Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Cooperative Mn(I)-complex catalyzed transfer hydrogenation of ketones and imines

Kasturi Ganguli, Sujan Shee, Dibyajyoti Panja and Sabuj Kundu*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

Email: <u>sabuj@iitk.ac.in</u>

Contents

1. Proposed Catalytic Cycle for the Transfer Hydrogenation of Ketones	3
2. Characterization of the Metal Complexes	4-9
3. X-Ray Crystallographic Studies	10
3.1. Molecular Structure of Complex A	10
3.2. Crystal Data and Structure Refinement of Complex A	10-11
3.3. Molecular Structure of Complex B	11
3.4. Crystal Data and Structure Refinement of Complex B	11-12
4. Optimization Details	12-14
5. Computational Studies	15-40
6. Characterization of the Products	41
6.1. Characterization of the Alcohol Products	41-45
6.2. Characterization of the Amine Products	45-47
7. Copies of ¹ H and ¹³ C NMR Spectra	48-86
8. References	87

1. Proposed catalytic cycle for the transfer hydrogenation of ketones

2. Characterization of the metal complexes

Fig. S1 FT-IR spectra of complex A.

Fig. S2 ESI-MS spectra of complex A.

Fig. S3 FT-IR spectra of complex B.

Fig. S4 ESI-MS spectra of complex B.

Fig. S5 IR spectra of complex C.

Fig. S6 ESI-MS spectra of complex C.

Fig. S7 FT-IR spectra of complex D.

Fig. S8 ESI-MS spectra of complex D.

Fig. S9 FT-IR spectra of complex E.

Fig. S10 ESI-MS spectra of complex E.

Fig. S11 FT-IR spectra of complex F.

Fig. S12 ESI-MS spectra of complex F.

3. X-Ray crystallographic studies

Single crystal of complex **A** was obtained by slow evaporation of a saturated solution of the complex in acetone. Crystals of complex **B** were obtained by vapour diffusion of diethyl ether into a saturated solution of the complex in methanol. Single crystal X-ray data of the complexes were collected at 100 K by using a Bruker SMART APEX II CCD diffractometer and Bruker D8 Quest Single Crystal diffractometer with graphite monochromated MoK α radiation (λ =0.71073 Å). The frames were indexed, integrated and scaled using SMART and SAINT software package and the data were corrected for absorption using the SADABS program. The structures were solved and refined using WINGX, Olex2 and SHELX programs. The crystallographic figures have been generated using Diamond 3 software10 (30% probability thermal ellipsoids). The CCDC number of complexes **A** and **B** are 1878549 and 1883243.

3.1 Fig. S13 Molecular structure of complex A (30% thermal ellipsoids).

3.2 Table S1 Crystal data and structure refinement for complex A.

Identification code	complex A
Empirical formula	C17H13BrMnN3O3
Formula weight	442.15
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	7.740(5)
b/Å	10.095(5)
c/Å	12.203(5)
α/\circ	108.914(5)
β/°	102.309(5)
γ/°	100.172(5)
Volume/Å ³	849.6(8)
Z	2
pcalcg/cm3	1.728
μ/mm^{-1}	3.150

F(000) 440.0 Crystal size/mm³ $0.01 \times 0.01 \times 0.01$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 5.588 to 56.65 Index ranges $-10 \le h \le 10$, $-13 \le k \le 13$, $-16 \le l \le 16$ Reflections collected 13352 Independent reflections 4206 [$R_{int} = 0.0249$, $R_{sigma} = 0.0261$] Data/restraints/parameters 4206/0/226 Goodness-of-fit on F^2 1.072 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0212, wR_2 = 0.0518$ Final R indexes [all data] $R_1 = 0.0260$, $wR_2 = 0.0541$ Largest diff. peak/hole / e Å⁻³ 0.37/-0.39

3.3 Fig. S14 Molecular structure of complex **B** (30% thermal ellipsoids).

3.4 Table S2 Crys	tal data and	structure refineme	ent for comp	lex B.
-------------------	--------------	--------------------	--------------	--------

Identification code	complex B
Empirical formula	C20H14BrMnN4O3
Formula weight	493.19
Temperature/K	100
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2$
a/Å	14.6520(13)
b/Å	29.737(3)
c/Å	10.2242(10)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	4454.7(7)

Ζ 8 pcalcg/cm3 1.471 μ/mm^{-1} 2.413 F(000) 1968.0 Crystal size/mm³ $0.01 \times 0.01 \times 0.01$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 4.836 to 56.522 Index ranges $-19 \le h \le 19$, $-39 \le k \le 39$, $-13 \le l \le 13$ Reflections collected 71212 Independent reflections 10992 [$R_{int} = 0.1052$, $R_{sigma} = 0.0728$] Data/restraints/parameters 10992/0/523 Goodness-of-fit on F² 1.027 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0493, wR_2 = 0.1121$ Final R indexes [all data] $R_1 = 0.0806, wR_2 = 0.1292$ Largest diff. peak/hole / e Å⁻³ 1.37/-0.86 Flack parameter 0.048(5)

4. Optimization details

O			он
	+ OH <u>Mn(I)</u> Complex NaO [/] Pr (x mol%	x (0.2 mol%) %), 2 h, 90 °C	+ 0
Entry	Mn Cat. (0.2 mol%)	NaO ^{<i>i</i>} Pr (mol%)	Yield (%)
1	Α	20	96
2	Α	10	92
3	Α	6	88
4	Α	4	87
5	Α	3	70
6	Α	2.4	32
7	Α	2	< 5
8	С	20	52
9	С	4	7
10	Ε	4	4
12	-	4	n.d.

^{*a*}Reaction conditions: acetophenone (0.5 mmol), Mn(I) complex (0.2 mol%), NaO^{*i*}Pr (x mol%), refluxed in ^{*i*}PrOH (2.5 mL) at 90 °C for 2 h, GC yields (*n*-dodecane was used as an internal standard); n.d. = not detected.

$ \begin{array}{c} O \\ O $				
Entry	Mn(I) Cat. (mol%)	Ligand (mol%)	Yield (%)	
1	Comp. A (0.2)	-	87	
2	MnBr(CO) ₅ (0.2)	$L_1(0.2)$	86	
3	Comp. C (0.2)	-	49	
4	$MnBr(CO)_5(0.2)$	$L_3(0.2)$	47	
5	Comp. F (0.2)	-	55	
6	MnBr(CO) ₅ (0.2)	L ₆ (0.2)	48	

4.2 Table S4 Comparison between activities of isolated metal complexes and $[MnBr(CO)_5 + L]^a$

^{*a*}Reaction conditions: acetophenone (0.5 mmol), Mn(I) Cat. (0.2 mol%), ligand (0.2 mol%), NaO^{*i*}Pr (20 mol%), refluxed in ^{*i*}PrOH (2.5 mL) at 90 °C for 2 h, GC yields (*n*-dodecane was used as an internal standard).

4.3 Table S5 Optimization of different bases to test the role of counter cation in TH of ketones^a

O			он
	OH	Comp. A (0.2 mol%)	
	* 🔨	Base (20 mol%), 2 h, 90 °C	+

Entry	Comp. A (mol%)	Base (20 mol%)	Yield (%)
1	0.2	LiO ^t Bu	84
2	0.2	NaO'Bu	52
3	0.2	KO ^t Bu	32
4	0.2	NaO ⁱ Pr	96
5^b	0.2	NaO ⁱ Pr	95
6	0.2	LiOH.H ₂ O	41
7	0.2	NaOH	85
8	0.2	КОН	37
9	0.2	Li ₂ CO ₃	n.d.

10	0.2	Na ₂ CO ₃	n.d.
11	0.2	K ₂ CO ₃	17

^{*a*}Reaction conditions: acetophenone (0.5 mmol), complex **A** (0.2 mol%), base (20 mol%), refluxed in ^{*i*}PrOH (2.5 mL) at 90 °C for 2 h, GC yields (*n*-dodecane was used as an internal standard). ^{*b*}In presence of 1.2 equiv. 15-crown-5 ether w.r.to acetophenone; n.d. = not detected.

4.4 Table S6 Optimization of the reaction conditions for the TH of imines^a

Entry	Comp. A (mol%)	Temp. (°C)	Time (h)	Yield (%)
1	10	90	24	73
2	5	100	24	84
3	5	110	24	89
4	5	120	24	100
5	5	120	18	84
6	5	120	16	62
7	5	120	12	60
8	4	120	24	79
9	-	120	24	n.d.
10 ^b	5	120	24	55
11 ^c	5	120	24	5

^{*a*}Reaction conditions: substrate (0.5 mmol), Comp. A (x mol%), NaO^{*i*}Pr (20 mol%), refluxed in ^{*i*}PrOH (2.5 mL) at the specified time and temperature; NMR yields (using 1,3,5trimethoxybenzene as internal standard); ^{*b*}10 mol% NaO^{*i*}Pr; ^{*c*}5 mol% NaO^{*i*}Pr; n.d. = not detected.

