650	0.649	0.649
$R[F^2 > 2\sigma(F^2)],$ wR(F^2), S	0.038, 0.043, 1.10	0.041, 0.038, 1.12	0.062, 0.059, 1.14	0.054, 0.061, 1.17	0.050, 0.050, 1.14	0.036, 0.037, 1.12
No. of reflections	4207	3875	4225	2428	3319	4450
No. of parameters	325	272	459	173	316	424
$(\Delta/\sigma)_{max}$	0.001	0.004	0.002	0.003	0.003	0.001
$\Delta_{ m max}, \Delta_{ m min}$ (e Å ⁻³)	0.21, -0.26	0.24, -0.24	0.85, -0.41	0.94, -0.86	0.55, -0.43	0.25, -0.24
Absolute structure parameter	-	Flack, 0.03(13), 986 Friedel pairs	-	-	-	-

	25	27	28	HC(^t Bu ₂ pz) ₂ SiMe ₂ Cl	HC('Bu2pz)2SiMe2N(H)Ph	$Mg\{HC(Me_2pz)_2SiMe_2NPh\}_2$
Chemical formula	C ₁₇ H ₃₁ N ₅ SiZn	$C_{20}H_{29}N_5SiZn$	$C_{32}H_{53}N_5SiZn$	C ₂₅ H ₄₅ ClN ₄ Si	$C_{31}H_{51}N_5Si$	$C_{38}H_{53}MgN_{10}Si_2$
$M_{ m r}$	398.93	432.95	601.27	465.20	521.86	730.38
Crystal system, space group	Triclinic, P^{-1}	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$	Monoclinic, P2 ₁ /c	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$
Temperature (K)	150	150	150	150	150	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.1821 (3), 8.8902 (3), 14.2556 (5)	8.9736 (1), 25.8526 (5), 10.3274 (2)	25.4552 (2), 10.7201 (1), 25.4576 (2)	9.8478 (2), 16.9303 (3), 17.3365 (3)	8.8605 (1), 19.3115 (2), 19.2772 (2)	12.4038 (2), 18.3606 (3), 17.3649 (3)
β (°)	90.1009 (14), 93.1351 (14), 96.5529 (13)	110.1053 (8)	95.6052 (4)	100.7636 (7)	97.144 (1)	90.8103 (7)
$V(Å^3)$	1028.61 (6)	2249.86 (7)	6913.71 (10)	2839.59 (9)	3272.91 (6)	3954.31 (11)
Ζ	2	4	8	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	1.26	1.16	0.77	0.20	0.10	0.15
Crystal size (mm)	$0.80\times0.05\times0.02$	$0.40 \times 0.30 \times 0.20$	$0.30 \times 0.10 \times 0.10$	$0.20\times0.18\times0.16$	$0.56 \times 0.30 \times 0.22$	$0.20\times0.20\times0.20$
Diffractomete r	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer
Absorption correction	Multi-scan DENZO/SCALEPAC K (Otwinowski & Minor, 1997)	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)			
T_{\min}, T_{\max}	0.94, 0.98	0.71, 0.79	0.93, 0.93	0.97, 0.97	0.970, 0.980	0.97, 0.97
No. of measured, independent	8057, 4627, 3962	9721, 5099, 2980	24102, 15388, 12573	16111, 8222, 4637	27112, 7443, 6307	17767, 9000, 5734

Table S3. X-ray data collection and processing parameters for $Zn\{HC(Me_2pz)_2SiMe_2N'Pr\}Me$ (25), $Zn\{HC(Me_2pz)_2SiMe_2NPh\}Me$ (27), $Zn\{HC('Bu_2pz)_2SiMe_2NPh\}Me$ (28), $HC('Bu_2pz)_2SiMe_2Cl$, $HC('Bu_2pz)_2SiMe_2N(H)Ph$ and $Mg\{HC(Me_2pz)_2SiMe_2NPh\}_2$.

