Supporting information

Heteroatom Substitution Effects in Spin Crossover Dinuclear Complexes

Samantha Zaiter, Charlotte Kirk, Matthew Taylor, Y. Maximilian Klein, Catherine E. Housecroft, Natasha F. Sciortino, John E. Clements, Richard I. Cooper, Cameron J. Kepert and Suzanne M. Neville

S1. Single crystal X-ray diffraction

The CCDC reference numbers are 1884823-1884827 for **furtrz-S** (250 K), **furtrz-Se** (250 K), **thtrz-S** (100 K), **furtrz-Se** (100 K), **respectively**.

S1-1 Structure solution and refinement details for furtrz-S and furtrz-Se

Figure S1: ORTEP representation (50% probability) of the **furtrz-S** (250 K) ASU. Hydrogen atoms omitted for clarity. For clarity, only Part A of the disordered triazole ligand shown.

Figure S2: ORTEP representation (50% probability) of the **furtrz-S** (100 K) ASU. Hydrogen atoms omitted for clarity. For clarity, only Part A of the disordered triazole ligand shown.

Figure S3: ORTEP representation (50% probability) of the **furtrz-Se** (250 K) ASU. Solvent molecules and hydrogen atoms omitted for clarity.

Figure S4: ORTEP representation (50% probability) of the **furtrz-Se** (100 K) ASU. Solvent molecules and hydrogen atoms omitted for clarity.

Figure S5: Structural illustration of unbound fur ligand to dinuclear interactions in **furtrz-S**. The free fur ligands engage in two types of dinuclear...ligand hydrogen bonding interactions (**furtrz-S**(250 K): $C(H)^{trz}...N^{trz-free}$: 3.09 Å and C(H)trz...N(imine): 3.55 Å)

Figure S6: Structural illustration of hydrogen bond connectivity between dimeric units in **furtrz-S** (grey and red) of interacting dinuclear species. Unbound fur ligands shown in red. Dimeric hydrogen bonding interactions shown in red dashes.

	furtrz-S		furtrz-Se			
Formula	[Fe ₂ (NCS) ₄ (furtrz) ₅]·furtrz·MeOH		[Fe ₂ (NCSe) ₄ (furtrz) ₅]·furtrz·MeOH			
Formula weight	1349.01		1536.61			
Temperature/K	250	100	250	100		
Crystal system	triclinic					
Space group	<i>P</i> -1					
a / Å	11.7242(11)	11.5733(4)	11.8072(6)	11.6669(6)		
<i>b</i> / Å	13.7606(6)	13.6118(3)	13.7471(7)	13.5850(6)		
<i>c</i> / Å	20.3784(10)	20.0702(5)	20.5258(10)	20.2298(10)		
α/°	82.165(4)	82.150(2)	82.769(4)	82.736(4)		
β/°	75.456(6)	75.238(3)	75.162(4)	75.108(4)		
γ/°	76.699(6)	77.043(2)	76.841(4)	77.118(4)		
Volume / Å ³	3086.2(4)	2968.92(15)	3127.9(3)	3012.5(3)		
Z	2	2	2	2		
ρ _{calc} mg / mm ³	1.452	1.509	1.632	1.694		
Data / restraints /	14494/9/802	14003/9/818	14907/12/775	14351/0/775		
parameters						
Goodness-of-fit on	1.071	1.046	0.840	1.000		
F ²						
Final R indexes	$R_1 = 0.0591,$	$R_1 = 0.0464,$	$R_1 = 0.0661,$	$R_1 = 0.0522,$		
[I>=2σ (I)] ^{[a], [b]}	$wR_2 = 0.1423$	$wR_2 = 0.1022$	$wR_2 = 0.1635$	$wR_2 = 0.1086$		
Final R indexes [all	$R_1 = 0.0932,$	$R_1 = 0.0632,$	$R_1 = 0.1445,$	$R_1 = 0.0871,$		
data] ^{[a], [b]}	$wR_2 = 0.1661$	$wR_2 = 0.1102$	$wR_2 = 0.2074$	$wR_2 = 0.1227$		

Table S1. Crystallographic data for furtrz-S and furtrz-Se.

 $[a] R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo. [b] wR_2 = [\Sigma[w(Fo_2 - Fc_2)_2] / \Sigma[w(Fo_2)_2]]_{1/2}.$

S1-2 Structure solution and refinement details for thtrz-S and thtrz-Se

Figure S7: ORTEP representation (50% probability) of the ASU of **thtrz-S** (100 K). Hydrogen atoms omitted for clarity.