5. Computational studies

All the calculations were performed using the Gaussian 09 package.¹ Full geometry optimization followed by frequency calculations on the stationary points were carried out to ascertain the nature of the stationary points as minima or first order saddle point. Hybrid functional, M062X was used with the LANL2DZ basis set² for Mn and 6-31G** basis set³⁻⁵ for non-metal elements. The transition states (TS) were further confirmed by performing intrinsic reaction coordinate (IRC) calculation using same method. Solvent effect was incorporated using the polarizable continuum model (PCM) with isopropanol as solvent.⁶

5.1 Cartesian coordinates and statistical thermodynamic analysis data

SCF Done for solvent	: -193.069655
Zero-point correction	: 0.084592
Total Electronic Energy	: -192.979567
Total Thermal Energy	: -192.972308
Total Thermal Free Energy	: -193.015726

Atom		Х	Y	Z
0.00000000	С		0.00014200	0.18637300
С		0.00014200	-0.61331400	-1.28689400
Н		-0.88038300	-1.26205700	-1.32681400
Н		0.00058100	0.06335600	-2.14052000
Н		0.88028600	-1.26263700	-1.32657300
С		0.00014200	-0.61331400	1.28689400
Н		0.88028600	-1.26263700	1.32657300

Н	0.00058100	0.06335600	2.14052000
Н	-0.88038300	-1.26205700	1.32681400
0	-0.00044100	1.39552500	0.0000000

Acetophenone

SCF Done	: -384.73258
SCF Done for solvent	: -384.73872
Zero-point correction	: 0.13967
Total Electronic Energy	: -384.59291
Total Thermal Energy	: -384.58189
Total Thermal Free Energy	: -384.63469

Atom		Х	Y	Z
0.00007700	С		1.69496900	0.20502300
С		2.54614600	-1.04722200	-0.00001300
Н		3.59485700	-0.75420700	0.00021500
Н		2.33316800	-1.65752600	0.88269000
Н		2.33339300	-1.65693600	-0.88319400
0		2.20474700	1.30601900	0.00000200
С		0.20186800	0.05609100	-0.00001200
С		-0.42596100	-1.19149300	0.00002200
С		-0.57397300	1.21909100	-0.00003200

С	-1.81507800	-1.27515600	-0.00000600
Н	0.16400200	-2.10278300	0.00003000
С	-1.95968800	1.13532800	-0.00000400
Н	-0.06163300	2.17558200	-0.00000100
С	-2.58147100	-0.11283600	0.00000500
Н	-2.29916800	-2.24632200	-0.00003400
Н	-2.55853800	2.04029400	0.00001600
Н	-3.66492900	-0.17921200	0.00004200

I1_out

SCF Done	: -1342.727523
SCF Done for solvent	: -1342.742282
Zero-point correction	: 0.37236
Total Electronic Energy	: -1342.355163
Total Thermal Energy	: -1342.316851
Total Thermal Free Energy	: -1342.433285

Atom Z	2	K	Y
С	-2.73663800	-0.55748600	0.32711200

С	-3.20150600	-1.61193300	-0.47985000
С	-4.55617700	-1.83588300	-0.71383400
С	-5.44487600	-0.96251800	-0.10476200
С	-4.99545900	0.09367700	0.70660900
С	-3.64531500	0.31266800	0.93405000
С	-0.98964800	-1.60480400	-0.40738400
Н	-4.89922200	-2.65045900	-1.34221500
Н	-6.50994300	-1.09729400	-0.25917100
Н	-5.72429000	0.75443200	1.16324900
Н	-3.30682900	1.13100000	1.55862000
Н	-2.01172900	-3.02705500	-1.57218700
С	0.44822500	-1.94791200	-0.58287500
Н	0.68760200	-2.71686200	0.17186600
Н	0.61063600	-2.41405000	-1.56812500
Ν	1.19295500	-0.70799900	-0.42772400
Н	0.63712200	0.01677000	-1.83768600
С	2.59601500	-0.88301800	-0.42064400
С	3.38810300	0.03670600	-1.12479000
С	3.24995800	-1.91080000	0.27711400
С	4.77473600	-0.04805500	-1.11172700
Н	2.88441500	0.81159000	-1.69727700
С	4.63883700	-2.00004000	0.27819700
Н	2.67271100	-2.63386100	0.84608900
С	5.41179000	-1.06965900	-0.41044800
Н	5.35979000	0.68044100	-1.66490800
Н	5.12031800	-2.80152200	0.83080700
Н	6.49408700	-1.14218600	-0.40487900
Ν	-1.34726200	-0.58755200	0.34532400
Ν	-2.05798400	-2.25995400	-0.92031200

Mn	0.28127500	0.60851200	0.86156000
С	1.79914100	1.71927500	0.94498300
С	-0.73739600	1.86883800	1.77918000
С	0.75702300	-0.33240000	2.36118100
0	2.69749900	2.41799000	0.98836700
0	1.06770600	-1.01590400	3.22129800
0	-1.35148500	2.64151600	2.35732700
С	-0.46560600	1.59929800	-1.93881700
Н	-0.44107000	1.52822000	-0.81702300
0	0.01047900	0.42328900	-2.51227400
С	0.39246100	2.80368200	-2.31504300
Н	0.01058500	3.72464900	-1.86298000
Н	1.42529200	2.65815400	-1.98399000
Н	0.39677000	2.91915300	-3.40277600
С	-1.92889200	1.78468000	-2.31097500
Н	-2.50632400	0.90692100	-2.00820900
Н	-2.35467900	2.67234800	-1.83394600
Н	-2.01335500	1.89432600	-3.39667200

I2_out

SCF Done	: -1149.61974
SCF Done for solvent	: -1150.16945

Zero-point correction	: 0.283445
Total Electronic Energy	: -1149.33630
Total Thermal Energy	: -1149.306303
Total Thermal Free Energy	: -1149.402488

Atom	Х	Y	Z
С	-2.79878300	-0.32839900	-0.10208500
С	-3.23737400	-1.66852800	0.00461800
С	-4.58630900	-2.02378000	-0.02700200
С	-5.50055200	-0.98477700	-0.17157700
С	-5.07885600	0.35538700	-0.28144300
С	-3.73295800	0.70417600	-0.25000100
С	-1.02357300	-1.55099800	0.09715900
Н	-4.90923900	-3.05685200	0.05629500
Н	-6.56161000	-1.21255600	-0.20120500
Н	-5.82528900	1.13536700	-0.39438100
Н	-3.41458300	1.73526800	-0.33762300
Н	-2.01540500	-3.42426500	0.21277500
С	0.42035100	-1.90963900	0.21143400
Н	0.71749200	-1.93819000	1.26550100
Н	0.62850800	-2.90189400	-0.21549500
Ν	1.19376300	-0.83806700	-0.45653800
Н	0.98585300	-0.85915000	-1.45213600
С	2.62391500	-0.94766200	-0.27668000
С	3.44593700	-1.17186300	-1.38400200
С	3.19000700	-0.81478600	0.99595400
С	4.82971900	-1.25876000	-1.22179900
Н	3.00645800	-1.26668000	-2.37415300

С	4.57091000	-0.92014700	1.15253400
Н	2.55982400	-0.59801000	1.85205900
С	5.39615800	-1.14114400	0.04701000
Н	5.46070900	-1.42238700	-2.09022800
Н	5.00397300	-0.81148300	2.14240400
Н	6.47194400	-1.21220700	0.17415200
Ν	-1.40644800	-0.29996100	-0.03714200
Ν	-2.07669800	-2.42192200	0.12648500
Mn	0.15441200	1.09611900	-0.14912100
~	1,60429900	2.06057000	-0.58603900
C	1.0012000	2.0000,000	
c	-0.87911100	2.54429900	-0.26155500
с с с	-0.87911100 0.39733100	2.54429900 1.18553400	-0.26155500 1.65289700
с с о	-0.87911100 0.39733100 2.53553900	2.54429900 1.18553400 2.65870500	-0.26155500 1.65289700 -0.92904000
с с о о	-0.87911100 0.39733100 2.53553900 0.56297700	2.54429900 1.18553400 2.65870500 1.30976200	-0.26155500 1.65289700 -0.92904000 2.79697400
C C O O O	-0.87911100 0.39733100 2.53553900 0.56297700 -1.56454500	2.54429900 1.18553400 2.65870500 1.30976200 3.47271600	-0.26155500 1.65289700 -0.92904000 2.79697400 -0.39335600

I3_out

SCF Done

: -1534.398756

SCF Done for solvent	: -1534.414070
Zero-point correction	: 0.427914
Total Electronic Energy	: -1533.970842
Total Thermal Energy	: -1533.926863
Total Thermal Free Energy	: -1534.057252

