Supporting Information for:

Oxidative Addition of Arsenic Halides to Platinum(0)

Jonas H. Muessig,^{a,b} Tom E. Stennett, Uwe Schmidt,^{a,b} Rian D. Dewhurst,^{a,b} Lisa Mailänder^{a,b} and Holger Braunschweig^{a,b}*

^a Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

^b Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

*To whom correspondence should be addressed. E-mail: <u>h.braunschweig@uni-wuerzburg.de</u>

Materials and Methods

General considerations. All reactions were performed under an atmosphere of dry argon using standard Schlenk or glovebox techniques. ¹H, ¹³C, ³¹P and ¹⁹⁵Pt NMR spectra were obtained at ambient temperature using either a Bruker Avance I 400 (operating at 400.1 MHz for ¹H, 128.4 MHz for ¹³C, 162.0 MHz for ³¹P{¹H} and 86.0 MHz for ¹⁹⁵Pt{¹H}) or a Bruker Avance 500 NMR spectrometer (operating at 500.1 MHz for ¹H, 160.5 MHz for ¹³C and 107.5 MHz for ¹⁹⁵Pt{¹H}). ¹H NMR spectra were referenced via residual proton resonances of C₆D₆ (¹H, 7.16 ppm) or toluene-*d*₈ (¹H, 2.08, 6.97, 7.01, 7.09 ppm). ¹³C NMR spectra were referenced to C₆D₆ (¹³C, 128.06 ppm), toluene-*d*₈ (¹³C, 20.43, 125.13, 127.96, 128.87, 137.48 ppm). ¹⁹⁵Pt{¹H} were referenced to Na₂[PtCl₆] in D₂O. Elemental analyses were performed on an Elementar vario MICRO cube elemental analyzer.

All solvents were purified by distillation using the appropriate drying agents (potassium/benzophenone for diethyl ether; Na/K alloy for pentane and hexane; sodium for toluene, benzene), deoxygenated using three freeze-pump-thaw cycles and stored over molecular sieves under dry argon prior to use. Deuterated solvents used for NMR spectroscopy were purchased from Sigma-Aldrich, deoxygenated by three freeze-pump-thaw cycles and dried under an argon atmosphere over molecular sieves.

Reagents $AsCl_3$ and $AsBr_3$ were purchased from commercial sources. $AsBr_3$ was used as received and $AsCl_3$ was used after distillation. $[Pt(PCy_3)_2]$,¹ $[Pt(PCy_3)(IMes)]$,² $[Pt(IMes)_2]$,³ and IMes⁴ were prepared by established methods.

Synthetic Details

trans-[(Cy₃P)₂PtCl(AsCl₂)] (4): [Pt(PCy₃)₂] (135 mg, 178 μ mol) was dissolved in Et₂O (5 mL) and a solution of AsCl₃ in Et₂O (1.19 mol/L, 0.18 mL, 214 μ mol) was added at 0 °C. The reaction mixture was stirred for 1 h at ambient temperature, and the resulting precipitate filtered off and washed with Et₂O (3 x 4 mL) to yield the product (119 mg, 127 μ mol, 69%) as a colourless powder.

¹**H NMR** (400.1 MHz, C_6D_6): δ = 3.12 (br m, 6H, Cy), 2.20 (br d, ${}^{3}J_{H-H}$ = 12.5 Hz, 12H, Cy), 1.79–1.70 (br m, 24H, Cy), 1.61 (br d, ${}^{3}J_{H-H}$ = 12 Hz, 6H, Cy), 1.36–1.26 (br m, 12H, Cy), 1.20–1.11 (br m, 6H, Cy) ppm.

¹³C{¹H} NMR (100.6 MHz, C₆D₆): δ = 32.8 (vt, N = |¹J_{C-P} + ³J_{C-P}| = 25 Hz, C¹, Cy), 30.6 (s, C², C⁶, Cy), 27.9 (vt, N = |³J_{C-P} + ⁵J_{C-P}| = 11 Hz C³, C⁵, Cy), 26. 8 (s, C⁴, Cy) ppm.

³¹**P**{¹**H**} **NMR** (162.0 MHz, C_6D_6): δ = 22.0 (¹ J_{P-Pt} = 2595 Hz) ppm.

¹⁹⁵**Pt{**¹**H} NMR** (86.0 MHz, C_6D_6): $\delta = -4053$ (¹ $J_{P-Pt} = 2595$ Hz) ppm.

Elemental analysis (%) calculated for C₃₆H₆₆P₂PtAsCl₃: C 46.14, H 7.10; found: C 46.47, H 7.18.

trans-[PtCl(AsCl₂)(IMes)(PCy₃)] (5): [Pt(IMes)(PCy₃)] (20.0 mg, 25.6 μ mol) was dissolved in toluene (0.6 mL) and a solution of AsCl₃ in Et₂O (0.12 mol/L, 0.23 mL, 27.0 μ mol) was added at ambient temperature. The reaction mixture was stirred for 1 h and the resulting precipitate was filtered off and washed with Et₂O (3 x 1 mL) to yield **5** (18.2 mg, 18.9 μ mol, 74%) as a colourless powder.