and

observed [<i>I</i> > 3.0σ(<i>I</i>)] reflections						
$R_{\rm int}$	0.024	0.038	0.045	0.035	0.043	0.050
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.648	0.649	0.649	0.704	0.649	0.649
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.047, 0.054, 1.09	0.031, 0.031, 1.12	0.045, 0.054, 0.99	0.040, 0.041, 1.12	0.046, 0.127, 1.02	0.050, 0.044, 1.13
No. of reflections	3962	2980	12573	4637	7443	5136
No. of parameters	217	244	704	280	348	460
$(\Delta/\sigma)_{max}$	0.001	0.002	0.003	0.001	< 0.001	0.001
$\Delta_{\max}, \Delta_{\min}$ (e Å ⁻³)	0.70, -0.74	0.28, -0.22	0.83, -0.39	0.32, -0.32	0.29, -0.25	0.63, -0.55

All DFT calculations were performed with the ORCA program package.⁵ The geometry optimisations of the complexes and single-point calculations on the optimized geometries were carried out at the B3LYP level ⁶ of DFT. The def2-TZVP(-f) basis set in the scalar relativistic recontraction reported by Neese *et al.* (segmented all-electron relativistic basis sets, SARC) was applied.⁷ For all elements up to bromine, the SARC basis sets are simply scalar relativistic recontractions of the basis sets developed by the Karlsruhe group,⁸ while for heavier elements, the primitives and contraction patterns were designed in references ^{7a} and ^{7b}. The Coulomb fitting basis set of Weigend⁹ was used in uncontracted form in all calculations. The RI¹⁰ approximation was used to accelerate the calculations. Orbitals were generated with the program Chimera.¹¹

	Experimental	Calculated (B3LYP)
Si(1)-Cl(1)	2.1388 (6)	2.145
Si(1)-N(1)	2.4362 (14)	2.585
N(1)-C(1)	1.325 (2)	1.330
N(3)-C(12)	1.327 (2)	1.329
N(3)-N(4)	1.368 (2)	1.360
N(1)-N(2)	1.366 (2)	1.363
Cl(1)-Si(1)-N(1)	159.99 (4)	160.66
N(2)-C(23)-N(4)	112.04 (12)	115.27
N(2)-C(23)-Si(1)	102.93 (9)	105.87
N(1)-N(2)-C(23)	110.15 (11)	110.80
N(3)-N(4)-C(23)	114.34 (12)	116.13
N(4)-C(23)-Si(1)	112.14 (10)	112.20

Table S4. Comparison of experimental and calculated metrical parameters of HC('Bu2pz)2SiMe2Cl

Figure S16. DFT-computed HOMO and LUMO of HC('Bu2pz)2SiMe2Cl

	Experimental	Calculated (B3LYP)
Mg(1)-N(1)	2.1799(16)	2.231
Mg(1)-N(3)	2.1911(16)	2.240
Mg(1)-N(5)	2.0083(17)	2.026
Mg(1)-C(29)	2.145(2)	2.135
N(1)-Mg(1)- C(29)	123.01(7)	123.40
N(3)-Mg(1)- C(29)	123.88(7)	121.89
N(5)-Mg(1)- C(29)	122.09(8)	124.08

Table S5. Comparison of experimental and calculated metrical parameters of Mg{HC($^{\prime}Bu_2pz$)_2SiMe_2N $^{\prime}Pr$ }Me(5)

Figure S17. DFT-computed HOMO-1, HOMO and LUMO of Mg{HC('Bu₂pz)₂SiMe₂N'Pr}Me (5)

	Experimental	Calculated (B3LYP)
Zn(1)-N(1)	2.171(4)	2.359
Zn(1)-N(3)	2.202(4)	2.256
Zn(1)-N(5)	1.976(3)	1.998
Zn(1)-C(32)	2.041(3)	2.003
N(1)-Zn(1)-C(32)	122.59(14)	119.07
N(3)-Zn(1)-C(32)	120.12(14)	122.51
N(5)-Zn(1)-C(32)	125.94(14)	129.59