Atom	Х	Y	Z
С	-3.17241400	-0.21869900	-0.12584400
С	-3.68319300	-0.38209700	-1.42650300
С	-4.95917700	0.04445300	-1.78579900
С	-5.71793700	0.64327300	-0.79062600
С	-5.22270800	0.80549700	0.51501200
С	-3.95109700	0.37890100	0.86712700
С	-1.62557600	-1.18004500	-1.29161300
Н	-5.34276800	-0.08402100	-2.79198400
Н	-6.71761400	0.99248200	-1.02542000
Н	-5.85221100	1.27523600	1.26291800
Н	-3.57048600	0.50384200	1.87464000
Н	-2.65890800	-1.20584400	-3.12370300
С	-0.30090500	-1.78651200	-1.59285200
Н	-0.41905600	-2.88302900	-1.59532800
Н	0.02276100	-1.50071900	-2.60718800
Ν	0.61404700	-1.31124300	-0.56305800
Н	0.36763000	0.45036700	-1.45370300
С	1.96424300	-1.59503900	-0.83779500
С	2.96124700	-0.74242900	-0.32924600
С	2.37920900	-2.67654200	-1.63336500
С	4.30626700	-0.98772300	-0.56531800
Н	2.66319900	0.14380600	0.22510900

С	3.73069500	-2.91309400	-1.87125600
Н	1.64621600	-3.35596600	-2.05587200
С	4.70583800	-2.07870900	-1.33612500
Н	5.04414500	-0.30169500	-0.15943600
Н	4.01892600	-3.76448700	-2.48086000
Н	5.75710600	-2.26618300	-1.52665700
Ν	-1.88270300	-0.73087800	-0.08626000
Ν	-2.67266800	-1.01506000	-2.13442000
Mn	-0.21814600	-0.85053700	1.16244300
С	1.38302600	-0.95693100	2.15322900
С	-0.85414100	0.48124000	2.27039600
С	-0.99215900	-2.16256800	2.18646600
0	2.30055700	-1.02584100	2.82408400
0	-1.48352300	-3.03471100	2.73814600
0	-1.24258700	1.34035300	2.92190400
С	-0.14982000	2.22480500	-0.93597800
Н	-0.81875200	1.92295400	-0.10896600
0	-0.08098200	1.19436900	-1.90157000
С	-0.74312900	3.44875700	-1.61753900
Н	-1.72551200	3.20325900	-2.02925400
Н	-0.84776700	4.27256100	-0.90737400
Н	-0.08926600	3.76859600	-2.43386000
С	1.22654100	2.50036700	-0.35628300
С	2.34080400	2.49334200	-1.19900500
С	1.40930900	2.73458700	1.00737800
С	3.61617600	2.70506600	-0.68528700
Н	2.19594500	2.28391400	-2.25476000
С	2.68709800	2.93628700	1.52656000
Н	0.54641800	2.75407000	1.66832900

С	3.79372200	2.91792700	0.68081800
Н	4.47579900	2.68493600	-1.34802000
Н	2.81813800	3.10375200	2.59118500
Н	4.78972500	3.06781800	1.08548600

TS1_out

SCF Done	: -1342.704021
SCF Done for solvent	: -1342.719534
Zero-point correction	: 0.368827
Total Electronic Energy	: -1342.335194
Total Thermal Energy	: - 1342.296431
Total Thermal Free Energy	: -1342.414757

Atom	Х	Y	Z
С	-2.76907700	-0.53909600	0.13823400
С	-3.22562600	-1.52108100	-0.76050500
С	-4.57735200	-1.70340400	-1.04730400
С	-5.46776100	-0.86243200	-0.39822300

С	-5.02559900	0.12406700	0.50250300
С	-3.68042800	0.30166900	0.78337500
С	-1.02171200	-1.54994100	-0.61299400
Н	-4.91705400	-2.46193500	-1.74406300
Н	-6.53014800	-0.96643200	-0.59085000
Н	-5.75790500	0.76173700	0.98565600
Н	-3.33948900	1.06735500	1.47043700
Н	-2.02502400	-2.86461300	-1.92490700
С	0.41311400	-1.92197400	-0.78529000
Н	0.68808400	-2.66941500	-0.03205000
Н	0.59500900	-2.35354800	-1.77833700
Ν	1.19590100	-0.69670500	-0.57006600
Н	0.98618600	-0.10761600	-1.39523800
С	2.61264800	-0.90772200	-0.49707000
С	3.43570300	-0.30801800	-1.44915700
С	3.17384900	-1.66671400	0.53081700
С	4.81736200	-0.45689800	-1.36645100
Н	2.98042100	0.26869200	-2.25076400
С	4.55364200	-1.82351100	0.59757800
Н	2.53546400	-2.11229800	1.28829400
С	5.38039000	-1.21765800	-0.34660400
Н	5.45259000	0.01911100	-2.10641000
Н	4.98596800	-2.41135000	1.40090800
Н	6.45685900	-1.33584100	-0.28378900
Ν	-1.38402100	-0.58977000	0.20007100
Ν	-2.08020000	-2.15383600	-1.21308100
Mn	0.23274800	0.55282600	0.94141400
С	1.74995900	1.58286500	1.12678700
С	-0.78421600	1.75616800	1.86332500

С	0.56238700	-0.58492700	2.36003800
0	2.67530700	2.25658700	1.13385300
0	0.76609500	-1.26322200	3.26232500
0	-1.43900300	2.56162700	2.35393400
С	-0.29605700	1.73609100	-2.03359800
Н	-0.09975700	1.57929200	-0.32223700
0	-0.04374300	0.63056400	-2.55210800
С	0.75330800	2.83517300	-2.08903400
Н	0.54366200	3.64079600	-1.38351600
Н	1.74210800	2.42051700	-1.88106500
Н	0.75719400	3.24257100	-3.10780300
С	-1.73988300	2.18686000	-1.91873700
Н	-2.37920200	1.32806200	-1.70930000
Н	-1.87297300	2.94678900	-1.14691400
Н	-2.03433000	2.61108800	-2.88727600

TS2_out

SCF Done	: -1534.370175
SCF Done for solvent	: -1534.3860035
Zero-point correction	: 0.423098
Total Electronic Energy	: -1533.947077

Total Thermal Energy: -1533.903935Total Thermal Free Energy: -1534.030881

Atom	Х	Y	Z
С	-3.19699800	-0.31996800	-0.14887400
С	-3.69399000	-0.28501700	-1.46445700
С	-4.99311400	0.11858300	-1.76402500
С	-5.79001100	0.49413400	-0.69326700
С	-5.30847700	0.46045200	0.62781500
С	-4.01605400	0.05367500	0.92039800
С	-1.59089700	-0.94863300	-1.43615300
Н	-5.36235700	0.14291900	-2.78347200
Н	-6.80756000	0.82100300	-0.87877500
Н	-5.96587300	0.76081100	1.43651200
Н	-3.64690000	0.03275100	1.93902400
Н	-2.60260400	-0.68696200	-3.26297200
С	-0.24167000	-1.41548400	-1.87017300
Н	-0.21679200	-2.50873600	-1.83958900
Н	-0.02729200	-1.09685000	-2.89763300
Ν	0.73773500	-0.87339100	-0.91736800
Н	0.81697500	0.12010000	-1.15595300
С	2.03494800	-1.48723200	-0.92371000
С	3.16482100	-0.66855700	-0.91009900
С	2.18327100	-2.87337300	-0.85483200
С	4.43269100	-1.23625600	-0.83877600
Н	3.04511600	0.41210400	-0.93575200
С	3.45603900	-3.43150000	-0.79420000
Н	1.31318600	-3.52124800	-0.81705500

С	4.58633300	-2.61845800	-0.78787700
Н	5.30297200	-0.58826400	-0.82297800
Н	3.56058000	-4.51026100	-0.73876800
Н	5.57616800	-3.05864600	-0.73375700
Ν	-1.87527700	-0.74356700	-0.17492100
Ν	-2.64597600	-0.72025200	-2.25715100
Mn	-0.17956700	-0.68263100	1.07155600
С	1.45210100	-0.34299400	1.87192500
С	-1.07300500	-0.15913300	2.57854900
С	-0.20392500	-2.50235900	1.42034600
0	2.45080700	-0.04305000	2.34288700
0	-0.22476100	-3.62261600	1.65899100
0	-1.62168100	0.26655800	3.49224000
С	-0.28271300	2.10325700	-0.50234500
Н	-0.18921600	0.95591100	0.72166600
0	-0.53804700	1.53759500	-1.58450100
С	-1.38551300	2.85561900	0.22394300
Н	-2.30287200	2.26527100	0.19261700
Н	-1.12852500	3.08291500	1.25954300
Н	-1.55157500	3.79720800	-0.31290300
С	1.14313000	2.58652700	-0.29154300
С	1.93090500	2.76907300	-1.42937000
С	1.68632800	2.86341000	0.96542200
С	3.24734000	3.21371900	-1.31429500
Н	1.49069600	2.55354200	-2.39796100
С	3.00090300	3.29743200	1.08280300
Н	1.08628100	2.69246700	1.85560500
С	3.78556600	3.47309400	-0.05779500
Н	3.85101300	3.35487400	-2.20578900