¹**H NMR**: (400.1 MHz, d₈-toluene): δ = 6.83 (s, 2H, *H*-Mes), 6.78 (s, 2H, *H*-Mes), 6.18 (s, 2H, NC*HCH*N), 2.85 (m, 3H, Cy), 2.49 (s, 6H, Me), 2.19 (s, 6H, Me), 2.16 (s, 6H, Me), 2.04 (m, 6H, Cy), 1.66 (m, 9H, Cy), 1.51 (m, 6H, Cy), 1.30 (m, 6H, Cy), 1.17 (m, 3H, Cy) ppm.

¹³**C NMR**: (86.0 MHz, d₈-toluene): δ = 139.1 (s, *ipso*-C_{Ar}, Mes), 138.0 (s, *p*-C_{Ar}, Mes), 135.2 (s, *o*-C_{Ar}, Mes), 134.8 (s, *o*-C_{Ar}, Mes), 129.9 (s, *m*-C_{Ar}, Mes) 129.5 (s, *m*-C_{Ar}, Mes), 123.5 (d, ⁴J_{C-P} = 4 Hz, NCHCHN), 32.7 (d, ¹J_{C-P} = 26 Hz, C¹, Cy), 30.5 (s, ²J_{C-P} = 1 Hz, C², C⁶, Cy), 27.9 (d, ²J_{C-P} = 11 Hz, C³, C⁵, Cy), 26. 8 (d, ⁴J_{C-P} = 1 Hz, C⁴, Cy) ppm.

³¹**P NMR**: (162.0 MHz, d₈-toluene): δ = 13.5 ppm (¹*J*_{P-Pt} = 2665 Hz).

¹⁹⁵**Pt NMR:** (86.0 MHz, d₈-toluene): $\delta = -3860$ ppm (¹*J*_{P-Pt} = 2665 Hz).

Elemental analysis (%) calculated for C₃₉H₅₈AsCl₃N₂PPt: C 48.68, H 6.08, N 2.91; found: C 48.34, H 6.02, N 2.54.

trans-[Pt(AsCl₂)Cl(IMes)₂] (6): [Pt(IMes)₂] (24.5 mg, 30.4 μ mol) was dissolved in benzene (0.6 mL) and a solution of AsCl₃ in Et₂O (0.24 mol/L, 0.13 mL, 30.4 μ mol) was added at ambient temperature. The reactions mixture was stirred for 1 h and the resulting precipitate was filtered

off and washed with Et₂O (3 x 1 mL) to yield **6** (14.0 mg, 14.2 μ mol, 46%) as a colourless powder.

¹**H NMR**: (500.1 MHz, C_6D_6): δ = 6.66 (s, 4H, *H*-Mes), 6.47 (s, 4H, *H*-Mes), 5.91 (s, 4H, NC*H*C*H*N), 2.55 (s, 12H, Me), 2.17 (s, 12H, Me), 1.67 (s, 12H, Me) ppm.

¹³**C NMR**: (125.75 MHz, C₆D₆): δ = 137.9 (s, *o* -C_{Ar}, Mes.), 137.6 (s, *o*-C_{Ar}, Mes), 137.5 (s, *ipso*-C_{Ar}, Mes.) 134.0 (s, *p*-C_{Ar}, Mes), 130.7 (s, *m*-C_{Ar}, Mes) 129.0 (s, *m*-C_{Ar}, Mes), 124.84 (d, ⁴J_{C-P} = 4 Hz, NCHCHN), 21.7 (s, CH₃), 21.1 (s, CH₃), 19.7 (s, CH₃) ppm.

¹⁹⁵**Pt NMR:** (107.5 MHz, C₆D₆): δ = -3188 ppm.

Elemental analysis (%) calculated for C₄₂H₅₀AsCl₃N₄Pt: C 51.10, H 5.11, N 5.68; found: C 51.43, H 5.31, N 5.91.

Attempted synthesis of *trans*-[PtBr(AsBr₂)(PCy₃)₂] (7): [Pt(PCy₃)₂] (20.0 mg, 26.4 µmol) was dissolved in Et₂O (0.6 mL) and AsBr₃ (8.34 mg, 26.4 µmol) was added at ambient temperature. ³¹P{¹H} NMR spectroscopy indicated immediate formation of *trans*-[PtBr(AsBr₂)(PCy₃)₂], together with *trans*-[(Cy₃P)₂PtBr₂]. After 30 minutes in solution further decomposition was observed by the appearance of several peaks in the ³¹P{¹H} NMR, and compound **7** could not be successfully isolated. During several attempts to crystallise **7**, X-ray quality crystals of the cluster compound [(PCy₃)₂Pt(µ₃-As)₂{PtBr(PCy₃)}₂] (**8**) were repeatedly obtained. Deep red **8** was the only arsenic-containing compound identified by X-ray diffraction. ³¹P NMR of **7** from mixture: (162.0 MHz, Et₂O): δ = 18.6 ppm (¹*J*_{P-Pt} = 2613 Hz).