Figure S8: Ball-and-stick representation of a complete dinuclear unit of **thtrz-Se** (185 K) with the ASU labelled. Qualitative representation only.

Figure S9: Example procession image (Okl) for **thtrz-Se** showing the partially overlapped twinning that could not be adequately resolved for a quantitative structure solution.

Figure S10: Variable temperature magnetic susceptibility comparison to variable temperature unit cell evolution for **thtrz-Se**. Inset: crystal colour changes over the HS to LS transition.

Table S2. Crystallographic data for thtrz-S and thtrz-Se.*

	thtrz-S	thtrz-Se [Fe ₂ (NCSe) ₄ (thtrz) ₅]·4MeOH				
Formula	[Fe ₂ (NCS) ₄ (thtrz) ₅]·4MeO					
	Н					
Formula weight	1363.28	1518.71				
Temperature/K	100	250	185	100		
Crystal system	monoclinic					
Space group	C2/c					
<i>a</i> / Å	20.9095(9)	18.792(4)	18.468(2)	18.331(3)		
<i>b</i> / Å	13.9867(4)	18.021(2)	17.813(2)	17.760(2)		
<i>c</i> / Å	21.1519(8)	19.522(3)	19.199(3)	19.145(3)		
α / °	90	90	90	90		
β / °	108.665(4)	106.57(2)	106.520(14)	106.20(2)		
γ / °	90	90	90	90		
Volume / Å ³	5860.6(4)	6336(2)	6054(2)	5985(2)		
Z	4					
$ ho_{calc}mg$ / mm^3	1.545					
Data / restraints /	7475/7/354		1			
parameters						
Goodness-of-fit on	0.954					
F ²						
Final R indexes	$R_1 = 0.0646, wR_2 = 0.1143$					
$[I \ge 2\sigma (I)]^{[a], [b]}$						
Final R indexes [all	$R_1 = 0.1416, wR_2 = 0.1349$					
data] ^{[a], [b]}						
$[a] R_1 = \Sigma Fo - Fc / \Sigma F$	Fo. [b] wR ₂ = $[\Sigma[w(Fo_2 - Fc_2)_2]/2$	$\Sigma[w(Fo_2)_2]]_{1/2}.$	· · ·			

*thio-Se single crystal data unit cells provided, full structure analysis was not possible due to partial overalapped twinning. Structure provided for qualitative purposes.

S2. Temperature Dependent Magnetic Measurements

S2-1 Fitting details for thiotrz-S

The energy difference between the triplet and lower energy singlet state was calculated using the Heisenberg Hamiltonian $\hat{H}_{ij}=-2J_{ij}\hat{S}_i\hat{S}_j$, where J is the exchange parameter and \hat{S} is the spin operator for a pair of interacting spin centres (S) where $S_i = S_j = 2$.¹ The Hamiltonian used is based on the assumption that the ions are isotropic and, as per similar systems,²⁻⁴ first order angular momentum and zero-field splitting have not been included in this model. With the energy levels of the system known, the theoretical magnetic susceptibility was calculated using the Van Vleck equation for a pair of S=2 dimers (1):¹⁻⁵

$$\chi_{M}T = \frac{2N_{A}g^{2}\beta^{2}}{k} \frac{e^{x} + 5e^{3x} + 14e^{6x} + 30e^{10x}}{1 + 3e^{x} + 5e^{3x} + 7e^{6x} + 9e^{10x}}$$
(1)
with $x = \frac{J}{kT}$

where T is the temperature, N_A is Avogadro's number, β is the Bohr magneton and k is the Boltzmann constant.

S3. References

- (1) Kahn, O. Molecular Magnetism; VCH, 1993.
- (2) Wu, X. X.; Wang, Y. Y.; Yang, P.; Xu, Y. Y.; Huo, J. Z.; Ding, B.; Wang, Y.; Wang, X. Crystal Growth & Design **2013**, *14*, 477.
- (3) Scott, H. S.; Ross, T. M.; Moubaraki, B.; Murray, K. S.; Neville, S. M. *Eur. J. Inorg. Chem.* **2013**, 2013, 803.
- (4) O. Roubeau, R. Gamez, S. J. Teat, Eur. J. Inorg. Chem. 2013, 934-942.
- (5) Carlin, R. L. *Magnetochemistry*; Springer-Verlag, **1986**.