Н	3.42105500	3.48628100	2.06551300
Н	4.81272400	3.81110400	0.03663600

SCF Done	: -1342.74305
SCF done for solvent	: -1342.75897
Zero-point correction	: 0.373074
Total Electronic Energy	: -1342.36997
Total Thermal Energy	: -1342.33114
Total Thermal Free Energy	: -1342.44885

Atom	Х	Y	Z
С	2.68474600	-0.62672800	-0.29019700
С	3.10058400	-1.83701600	0.29336800
С	4.44286600	-2.14943900	0.49996500
С	5.36807100	-1.19974300	0.09692000
С	4.96845000	0.01362400	-0.49301000
С	3.63216800	0.31801000	-0.69547800
С	0.89481200	-1.74666800	0.15373800
Н	4.74935700	-3.08590400	0.95316800

Н	6.42518900	-1.39692900	0.23857900
Н	5.72714100	0.72682700	-0.79617500
Н	3.32756500	1.25291600	-1.15220100
Н	1.84810900	-3.42742400	1.00667200
С	-0.55154700	-2.11443600	0.23129800
Н	-0.80622100	-2.67161200	-0.67975600
Н	-0.74314700	-2.78118200	1.08567100
Ν	-1.30642000	-0.87454200	0.30388800
Н	-0.93255600	-0.19166200	1.06601500
С	-2.72157500	-0.97529200	0.33673600
С	-3.42515600	0.00684700	1.04756200
С	-3.42898700	-1.98132000	-0.32403100
С	-4.81224900	-0.01241400	1.07516400
Н	-2.85683800	0.77685500	1.56509500
С	-4.82222800	-1.99343300	-0.28413500
Н	-2.90725500	-2.75314800	-0.88017000
С	-5.52112200	-1.01289600	0.41000300
Н	-5.34367300	0.75794600	1.62487300
Н	-5.35999700	-2.77971900	-0.80469600
Н	-6.60528600	-1.02746300	0.43624200
Ν	1.29845700	-0.60933700	-0.35701300
Ν	1.92977500	-2.52623000	0.56317100
Mn	-0.26883100	0.76182500	-0.75482700
С	-1.78452300	1.88308800	-0.83300800
С	0.80337800	2.15556700	-1.32643400
С	-0.51110500	0.06461500	-2.45799900
0	-2.67513600	2.59234800	-0.83586200
0	-0.66387900	-0.42950200	-3.47810200
0	1.46027000	3.02482700	-1.67644900

0	-0.28006200	1.15830600	1.27560800
С	0.78903000	1.21570200	2.16471900
Н	1.39222400	0.28075500	2.13208400
С	1.73464200	2.36957100	1.83877800
Н	1.16666500	3.30560300	1.80132200
Н	2.52690600	2.46695900	2.58840700
Н	2.21055000	2.21682400	0.86600200
С	0.23677600	1.35642600	3.58391300
Н	-0.32684900	2.29179500	3.66193600
Н	-0.44832400	0.53138800	3.80267000
Н	1.03279700	1.36011000	4.33584100

I2_in

SCF Done	: -1149.61974
SCF Done for solvent	: -1149.64181
Zero-point correction	: 0.28344
Total Electronic Energy	: -1149.33630
Total Thermal Energy	: -1149.30630
Total Thermal Free Energy	: -1149.40248

Atom	Х	Y	Z
С	-2.79878300	-0.32839900	-0.10208500
С	-3.23737400	-1.66852800	0.00461800

С	-4.58630900	-2.02378000	-0.02700200
С	-5.50055200	-0.98477700	-0.17157700
С	-5.07885600	0.35538700	-0.28144300
С	-3.73295800	0.70417600	-0.25000100
С	-1.02357300	-1.55099800	0.09715900
Н	-4.90923900	-3.05685200	0.05629500
Н	-6.56161000	-1.21255600	-0.20120500
Н	-5.82528900	1.13536700	-0.39438100
Н	-3.41458300	1.73526800	-0.33762300
Н	-2.01540500	-3.42426500	0.21277500
С	0.42035100	-1.90963900	0.21143400
Н	0.71749200	-1.93819000	1.26550100
Н	0.62850800	-2.90189400	-0.21549500
Ν	1.19376300	-0.83806700	-0.45653800
Н	0.98585300	-0.85915000	-1.45213600
С	2.62391500	-0.94766200	-0.27668000
С	3.44593700	-1.17186300	-1.38400200
С	3.19000700	-0.81478600	0.99595400
С	4.82971900	-1.25876000	-1.22179900
Н	3.00645800	-1.26668000	-2.37415300
С	4.57091000	-0.92014700	1.15253400
Н	2.55982400	-0.59801000	1.85205900
С	5.39615800	-1.14114400	0.04701000
Н	5.46070900	-1.42238700	-2.09022800
Н	5.00397300	-0.81148300	2.14240400
Н	6.47194400	-1.21220700	0.17415200
Ν	-1.40644800	-0.29996100	-0.03714200
Ν	-2.07669800	-2.42192200	0.12648500
Mn	0.15441200	1.09611900	-0.14912100

С	1.60429900	2.06057000	-0.58603900
С	-0.87911100	2.54429900	-0.26155500
С	0.39733100	1.18553400	1.65289700
0	2.53553900	2.65870500	-0.92904000
0	0.56297700	1.30976200	2.79697400
0	-1.56454500	3.47271600	-0.39335600
Н	-0.06166000	1.04336400	-1.73273400

I3_in

SCF Done	: -1534.41266
SCF Done for solvent	: -1534.43000
Zero-point correction	: 0.427452
Total Electronic Energy	: -1533.98521
Total Thermal Energy	: -1533.94178
Total Thermal Free Energy	: -1534.069614

Atom	Х	Y	Z
С	1.87865800	2.00290400	0.15294400
С	1.88780100	3.25864600	-0.47995000
С	3.06226900	3.97339200	-0.70981200

С	4.24019900	3.38005600	-0.28393900
С	4.24663000	2.12039900	0.34365100
С	3.07601700	1.41429800	0.57018200
С	-0.17027700	2.46008200	-0.34085100
Н	3.05730100	4.94060100	-1.20040000
Н	5.18058100	3.89690600	-0.44226800
Н	5.19312700	1.69128800	0.65436100
Н	3.08557900	0.43462100	1.03482000
Н	0.19897000	4.32575800	-1.26489500
С	-1.65500700	2.31650100	-0.44501300
Н	-2.11052400	2.78955800	0.43443500
Н	-2.04346900	2.83147300	-1.33622600
Ν	-1.93623800	0.88881300	-0.44733700
Н	-1.34258600	0.35997500	-1.14252000
С	-3.29614500	0.48316100	-0.52691900
С	-3.56110400	-0.76451000	-1.10678700
С	-4.34832300	1.25213900	-0.03093500
С	-4.86392000	-1.23647300	-1.16925900
Н	-2.72164500	-1.34212700	-1.48939400
С	-5.65377400	0.76653600	-0.10211600
Н	-4.16750900	2.22295900	0.41840400
С	-5.91946700	-0.47447500	-0.66703900
Н	-5.05657100	-2.20622100	-1.61700200
Н	-6.46559800	1.37119800	0.28982100
Н	-6.93716100	-0.84578100	-0.71942100
Ν	0.57218900	1.54050300	0.22298800
Ν	0.56008500	3.52005700	-0.77933800
Mn	-0.50384500	-0.18606800	0.84958300
С	-1.56299300	-1.71775000	1.10459100

С	0.94164500	-1.01160200	1.70490400
С	-1.05708900	0.66228400	2.40038700
0	-2.15617100	-2.68732300	1.18850300
0	-1.43633700	1.23708300	3.31523800
0	1.80911100	-1.48247300	2.27983500
0	-0.26131800	-0.88327500	-1.07431200
С	0.97214300	-0.96098000	-1.69775900
Н	1.51594400	0.00618400	-1.65908300
С	0.77582600	-1.32207700	-3.17458700
Н	0.26603300	-2.28801400	-3.24478500
Н	0.14891400	-0.56644100	-3.65813100
Н	1.72946500	-1.38846600	-3.70750500
С	1.87246400	-1.98909500	-1.02784400
С	3.24114800	-1.77333000	-0.86970200
С	1.31564700	-3.17611200	-0.54331300
С	4.03951700	-2.71412900	-0.22132800
Н	3.67896500	-0.84875600	-1.24231700
С	2.10910500	-4.11961200	0.09999200
Н	0.24560600	-3.32631000	-0.66084900
С	3.47370600	-3.88753200	0.26958600
Н	5.10188500	-2.52835400	-0.09254400
Н	1.66465100	-5.03474600	0.48018700
Н	4.09158000	-4.61763500	0.78290900