NMR Spectra:

trans-[(Cy₃P)₂PtCl(AsCl₂)] (4)

¹H NMR

¹³C{¹H} NMR

³¹P{¹H} NMR

195Pt{1H} NMR:

$trans-[PtCl(AsCl_2)(IMes)(PCy_3)]$ (5)

¹H NMR:

13C{1H} NMR:

³¹P{¹H} NMR:

¹⁹⁵Pt{¹H} NMR:

trans-[Pt(AsCl₂)Cl(IMes)₂] (6) ¹H NMR:

¹³C{¹H} NMR:

¹⁹⁵Pt{¹H} NMR

Crystallographic Details

The crystal data of *trans*-[(Cy₃P)₂PtCl(AsCl₂)] (**4**) and *trans*-[(Cy₃P)(IMes)PtCl(AsCl₂)] (**5**) were collected on a BRUKER D8 QUEST diffractometer with a CMOS area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structures were solved using the intrinsic phasing method,⁵ refined with the SHELXL program⁶ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealized positions.

Crystal data for *trans*-[(Cy₃P)₂PtCl(AsCl₂)] (**4**): C₃₆H₆₆AsCl₃P₂Pt, $M_r = 937.18$, yellow needle, 0.234×0.069×0.069 mm³, triclinic space group *P*-1, *a* = 10.0229(4) Å, *b* = 13.4142(5) Å, *c* = 15.1155(6) Å, $\alpha = 89.3400(10)^\circ$, $\beta = 89.1100(10)^\circ$, $\gamma = 74.4180(10)^\circ$, *V* = 1957.28(13) Å³, *Z* = 2, $\rho_{calcd} = 1.590 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 4.734 \text{ mm}^{-1}$, *F*(000) = 948, *T* = 100(2) K, *R*₁ = 0.0171, *wR*² = 0.0378, 7947 independent reflections [2 $\theta \le 52.746^\circ$] and 388 parameters.

Crystal data for *trans*-[(Cy₃P)(IMes)PtCl(AsCl₂)] (**5**): C₃₉H₅₇AsCl₃N₂PPt, $M_r = 961.19$, colorless plate, $0.21 \times 0.126 \times 0.057 \text{ mm}^3$, triclinic space group $P \ \overline{1}$, a = 10.255(2) Å, b = 10.607(3) Å, c = 19.408(6) Å, $\alpha = 81.416(18)^\circ$, $\beta = 78.469(16)^\circ$, $\gamma = 71.452(12)^\circ$, $V = 1952.7(9) \text{ Å}^3$, Z = 2, $\rho_{calcd} = 1.635 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 4.710 \text{ mm}^{-1}$, F(000) = 964, T = 100(2) K, $R_1 = 0.0273$, $wR^2 = 0.0519$, 9623 independent reflections [2 $\theta \le 56.562^\circ$] and 430 parameters.

Crystal data for **8**: $C_{77}H_{144}As_2Br_2P_4Pt_3$, $M_r = 2088.72$, red block, $0.09 \times 0.08 \times 0.04 \text{ mm}^3$, Monoclinic space group $P2_1/n$, a = 15.239(6) Å, b = 26.032(8) Å, c = 21.255(7) Å, $\beta = 101.68(2)^\circ$, V = 8257(5) Å³, Z = 4, $\rho_{calcd} = 1.680 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 6.949 \text{ mm}^{-1}$, F(000) = 4144, T = 103(2) K, $R_1 = 0.0495$, $wR^2 = 0.0630$, 17605 independent reflections [$20 \le 53.592^\circ$] and 842 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication numbers 1885931 (**4**), 1885930 (**5**) and 1885932 (**8**). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

<u>Literature</u>

- 1 T. Yoshida, S. Otsuka and T. Matsuda, *Inorg. Synth.*, 1990, **28**, 113–123.
- 2 F. Hupp, M. Ma, F. Kroll, J. O. C. Jimenez-Halla, R. D. Dewhurst, K. Radacki, A. Stasch, C. Jones and H. Braunschweig, *Chem. Eur. J.*, 2014, **20**, 16888-16898.
- 3 A. J. Arduengo III, S. F. Gamper, J. C. Calabrese and F. Davidson, *J. Am. Chem. Soc.*, 1994, **116**, 4391-4394.
- A. J. Arduengo III, H. Bock, H. Chen, M. Denk, D. A. Dixon, J. C. Green, W. A. Herrmann,
 N. L. Jones, M. Wagner and R. West, *J. Am. Chem. Soc.*, 1994, **116**, 6641-6649.
- 5 G. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3–8.
- 6 G. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112–122.