 Table S6. Comparison of experimental and calculated metrical parameters of Zn{HC(^tBu₂pz)₂SiMe₂NPh}Me (28)

Figure S18. DFT-computed HOMO-1, HOMO and LUMO of Zn{HC('Bu2pz)2SiMe2NPh}Me (28)

Table S7.	Cartesian	coordinates	for HC	(^t Bu ₂ pz	$_2$ SiMe ₂	Cl
-----------	-----------	-------------	--------	-----------------------------------	------------------------	----

Si	0.144494	1.768334	-1.065887
Cl	2.151173	2.279894	-0.507738
Ν	-2.045036	0.419553	-1.331330
Ν	-1.283552	-0.570014	-0.785652
Ν	1.343695	-1.130110	-1.999550
Ν	1.176399	-0.856258	-0.677894
С	-3.270402	-0.068085	-1.501951
С	-3.297585	-1.410550	-1.062680
С	-2.025202	-1.717802	-0.592228
С	-4.404447	0.744925	-2.124510
С	-5.772393	0.185220	-1.682166
С	-4.313560	0.654661	-3.664600
С	-4.320445	2.221782	-1.693926
С	-1.589540	-3.047885	0.021416
С	-2.805529	-3.998417	0.068341
С	-1.106745	-2.837175	1.471589
С	-0.490728	-3.741020	-0.814589
С	2.523241	-1.732438	-2.109590
С	3.134861	-1.830830	-0.841078
С	2.271411	-1.238382	0.073254
С	3.055106	-2.207273	-3.457121
С	2.260184	-3.447441	-3.924183
С	2.913109	-1.079517	-4.500261
С	4.543133	-2.586588	-3.323583
Ċ	2.624581	-1.049949	1.561619
Ċ	4.000314	-0.334690	1.622156
Č	2.772590	-2.448398	2.211134
Č	1.649402	-0.213443	2.415010
Č	0.018800	-0.040315	-0.332844
Č	-0.828673	3.051452	-0.124689
Č	0.187312	1.919457	-2.919030
Н	-4.149087	-2.081858	-1.083629
Н	-6.582646	0.781684	-2.131827
Н	-5.891989	0.223277	-0.587551
Н	-5.916343	-0.856512	-2.010009
Н	-5.106492	1.259938	-4.133705
Н	-4.434795	-0.384868	-4.009006
Н	-3 343893	1 025004	-4 032023
Н	-5 137073	2 797760	-2 157171
Н	-4 409018	2 326815	-0 600300
Н	-3 371225	2 678888	-2 007345
Н	-2500514	-4 953987	0 522752
Н	-3 628890	-3 587900	0.672182
Н	-3 191997	-4 218108	-0.938566
Н	-0.900502	-3 809502	1 946584
Н	-1 868456	-2.315834	2.073627
Н	-0 179312	-2 254913	1 510025
Н	-0 220230	-4 702456	-0.347753
Н	0.417846	-3 135863	-0.896715
Н	-0.848095	-3 948298	-1 835013
Н	4 104203	-2 261547	-0.611213
Н	2 658115	-3 820819	-4 883011
н	2.332164	-4 262980	-3 186181
н	1 195228	-3 205218	-4 063341
Н	3 315480	-1 405763	-5 473804
Н	3 464431	-0 178438	-4 186590
Н	1 859447	-0 796106	-4 640365
Н	4 939677	-2 923468	-4 294811
11	1.//////	<i></i>	1.477011