SCF Done	: -1342.67048
SCF Done for solvent	: -1342.70239
Zero-point correction	: 0.369265
Total Electronic Energy	: -1342.30121
Total Thermal Energy	: -1342.26234
Total Thermal Free Energy	: -1342.38046

Atom	Х	Y	Z
С	-2.81863000	-0.65565000	0.02874200
С	-3.30364700	-1.80468000	-0.62040500
С	-4.66437900	-2.03498700	-0.81955200
С	-5.52977000	-1.06347500	-0.34287700
С	-5.05771600	0.09317300	0.30633600
С	-3.70518300	0.31651900	0.50133100
С	-1.09536000	-1.82617100	-0.52444200
Н	-5.02782800	-2.92480300	-1.32175300
Н	-6.59810100	-1.19692500	-0.47504100
Н	-5.77315700	0.82706800	0.66044500
Н	-3.34061000	1.20877800	0.99675700
Н	-2.14769800	-3.40747100	-1.45801600
С	0.33813100	-2.22708100	-0.67164800
----	-------------	-------------	-------------
Н	0.63881200	-2.82849300	0.19210900
Н	0.49858200	-2.83368700	-1.57291700
Ν	1.13364500	-0.98942400	-0.67671900
Н	0.94023200	-0.47593000	-1.53742200
С	2.55507000	-1.16195300	-0.54993700
С	3.39794800	-0.58228000	-1.49553700
С	3.09279500	-1.83509700	0.54743700
С	4.77829700	-0.67066900	-1.34124200
Н	2.97143700	-0.04427100	-2.33851100
С	4.47289700	-1.93276400	0.68398700
Н	2.44288700	-2.25297000	1.31025600
С	5.32055800	-1.35104300	-0.25615600
Н	5.42795800	-0.20546800	-2.07500700
Н	4.88680900	-2.45275900	1.54162200
Н	6.39623600	-1.42115400	-0.13729600
Ν	-1.43273000	-0.71021700	0.07165100
Ν	-2.17306900	-2.53071100	-0.96199100
Mn	0.20543800	0.48227000	0.66688700
С	1.83046100	1.51835300	0.82793700
С	-0.79654100	1.86300200	1.53294300
С	0.48837400	-0.47726800	2.21435500
0	2.83636000	2.03869000	0.92226100
0	0.65331200	-1.11265400	3.15599500
0	-1.43999600	2.62949400	2.07562300
0	0.35275400	3.37448900	-0.28362700
С	-0.00064500	2.57818000	-1.22586600
Н	-0.08064200	1.34078900	-0.86047700
С	-1.43916600	2.73064500	-1.75485500

Н	-1.51880000	3.69277000	-2.27314500
Н	-1.72765300	1.92663700	-2.44246300
Н	-2.13310200	2.74558000	-0.90969100
С	1.01535500	2.40204600	-2.37488200
Н	1.07470600	3.34109400	-2.93599500
Н	2.00521400	2.20676800	-1.95005200
	0.74133300	1.59721800 -	3.07221000

TS2_in

Η

SCF Done	: -1534.34364
SCF Done for solvent	: -1534.37366
Zero-point correction	: 0.42305
Total Electronic Energy	: -1533.92059
Total Thermal Energy	: -1533.87739
Total Thermal Free Energy	: -1534.00423

Coordinate

Atom	X	Y	Z
С	-2.03382900	-1.46701700	0.35008900
С	-2.39036600	-2.52025900	-0.50995800
С	-3.70325200	-2.97026300	-0.64121500
С	-4.65559600	-2.31944800	0.12668300
С	-4.31274900	-1.25763600	0.98445400
С	-3.00804200	-0.81306400	1.10801400

С	-0.22312900	-2.10391800	-0.63241000
Н	-3.96708400	-3.78325300	-1.30872400
Н	-5.69243900	-2.63112400	0.05849600
Н	-5.09612000	-0.75965100	1.54534200
Н	-2.75512800	0.03307900	1.73499300
Н	-1.09341600	-3.62824700	-1.81385500
С	1.22506900	-2.15924000	-1.00133100
Н	1.74608900	-2.84038500	-0.32111000
Н	1.37132400	-2.53203800	-2.02369100
Ν	1.76423500	-0.80416100	-0.81391300
Н	1.34820000	-0.18464400	-1.50940900
С	3.19247700	-0.67006500	-0.86552200
С	3.74567100	0.33308300	-1.65923300
С	4.01768300	-1.46873800	-0.07319900
С	5.12176800	0.53665900	-1.66215100
Н	3.09414400	0.96728300	-2.25598600
С	5.39382500	-1.26761800	-0.09497200
Н	3.59399500	-2.22228000	0.58329200
С	5.95185800	-0.26726900	-0.88691200
Н	5.54232500	1.32682400	-2.27504700
Н	6.03057900	-1.89017300	0.52485500
Н	7.02478100	-0.11019900	-0.89208500
Ν	-0.66791000	-1.23995700	0.24491300
Ν	-1.20669900	-2.90272900	-1.12396100
Mn	0.77382900	0.15060500	0.90350300
С	2.09965000	1.49384500	1.07288800
С	-0.34784500	1.04757800	2.14595100
С	1.50209600	-0.98883400	2.16526900
0	2.90177400	2.30018300	1.10882500

0	1.96537200	-1.71519000	2.92165800
0	-1.03974800	1.54012000	2.90362300
0	-0.14806700	3.19710300	0.46894800
С	-0.34905800	2.43287100	-0.52125000
Н	0.15108500	1.19167200	-0.34646400
С	0.43431700	2.75856400	-1.80962000
Н	0.04467400	3.69698300	-2.21690200
Н	1.48390000	2.91294600	-1.54335200
Н	0.35550900	1.98635600	-2.58444800
С	-1.79729100	1.99276300	-0.78851800
С	-2.15094200	1.04016300	-1.74737000
С	-2.80076500	2.58727000	-0.02590200
С	-3.48297800	0.69548700	-1.95117300
Н	-1.37073100	0.54452800	-2.32509700
С	-4.13764800	2.24820700	-0.22870500
Н	-2.48978300	3.31672500	0.71606000
С	-4.48247800	1.30514800	-1.19305100
Н	-3.74451600	-0.05606100	-2.69131600
Н	-4.91308700	2.72262900	0.36633300
Н	-5.52275500	1.03451000	-1.34831000

6. Characterization of the products

6.1 Characterization data for the alcohols

1-Phenylethanol (5a):⁷

52.0 mg; 85% isolated yield; faint yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.35-7.34 (m, 4H), 7.32-7.25 (m, 1H), 4.86 (q, $J_{\rm H,H}$ = 6.2 Hz, 1H), 2.36 (brs, 1H), 1.48 (d, $J_{\rm H,H}$ = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 145.94, 128.57, 127.53, 125.51, 70.51, 25.25. GCMS (M⁺): 122.1.

1-*p*-Tolylethanol (**5b**):⁷

49.5 mg; 73% isolated yield; pale yellow liquid. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.27$ (d, $J_{\text{H,H}} = 8$ Hz, 2H), 7.16 (d, $J_{\text{H,H}} = 8$ Hz, 2H), 4.85 (q, $J_{\text{H,H}} = 4$ Hz, 1H), 2.34 (s, 3H), 1.95 (s, 1H), 1.47 (d, $J_{\text{H,H}} = 4$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 143.02$, 137.26, 129.29, 125.50, 70.36, 25.21, 21.23. GC-MS (M⁺): 136.1.

1-(4-Methoxyphenyl)ethanol (**5d**):⁸

53.0 mg; 70% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.27 (t, *J*_{H,H} = 8.7 Hz, 2H), 6.86 (d, *J*_{H,H} = 8.6 Hz, 2H), 4.82 (q, *J*_{H,H} = 6.5 Hz, 1H), 3.78 (s, 3H), 2.08 (brs, 1H), 1.45 (d, *J*_{H,H} = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.07, 138.18, 126.79, 113.96, 70.03, 55.40, 25.13. GC-MS (M⁺): 152.1.

1-(2-Aminophenyl)ethanol (**5f**):⁹

50.7 mg; 74% isolated yield; pale yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.09-7.05 (m, 2H), 6.71 (t, $J_{H,H}$ = 5.9 Hz, 1H), 6.64 (d, $J_{H,H}$ = 6.1 Hz, 1H), 4.88 (brs, 1H), 1.55 (d, $J_{H,H}$ = 3.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 145.24, 128.63, 126.64, 118.31, 116.87, 69.72, 21.70. GC-MS (M⁺): 137.1.