Η	4.692812	-3.407773	-2.604135
Η	5.149266	-1.729546	-2.988729
Η	4.291800	-0.167505	2.672077
Η	4.789290	-0.934520	1.146201
Η	3.959685	0.638301	1.112470
Η	3.144293	-2.351641	3.245169
Η	1.811840	-2.983781	2.242541
Η	3.485799	-3.072758	1.653583
Η	2.064299	-0.125859	3.431493
Η	0.659079	-0.679395	2.519453
Η	1.529696	0.807824	2.024774
Η	0.003566	0.039994	0.756618
Η	-0.770412	2.872659	0.961791
Η	-0.391243	4.045014	-0.315997
Η	-1.884908	3.062557	-0.422216
Η	0.885521	1.175396	-3.327363
Н	0.550751	2.922047	-3.198495
Н	-0.801715	1.747692	-3.364636

Table S8. Cartesian coordinates for $Mg{HC(^{t}Bu_{2}pz)_{2}SiMe_{2}N^{i}Pr}Me(5)$

Mg	0.002068	0.069189	0.035113	
Ν	-1.411667	-1.625345	-0.350074	
Ν	-1.045756	-2.818420	0.219394	
Ν	1.516778	-1.543022	-0.254210	
Ν	1.360043	-2.617159	0.580527	
Ν	-0.029243	0.026120	2.060712	
Si	-0.355280	-1.494216	2.673829	
С	-2.497618	-1.863952	-1.090982	
С	-2.848475	-3.223304	-0.980361	
С	-1.919789	-3.818272	-0.138378	
С	-3.221129	-0.790484	-1.896619	
С	-2.298019	-0.247741	-3.010841	
С	-3.658601	0.351176	-0.953422	
С	-4.479311	-1.392638	-2.555726	
С	-1.889892	-5.290221	0.273938	
С	-1.994257	-5.468082	1.806918	
С	-0.625850	-5.973263	-0.296600	
С	-3.118903	-6.005539	-0.331916	
С	2.747464	-1.632712	-0.775961	
С	3.395336	-2.755753	-0.241254	
С	2.506256	-3.371445	0.634848	
С	3.304315	-0.650651	-1.801910	
С	2.388088	-0.636804	-3.045875	
С	3.407431	0.766384	-1.194464	
С	4.716779	-1.097408	-2.231188	
С	2.932433	-4.557605	1.520055	
С	1.865977	-5.183437	2.434413	
С	3.486328	-5.672683	0.600904	
С	4.076095	-4.045174	2.434300	
С	0.035826	-2.786450	1.221694	
С	-2.141842	-1.890928	3.152442	
С	0.688726	-2.013166	4.162264	
С	0.227111	1.158481	2.957814	
С	-0.768477	2.302843	2.722137	
С	1.678340	1.652547	2.832634	
С	-0.042865	1.861136	-1.123901	
Η	-3.686461	-3.715617	-1.457217	
Н	-2.835812	0.503700	-3.611830	
Н	-1.979419	-1.058525	-3.685833	
Η	-1.403334	0.235933	-2.596087	
Н	-4.188614	1.131871	-1.522750	
Н	-4.340414	-0.025499	-0.173873	
Н	-2.799233	0.824344	-0.457971	
Н	-5.012630	-0.609480	-3.117247	
Н	-4.224880	-2.194498	-3.266534	
Н	-5.178394	-1.801535	-1.809560	
Н	-2.078495	-6.539028	2.051960	
Η	-1.128391	-5.081580	2.359155	
Н	-2.888879	-4.959799	2.197048	
Н	-0.542412	-7.005775	0.080595	
Н	-0.675978	-6.016250	-1.395684	
Н	0.296338	-5.437987	-0.037497	
Н	-3.100562	-7.068687	-0.044864	
Н	-3.124804	-5.957450	-1.431113	
Н	-4.060432	-5.574784	0.040643	
Н	4.407640	-3.082641	-0.448727	
Н	2.773530	0.071732	-3.796772	
Н	2.340430	-1.634971	-3.509972	