1-(4-Fluorophenyl)ethanol (**5g**):⁷

56.1 mg; 80% isolated yield; faint pink liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.33-7.30 (m, 2H), 7.03-6.99 (m, 2H), 4.86 (q, $J_{\rm H,H}$ = 6.5 Hz, 1H), 1.94 (brs, 1H), 1.46 (d, $J_{\rm H,H}$ = 6.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 163.22, 161.27, 141.64, 127.19, 115.41, 69.92, 25.44. GCMS (M⁺): 140.0.

1-(4-Chlorophenyl)ethanol (**5h**):⁸

69.7 mg; 89% isolated yield; pale yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.25 (m, 4H), 4.88-4.83 (m, 1H), 1.97 (brs, 1H), 1.45 (d, *J*_{H,H} = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 144.38, 133.19, 128.74, 126.95, 69.88, 25.41. GC-MS (M⁺): 156.0.

4-(1-Hydroxyethyl)benzonitrile (5k):⁷

52.2 mg; 71% isolated yield; brown liquid. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.59-7.55$ (m, 2H), 7.45-7.42 (m, 2H), 4.92-4.87 (m, 1H), 2.71 (brs, 1H), 1.45-1.42 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.36, 132.28, 126.08, 118.90, 110.73, 69.48, 25.35$. GC-MS (M⁺): 147.1. 1-(9*H*-Fluoren-2-yl)ethanol (5m):⁸

78.6 mg; 75% isolated yield; white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.75$ (t, $J_{H,H} = 8$ Hz, 2H), 7.54 (t, $J_{H,H} = 8$ Hz, 2H), 7.37-7.35 (m, 2H), 7.31-7.27 (m, 1H), 4.98 (q, $J_{H,H} = 4$ Hz, 1H), 3.88 (s, 2H), 1.84 (s, 1H), 1.55 (d, $J_{H,H} = 4$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 144.58$, 143.70, 143.45, 141.50, 141.26, 126.84, 126.74, 125.12, 124.28, 122.16, 119.93, 119.92, 70.77, 36.98, 25.41. GC-MS (M⁺): 210.1.

2-Methyl-1-phenylpropan-1-ol (**5n**):¹⁰

61.6 mg; 82% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.35-7.25 (m, 5H), 4.32 (d, *J*_{H,H} = 6.9 Hz, 1H), 2.18 (s, 1H), 1.98-1.91 (m, 1H), 0.99 (dd, *J*_{H,H} = 6.7 Hz, *J*_{H,H} = 0.6 Hz, 3H), 0.79 (dd, *J*_{H,H} = 6.7 Hz, *J*_{H,H} = 0.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 143.76, 128.25, 127.47, 126.70, 80.09, 35.33, 19.08, 18.40. GC-MS (M⁺): 150.5. 2,2-Dimethyl-1-phenylpropan-1-ol (50) :¹¹

62.4 mg; 76% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): δ =7.32-7.25 (m, 4H), 4.38 (s, 1H), 2.02 (brs, 1H), 0.93 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ = 142.34, 127.75, 127.67, 127.38, 82.49, 35.73, 26.07. GC-MS (M⁺): 164.2.

1-(Thiophen-2-yl)ethanol (**5r**):¹²

26.9 mg; 42% isolated yield; faint yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.27 (m, 1H), 7.16 (d, $J_{H,H}$ = 2.6 Hz, 1H), 7.08 (dd, $J_{H,H}$ = 4.9 Hz, $J_{H,H}$ = 1 Hz, 1H), 4.93 (q, $J_{H,H}$ = 6.4 Hz, 1H), 2.25 (brs, 1H), 1.50 (d, $J_{H,H}$ = 6.4 Hz, 3H) . ¹³C NMR (100 MHz, CDCl₃): δ = 147.41, 126.20, 125.71, 120.22, 66.60, 24.53. GC-MS (M⁺): 128.0.

1-(Pyridine-3-yl)ethanol (5s):⁸

49.3 mg; 80% isolated yield; yellow liquid. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.48$ (d, $J_{H,H} = 3.4$ Hz, 1H), 8.41 (s, 1H), 7.71 (d, $J_{H,H} = 7.8$ Hz, 1H), 4.90 (qd, $J_{H,H} = 6.4$ Hz, $J_{H,H} = 3.8$ Hz, 1H), 1.48 (dd, $J_{H,H} = 6.4$ Hz, $J_{H,H} = 2.2$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.49$, 147.32, 141.56, 133.57, 123.72, 67.93, 25.34. GC-MS (M⁺): 123.1.

1,2,3,4-Tetrahydronaphthalen-1-ol (**6a**):⁸

41.5 mg; 56% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.43-7.41 (m, 1H), 7.20-7.18 (m, 2H), 7.11-7.08 (m, 1H), 4.77 (t, $J_{\text{H,H}}$ = 8 Hz, 1H), 2.86-2.68 (m, 2H), 1.99-1.72 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ = 138.92, 137.28, 129.19, 128.82, 127.75, 126.34, 68.31, 32.41, 29.39, 18.93. GC-MS (M⁺): 148.1.

Cyclohexanol (**6b**):⁸

OH

31.0 mg; 62% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): δ = 3.60-3.53 (m, 1H), 1.94 (s, 1H), 1.87-1.83 (m, 2H), 1.71-1.68 (m, 2H), 1.53-1.48 (m, 1H), 1.27-1.20 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ = 70.31, 35.53, 25.48, 24.19. GC-MS (M⁺): 100.1. Heptan-2-ol (6d):⁸

OH

48.8 mg; 84% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.81-3.74$ (m, 1H), 1.46-1.27 (m, 8H), 1.17 (d, $J_{\rm H,H} = 6.2$ Hz, 3H), 0.87 (t, $J_{\rm H,H} = 6.7$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 76.87$, 68.31, 39.48, 32.01, 25.60, 23.60, 22.79, 14.17. GC-MS (M⁺): 116.1.

6-Methylhept-5-en-2-ol (**6g**):⁸

48.1 mg; 75% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.12-5.09$ (m, 1H), 3.78 (q, $J_{\text{H,H}} = 6.2$ Hz, 1H), 2.08-2.01 (m, 2H), 1.66 (s, 3H), 1.60 (s, 3H), 1.48-1.42 (m, 2H), 1.16 (d, $J_{\text{H,H}} = 6.2$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 132.20$, 124.20, 68.08, 39.33, 25.87, 24.64, 23.60, 17.82. GC-MS (M⁺): 128.1. Thiophen-2-ylmethanol (7f):¹³

50.2 mg; 88% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.27-7.26 (m, 1H), 7.00-6.96 (m, 2H), 4.80 (s, 2H), 2.07 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 144.00, 126.93, 125.67, 125.56, 60.01. GC-MS (M⁺): 114.0.

3-Phenylprop-2-en-1-ol (**7g**):⁷

58.3 mg; 87% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.38 (d, *J*_{H,H} = 7.5 Hz, 2H), 7.31 (t, *J*_{H,H} = 7.3 Hz, 2H), 7.24-7.23(m, 1H), 6.61 (d, *J*_{H,H} = 15.9 Hz, 1H), 6.39-6.33 (m, 1H), 4.32 (d, *J*_{H,H} = 5.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 136.90, 130.80, 128.62, 127.21, 126.14, 61.50. GC-MS (M⁺): 134.1.

1-Hexanol (7h):14

/h_OH

18.0 mg; 60% isolated yield; colourless liquid. ¹H NMR (400 MHz, CDCl₃): δ = 3.61 (t, *J*_{H,H} = 6.6 Hz, 2H), 1.57-1.50 (m, 3H), 1.36-1.24 (m, 6H), 0.87 (t, *J*_{H,H} = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 63.10, 32.82, 31.71, 25.49, 22.70, 14.09. GC-MS (M⁺): 60.1.

6.2 Characterization data for the amines:

N-(4-Methoxybenzyl)aniline (8a):¹⁵

101.0 mg; 95% isolated yield; light yellow solid. ¹H NMR (400 MHz, CDCl₃): δ = 7.38-7.36 (d, $J_{H,H}$ = 8.7 Hz, 2H), 7.29-7.24 (m, 2H), 6.97 (d, $J_{H,H}$ = 8.6 Hz, 2H), 6.81 (t, $J_{H,H}$ = 7.3 Hz, 1H), 6.71 (d, $J_{H,H}$ = 8.0 Hz, 2H), 4.31 (s, 2H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.87, 148.25, 131.46, 129.28, 128.82, 117.50, 114.05, 112.88, 56.27, 47.76. GC-MS (M⁺): 213.1.

N-(4-Chlorobenzyl)aniline (8b):¹⁶

91.4 mg; 84% isolated yield; yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (s, 3H), 7.17 (t, *J*_{H,H} = 8 Hz, 2H), 6.73 (t, *J*_{H,H} = 7.3 Hz, 1H), 6.61 (d, *J*_{H,H} = 8.1 Hz, 2H), 4.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 147.92, 138.09, 129.39, 128.84, 128.78, 117.90, 112.98, 47.70. GC-MS (M⁺): 217.1.

N-Benzyl-4-iodoaniline (8c):¹⁷

131.0 mg; 85% isolated yield; light brown oil. ¹H NMR (400 MHz, CDCl₃): δ =7.32-7.25 (m, 7H), 6.31-6.29 (m, 2H), 4.18 (s, 2H), 3.88 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 147.63, 138.85, 137.77, 128.73, 128.61, 128.30, 127.39, 115.10, 47.98. GC-MS (M⁺): 309.0.

N-(Thiophen-2-ylmethyl)aniline (8d):¹⁶

64.0 mg; 63% isolated yield; yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.24-7.20 (m, 3H), 7.05-6.99 (m, 2H), 6.79 (t, $J_{H,H}$ = 8.0 Hz, 1H), 6.72-6.69 (m, 2H), 4.53 (s, 2H), 3.86 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃): δ = 147.68, 143.03, 129.40, 126.98, 125.17, 124.72, 118.22, 113.29, 76.87, 43.60. GC-MS (M⁺): 189.1.

N-(1-Phenylethyl)aniline (8e):¹⁸

88.8 mg; 90% isolated yield; light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.41-7.33 (m, 4H), 7.28-7.24 (m, 1H), 7.14-7.10 (m, 2H), 6.68 (t, $J_{H,H}$ = 7.3 Hz, 1H), 6.56-6.53 (m, 2H), 4.52 (q, $J_{H,H}$ = 6.7 Hz, 1H), 1.54 (d, $J_{H,H}$ = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 147.95, 146.17, 128.66, 128.31, 126.41, 125.90, 115.54, 112.76, 52.05, 24.76. GC-MS (M⁺): 197.1.

4-Methoxy-N-(1-(4-methoxyphenyl)ethyl)aniline (8f):¹⁸

79.5 mg; 70% isolated yield; yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.33$ (d, $J_{H,H} = 8.0$ Hz, 2H), 7.17-7.13 (m, 2H), 6.91 (d, $J_{H,H} = 8.0$ Hz, 2H), 6.71-6.68 (m, 1H), 6.57 (d, $J_{H,H} = 8.0$ Hz, 2H), 4.50 (q, $J_{H,H} = 4.0$ Hz, 1H), 3.82 (s, 3H), 1.54 (d, $J_{H,H} = 4.0$ Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.58$, 147.44, 137.35, 129.21, 127.02, 117.30, 114.11, 113.45, 55.34, 52.95, 25.12. GC-MS (M⁺): 227.1.

4-Methoxy-N-(1-(naphthalen-2-yl)ethyl)aniline (8g):¹⁸

77.7 mg; 56% isolated yield; white solid. ¹H NMR (400 MHz, CDCl₃): δ = 7.85 (d, $J_{H,H}$ = 7.0 Hz, 4H), 7.55-7.46 (m, 3H), 6.72 (d, $J_{H,H}$ = 8.8 Hz, 2H), 6.55 (d, $J_{H,H}$ = 8.8 Hz, 2H), 4.60 (q, $J_{H,H}$ = 6.7 Hz, 1H), 3.70 (s, 3H), 1.60 (d, $J_{H,H}$ = 3.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 152.14, 128.57, 127.95, 127.80, 126.11, 125.61, 124.60, 114.91, 114.81, 55.83, 54.66, 25.23. GC-MS (M⁺): 277.1.

4-Methoxy-N-(1-phenylpropyl)aniline (8h):¹⁹

72.4 mg; 60% isolated yield; light brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.26 (d, *J*_{H,H} = 7.9 Hz, 2H), 7.16 (d, *J*_{H,H} = 7.9 Hz, 2H), 6.73 d, *J*_{H,H} = 9.0 Hz, 2H), 6.52 (d, *J*_{H,H} = 9.0 Hz, 2H), 4.16 (t, *J*_{H,H} = 6.6 Hz, 1H), 3.72 (s, 3H), 2.36 (s, 3H), 1.90-1.77 (m, 2H), 0.98 (t, *J*_{H,H} =

7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.89$, 141.98, 141.20, 136.43, 129.29, 126.57, 114.87, 114.63, 60.42, 55.86, 31.79, 21.26, 11.01. GC-MS (M⁺): 255.2.

N-Butylaniline (8i):²⁰

49.2 mg; 66% isolated yield; light brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.19-7.14 (m, 2H), 6.71-6.66 (m, 1H), 6.62-6.59 (m, 2H), 3.11 (t, $J_{H,H}$ = 7.1 Hz, 2H), 1.64-1.56 (m, 2H), 1.471.38 (m, 2H), 0.95 (t, $J_{H,H}$ = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 148.57, 129.39, 117.34, 112.93, 43.91, 31.79, 20.47, 14.09. GC-MS (M⁺): 149.3. N-Benzylhexan-1-amine (**8j**):²¹

62.2 mg; 65% isolated yield; light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.32-7.23 (m, 4H), 3.78 9S, 2H), 2.62 (t, JH,H = 7.2 Hz, 2H), 1.94 (brs, 1H), 1.53-1.47 (m, 2H), 1.33-1.25 (m, 6H), 0.89-0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 140.07, 128.49, 128.32, 127.07, 53.99, 49.43, 31.84, 29.93, 27.10, 22.70, 14.14. GC-MS (M⁺): 191.3.

N-Cinnamylimine (8k):²²

83.7 mg; 80% isolated yield; yellow solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41-7.32$ (m, 4H), 7.28-7.20 (m, 3H), 6.78-6.63 (m, 4H), 6.39-6.33 (m, 1H), 3.96 (d, $J_{\text{H,H}} = 5.8$ Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.15$, 136.97, 131.62, 129.40, 128.70, 127.65, 127.15, 126.45, 117.75, 113.17, 46.33. GC-MS (M⁺): 209.3.

7. Copies of ¹H and ¹³C NMR spectra

Fig. S15 1 H NMR Spectrum of ligand L₃ in CDCl₃ (400 MHz).

Fig. S16 ¹³C NMR Spectrum of ligand **L**₃ in CDCl₃ (100 MHz).

Fig. S17 1 H NMR Spectrum of ligand L₄ in D₂O (400 MHz).

Fig. S18 13 C NMR Spectrum of ligand L₄ in D₂O (100 MHz).

Fig. S19 ¹H NMR Spectrum of ligand L_6 in DMSO-D₆ (400 MHz).

Fig. S20 13 C NMR Spectrum of ligand L₆ in DMSO-D₆ (100 MHz).

Fig. S21 ¹H NMR Spectrum of complex A in DMSO-D₆ (500 MHz).

Fig. S22 13 C NMR Spectrum of complex A in DMSO-D₆ (125 MHz).

Fig. S23 ¹H NMR Spectrum of complex B in DMSO-D₆ (500 MHz).

Fig. S24 13 C NMR Spectrum of complex B in DMSO-D₆ (125 MHz).

Fig. S25 1 H NMR Spectrum of complex C in DMSO-D₆ (500 MHz).

Fig. S26 13 C NMR Spectrum of complex C in DMSO-D₆ (125 MHz).

Fig. S27 ¹H NMR Spectrum of complex **D** in DMSO-D₆ (500 MHz).

Fig. S28 13 C NMR Spectrum of complex **D** in DMSO-D₆ (125 MHz).

Fig. S29 ¹H NMR Spectrum of complex E in DMSO-D₆ (500 MHz).

Fig. S30 13 C NMR Spectrum of complex E in DMSO-D₆ (125 MHz).

Fig. S31 ¹H NMR Spectrum of complex F in DMSO-D₆ (500 MHz).

Fig. S32 13 C NMR Spectrum of complex F in DMSO-D₆ (125 MHz).

Fig. S33 ¹H NMR Spectrum of 5a in CDCl₃ (400 MHz).

Fig. S34 13 C NMR Spectrum of 5a in CDCl₃ (100 MHz).

Fig. S35 ¹H NMR Spectrum of 5b in CDCl₃ (400 MHz).

Fig. S36 ¹³C NMR Spectrum of 5b in CDCl₃ (100 MHz).

Fig. S37 1 H NMR Spectrum of 5d in CDCl₃ (400 MHz).

Fig. S38 ¹³C NMR Spectrum of 5d in CDCl₃ (100 MHz).

Fig. S39 ¹H NMR Spectrum of 5f in CDCl₃ (400 MHz).

Fig. S40 13 C NMR Spectrum of 5f in CDCl₃ (100 MHz).