Η	1.365337	-0.328219	-2.786895
Н	3.843042	1.460925	-1.931273
Η	4.052330	0.768530	-0.301542
Η	2.422395	1.163594	-0.913087
Η	5.112425	-0.402073	-2.987803
Η	4.712585	-2.104131	-2.679426
Η	5.418725	-1.100281	-1.381869
Η	2.344803	-5.970031	3.038172
Η	1.057519	-5.667469	1.871855
Η	1.435959	-4.456465	3.135733
Η	3.880272	-6.502231	1.209937
Η	4.302783	-5.310493	-0.040387
Η	2.700613	-6.076373	-0.056262
Η	4.470832	-4.874333	3.044136
Η	4.907666	-3.625185	1.850854
Η	3.714230	-3.260295	3.116166
Η	0.054037	-3.769863	1.682843
Η	-2.275851	-2.916631	3.535238
Η	-2.836598	-1.736752	2.312364
Η	-2.451380	-1.202377	3.957184
Η	0.413278	-3.007142	4.551722
Η	1.770519	-2.000033	3.953698
Η	0.512498	-1.295782	4.982111
Η	0.095352	0.853142	4.018611
Η	-0.584759	3.150894	3.403729
Η	-1.800501	1.949297	2.878914
Η	-0.693999	2.675763	1.687002
Η	1.890519	2.489902	3.519602
Η	2.384657	0.837212	3.055326
Η	1.880941	1.999860	1.804948
Η	0.565645	2.632220	-0.610372
Η	-1.063250	2.286814	-1.177632
Н	0.324711	1.835829	-2.167489

Table S9. Cartesian coordinates for $Zn\{HC(^{t}Bu_{2}pz)_{2}SiMe_{2}NPh\}Me(28)$

Zn	-0.170953	-0.041310	-0.200738
N	-0.006399	-0.015254	2 152680
N	-0.138966	-1 253669	2 710081
N	1 500864	-1 424403	0.067310
N	1.550304	-1.424493	1 216129
IN NI	1.332209	-2.1/230/	0.200271
IN C'	-1.495304	-1.525450	-0.3883/1
SI	-1.124381	-2.909180	0.520075
C	-0.204799	0.8/1330	3.134923
С	-0.508735	0.186721	4.324677
С	-0.471623	-1.174719	4.044125
С	-0.086862	2.380589	2.956875
С	1.153929	2.721270	2.106596
С	-1.374367	2.921976	2.293191
С	0.085626	3.044738	4.339774
С	-0.891343	-2.246943	5.071404
С	-0.111072	-2.008087	6.387520
Ĉ	-2.402776	-2.048560	5 359600
Č	-0.687703	-3 715018	4 663181
C	2 831567	-1 509553	-0.415775
C	2.651507	2 2 2 2 2 6 0	0.436045
C	2 782202	-2.525209	1.472011
C	2.785305	-2./32911	1.4/2911
C	3.306459	-0./96/01	-1.6/9923
C	2.219604	-0.837899	-2.772233
C	3.664926	0.667999	-1.329256
С	4.575207	-1.489658	-2.223160
С	3.186032	-3.586797	2.672927
С	2.964965	-2.795919	3.982869
С	2.446486	-4.947159	2.684843
С	4.696709	-3.898123	2.583625
С	0.235926	-2.387290	1.840508
С	-2.612020	-3.548201	1.483482
Ċ	-0 293249	-4 369019	-0 343342
Ĉ	-2.545078	-1 459465	-1 305820
Č	-3 075990	-0 213599	-1 726385
C	-1 118207	-0.133548	2 650102
C	4.605010	1 297724	2.030102
C	-4.093019	-1.207724	-3.193613
C	-4.192934	-2.320734	-2./95150
C	-3.140290	-2.614443	-1.8/92/8
C	-0.039623	1.68/2/9	-1.204955
Н	-0.755105	0.630226	5.282751
Н	1.249378	3.813919	2.000565
Н	2.071010	2.345347	2.588402
Н	1.092334	2.283559	1.102693
Н	-1.328917	4.018709	2.191095
Н	-1.518007	2.491535	1.291666
Н	-2.260160	2.672850	2.899412
Н	0.270847	4.124043	4.217283
Н	0.943438	2.616989	4.882996
Н	-0.811369	2.931872	4.968761
Н	-0.452696	-2.717248	7.158028
Н	-0.271465	-0.993507	6.780102
Н	0.972551	-2.150890	6 253117
н	_2 732852	_2 758612	6 135222
ц	-2.152052	-1 021022	5 720047
н Ц	-2.01//0/	-1.031823	J.120001 A A57707
п 11	-3.0083/9	-2.2230/0	4.43/191 5 160771
п	-1.002850	-4.303144	5.409//1
H	0.3/0346	-3.968348	4.516942
Н	-1.249298	-3.977141	3.758562

Η	4.651965	-2.580943	0.307256
Η	2.579740	-0.327555	-3.679809
Η	1.297068	-0.336081	-2.453498
Η	1.964665	-1.874918	-3.041925
Η	4.040825	1.194495	-2.222478
Η	2.789644	1.213747	-0.951946
Η	4.450178	0.707989	-0.557079
Н	4.896097	-0.993526	-3.152611
Η	5.416122	-1.426091	-1.514677
Η	4.394736	-2.552119	-2.453403
Η	3.242003	-3.413353	4.853542
Η	3.593550	-1.892671	3.994265
Η	1.928939	-2.462696	4.116370
Η	2.794658	-5.555721	3.535202
Н	2.655430	-5.508593	1.760835
Η	1.355227	-4.859318	2.773478
Η	4.996186	-4.510135	3.448508
Η	5.301147	-2.978734	2.596341
Η	4.947848	-4.467140	1.675737
Η	0.339344	-3.250187	2.494627
Η	-2.445078	-4.522038	1.972594
Η	-2.940588	-2.821182	2.242692
Η	-3.452657	-3.672545	0.782750
Η	0.130135	-5.080480	0.386224
Η	0.520989	-4.037439	-1.005865
Η	-1.012197	-4.931046	-0.961381
Η	-2.653438	0.702030	-1.307542
Η	-4.493924	0.849907	-2.950020
Η	-5.516336	-1.218747	-3.911721
Η	-4.619010	-3.448734	-3.205933
Η	-2.755055	-3.602715	-1.617724
Н	-0.769883	2.423283	-0.827881
Η	0.947002	2.175385	-1.186962
Н	-0.296953	1.502281	-2.262128

References

- (1) Beck, A.; Weibert, B.; Burzlaff, N. Eur. J. Inorg. Chem. 2001, 2001, 521-527.
- (2) Howe, R. G.; Tredget, C. S.; Lawrence, S. C.; Subongkoj, S.; Cowley, A. R.; Mountford, P. Chem. Commun. 2006, 223-225.
- (3) Westerhausen, M. Inorg. Chem. 1991, 30, 96-101.
- (4) (a) Barakat, I.; Dubois, P.; Jérôme, R.; Teyssié, P. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 505-514; (b) Dorgan, J. R.; Janzen, J.; Knauss, D. M.; Hait, S. B.; Limoges, B. R.; Hutchinson, M. H. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 3100-3111.
- (5) F. Neese, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 73.
- (6) (a) Becke, A. D. J. Chem. Phys. 1986, 84, 4524-4529; (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789; (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
- (7) (a) Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F. J. Chem. Theory Comput. 2008, 4, 908-919; (b) Pantazis, D. A.; Neese, F. J. Chem. Theory Comput. 2009, 5, 2229-2238.
- (8) (a) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829-5835; (b) Weigend, F.; Ahlrichs, R. PCCP 2005, 7, 3297-3305.
- (9) Weigend, F. PCCP 2006, 8, 1057-1065.
- (10) (a) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. *Theor. Chem. Acc.* 1997, 97, 119-124;
 (b) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. *Chem. Phys. Lett.* 1995, 240, 283-290; (c) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. *Chem. Phys. Lett.* 1995, 242, 652-660.
- (11) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605-1612.