Fig. S41 1 H NMR Spectrum of 5g in CDCl₃ (400 MHz).

Fig. S42 13 C NMR Spectrum of 5g in CDCl₃ (100 MHz).

Fig. S43 ¹H NMR Spectrum of 5h in CDCl₃ (400 MHz).

Fig. S44 ¹³C NMR Spectrum of 5h in CDCl₃ (100 MHz).

Fig. S45 ¹H NMR Spectrum of 5k in CDCl₃ (400 MHz).

Fig. S46 ¹³C NMR Spectrum of 5k in CDCl₃ (100 MHz).

Fig. S47 ¹H NMR Spectrum of 5m in CDCl₃ (400 MHz).

Fig. S48 13 C NMR Spectrum of 5m in CDCl₃ (100 MHz).

Fig. S49 ¹H NMR Spectrum of 5n in CDCl₃ (400 MHz).

Fig. S50 13 C NMR Spectrum of 5n in CDCl₃ (100 MHz).

Fig. S51 ¹H NMR Spectrum of 50 in CDCl₃ (400 MHz).

Fig. S52 ¹³C NMR Spectrum of 50 in CDCl₃ (100 MHz).

Fig. S53 1 H NMR Spectrum of 5r in CDCl₃ (400 MHz).

Fig. S54 13 C NMR Spectrum of 5r in CDCl₃ (100 MHz).

Fig. S55 ¹H NMR Spectrum of 5s in CDCl₃ (400 MHz).

Fig. S56 13 C NMR Spectrum of 5s in CDCl₃ (100 MHz).

Fig. S57 ¹H NMR Spectrum of 6a in CDCl₃ (400 MHz).

Fig. S58 ¹³C NMR Spectrum of 6a in CDCl₃ (100 MHz).

Fig. S59 ¹H NMR Spectrum of 6b in CDCl₃ (400 MHz).

Fig. S60 ¹³C NMR Spectrum of 6b in CDCl₃ (100 MHz).

Fig. S61 ¹H NMR Spectrum of 6d in CDCl₃ (400 MHz).

Fig. S62 ¹³C NMR Spectrum of 6d in CDCl₃ (100 MHz).

Fig. S64 ¹³C NMR Spectrum of 6g in CDCl₃ (100 MHz).

Fig. S65 ¹H NMR Spectrum of 7f in CDCl₃ (400 MHz).

Fig. S66 13 C NMR Spectrum of 7f in CDCl₃ (100 MHz).

Fig. S67 ¹H NMR Spectrum of 7g in CDCl₃ (400 MHz).

Fig. S68 ¹³C NMR Spectrum of 7g in CDCl₃ (100 MHz).

Fig. S69 ¹H NMR Spectrum of 7h in CDCl₃ (400 MHz).

Fig. S70 13 C NMR Spectrum of 7h in CDCl₃ (100 MHz).

Fig. S71 ¹H NMR Spectrum of 8a in CDCl₃ (400 MHz).

Fig. S72 ¹³C NMR Spectrum of 8a in CDCl₃ (100 MHz).

Fig. S73 ¹H NMR Spectrum of 8b in CDCl₃ (400 MHz).

Fig. S74 ¹³C NMR Spectrum of 8b in CDCl₃ (100 MHz).

Fig. S75 1 H NMR Spectrum of 8c in CDCl₃ (400 MHz).

Fig. S76 13 C NMR Spectrum of **8c** in CDCl₃ (100 MHz).

Fig. S77 ¹H NMR Spectrum of 8d in CDCl₃ (400 MHz).

Fig. S78 ¹³C NMR Spectrum of 8d in CDCl₃ (100 MHz).

Fig. S79 ¹H NMR Spectrum of 8e in CDCl₃ (400 MHz).

Fig. S80 ¹³C NMR Spectrum of 8e in CDCl₃ (100 MHz).

Fig. S81 ¹H NMR Spectrum of 8f in CDCl₃ (400 MHz).

Fig. S82 ¹³C NMR Spectrum of 8f in CDCl₃ (100 MHz).

Fig. S83 ¹H NMR Spectrum of 8g in CDCl₃ (400 MHz).

Fig. S84 ¹³C NMR Spectrum of 8g in CDCl₃ (100 MHz).

Fig. S85 ¹H NMR Spectrum of 8h in CDCl₃ (400 MHz).

Fig. S86 ¹³C NMR Spectrum of 8h in CDCl₃ (100 MHz).

Fig. S87 ¹H NMR Spectrum of 8i in CDCl₃ (400 MHz).

Fig. S88 ¹³C NMR Spectrum of 8i in CDCl₃ (100 MHz).

Fig. S89 ¹H NMR Spectrum of 8j in CDCl₃ (400 MHz).

Fig. S90 ¹³C NMR Spectrum of 8j in CDCl₃ (100 MHz).

Fig. S91 ¹H NMR Spectrum of 8k in CDCl₃ (400 MHz).

Fig. S92 ¹³C NMR Spectrum of 8k in CDCl₃ (100 MHz).

8. References

- M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,; M. A.; Cheeseman, J. R. S., G.; Barone, V.; B. P. Mennucci, G. A. N., H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F. B., J.; Zheng, G.; J. L. H. Sonnenberg, M.; Ehara, M. T., K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y., O. N. K., H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E. O., F.; Bearpark, M.; Heyd, J. J.; Brothers, K. N. S. E.; Kudin, V. N. K., R.; Normand, J.; Raghavachari, K.; Rendell, A. B., J. C.; Iyengar, S. S.; J. C. Tomasi, M.; Rega, N.; Millam, J. M. K., M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; J. G. Jaramillo, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R. P., C.; Ochterski, J. W.; Martin, R., K. Z. L.; Morokuma, V. G. V., G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,; S.; Daniels, A. D. and O. F. F., J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., *Wallingford CT*, 2009.
- 2. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- 3. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728.
- 4. V. A. Rassolov, J. A. Pople, M. A. Ratner and T. L. Windus, *J. Chem. Phys.*, 1998, **109**, 1223-1229.
- 5. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, **77**, 3654-3665.
- 6. J. Tomasi and M. Persico, *Chem. Rev.*, 1994, **94**, 2027-2094.
- 7. A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel and J.-B. Sortais, *Org. Lett.*, 2017, **19**, 3656-3659.
- 8. B. Paul, K. Chakrabarti and S. Kundu, *Dalton Trans.*, 2016, **45**, 11162-11171.
- 9. Y. Zhao, B. Huang, C. Yang, Q. Chen and W. Xia, Org. Lett., 2016, 18, 5572-5575.
- 10. J. Wu, H. Zeng, J. Cheng, S. Zheng, J. A. Golen, D. R. Manke and G. Zhang, *J. Org. Chem.*, 2018, **83**, 9442-9448.
- 11. R. Watari, N. Matsumoto, S. Kuwata and Y. Kayaki, *ChemCatChem*, 2017, 9, 45014507.
- 12. Z. Mazloomi, R. Pretorius, O. Pàmies, M. Albrecht and M. Diéguez, *Inorg. Chem.*, 2017, **56**, 11282-11298.
- 13. S. Weber, J. Brünig, V. Zeindlhofer, C. Schröder, B. Stöger, A. Limbeck, K. Kirchner and K. Bica, *ChemCatChem*, 2018, **10**, 4386-4394.
- 14. B. Wozniak, Y. Li, S. Tin and J. G. de Vries, *Green Chem.*, 2018, **20**, 4433-4437.
- 15. E. Petricci, N. Santillo, D. Castagnolo, E. Cini and M. Taddei, *Adv. Synth. Catal.*, 2018, **360**, 2560-2565.
- 16. R. Fertig, T. Irrgang, F. Freitag, J. Zander and R. Kempe, *ACS Catal.*, 2018, **8**, 85258530.
- 17. D. Wei, A. Bruneau-Voisine, D. A. Valyaev, N. Lugan and J.-B. Sortais, *Chem. Commun.*, 2018, **54**, 4302-4305.
- 18. S. V. Facchini, M. Cettolin, X. Bai, G. Casamassima, L. Pignataro, C. Gennari and U. Piarulli, *Adv. Synth. Catal.*, 2018, **360**, 1054-1059.
- H.-J. Pan, Y. Zhang, C. Shan, Z. Yu, Y. Lan and Y. Zhao, *Angew. Chem. Int. Ed.*, 2016, 55, 9615-9619.
- 20. P. Chaudhary, R. Korde, S. Gupta, P. Sureshbabu, S. Sabiah and J. Kandasamy, *Adv. Synth. Catal.*, 2018, **360**, 556-561.
- 21. B. Laroche, H. Ishitani and S. Kobayashi, Adv. Synth. Catal., 2018, 360, 4699-4704.
- 22. Y. Gumrukcu, B. de Bruin and J. N. H. Reek, *ChemSusChem*, 2014, 7, 890-896.