Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

Heterobimetallic Ruthenium-Zinc Complexes with Bulky N-Heterocyclic Carbenes:

Syntheses, Structures and Reactivity

Maialen Espinal-Viguri, Victor Varela-Izquierdo, Fedor M. Miloserdov, Ian M. Riddlestone,

Mary F. Mahon and Michael K. Whittlesey

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

Figure S1. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of [Ru(IPr)₂(CO)ZnMe][BAr^F₄] (7).

Figure S3. High frequency region of the ¹H NMR spectrum (500 MHz, CD_2Cl_2 , 298 K) of $[Ru(IPr)_2(CO)(\eta^2-H_2)(H)_2ZnMe][BAr^F_4]$ (8).

Figure S4. Variable temperature proton NMR spectra of the low frequency region of the ¹H NMR spectrum (500 MHz, CD_2Cl_2) of [Ru(IPr)₂(CO)(η^2 -H₂)(H)₂ZnMe][BAr^F₄] (8).

Figure S5. ¹³C {¹H} PENDANT NMR spectrum (101 MHz, CD₂Cl₂, 298 K) of [Ru(IPr)₂(CO)(η^2 -H₂)(H)₂ZnMe][BAr^F₄] (8).

Figure S6. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of [Ru(IPr)₂(CO)(H)₂ZnMe][BAr^F₄] (9).

Figure S7. ¹³C{¹H} PENDANT NMR spectrum (101 MHz, CD₂Cl₂, 298 K) of $[Ru(IPr)_2(CO)(H)_2ZnMe][BAr^{F_4}]$ (9).

Figure S8. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 223 K) of [Ru(IBiox6)₂(CO)HCl] (10).

Figure S9. ¹³C{¹H} PENDANT NMR spectrum (126 MHz, CD_2Cl_2 , 223 K) of [Ru(IBiox6)₂(CO)HCl] (10).

Figure S10. ¹H NMR spectrum (500 MHz, THF- d_8 , 298 K) of [Ru(IBiox6)₂(CO)(THF)H][BAr^F₄] (11).

Figure S11. High (top) and lower (bottom) frequency regions of the ${}^{13}C{}^{1}H$ PENDANT NMR spectrum (126 MHz, THF- d_8 , 298 K) of [Ru(IBiox6)₂(CO)(THF)H][BAr^F₄] (11).

Figure S12. ¹H NMR spectrum (500 MHz, THF- d_8 , 298 K) of [Ru(IBiox6)₂(CO)(THF)ZnMe][BArF₄] (12).

Figure S14. ¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of [Ru(IBioxMe₄)₂(CO)HCl] (13).

 $[Ru(IBioxMe_4)_2(CO)HCl] (13).$

Figure S16. ¹H NMR spectrum (400 MHz, THF- d_8 , 298 K) of [Ru(IBioxMe₄)₂(CO)(THF)H][BAr^F₄] (14).

 $[Ru(IBioxMe_4)_2(CO)(THF)\hat{H}][BAr^{F_4}]$ (14).

[**Ru**(IMes)(PPh₃)(CO)HCI]. The compound was synthesised by a minor modification of the literature procedure.¹ IMes (200 mg, 0.655 mmol) was added to the suspension of finely powdered [Ru(PPh₃)₃(CO)HCI]·CH₂Cl₂ (426 mg, 0.410 mmol) in toluene (5 mL). The solution was stirred overnight, after which time reaction was complete by ³¹P{¹H} NMR spectroscopy. The solvent was concentrated under vacuum to ca. 0.5 mL and treated with hexane (8 mL) at room temperature. A yellow-orange microcrystalline precipitate was filtered off, washed with hexane (3 x 5 mL) and dried under vacuum. Yield 256 mg (85%).

Figure S18. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of [Ru(IMes)'(PPh₃)(CO)ZnMe] (15).

Figure S19. ¹H NMR spectrum (500 MHz, THF-*d*₈, 298 K) of [Ru(IMes)'(PPh₃)(CO)ZnMe] (15).

Figure S20. ³¹P{¹H} NMR spectrum (162 MHz, C₆D₆, 298 K) of [Ru(IMes)'(PPh₃)(CO)ZnMe] (**15**).

Figure S21. ³¹P{¹H} NMR spectrum (162 MHz, THF- d_8 , 298 K) of [Ru(IMes)'(PPh₃)(CO)ZnMe] (15).

Figure S22. ¹³C{¹H} PENDANT NMR spectrum (101 MHz, C₆D₆, 298 K) of [Ru(IMes)'(PPh₃)(CO)ZnMe] (**15**).

Figure S23. ¹³C{¹H} DEPTQ NMR spectrum (126 MHz, THF- d_8 , 298 K) of [Ru(IMes)'(PPh₃)(CO)ZnMe] (**15**).

Figure S24. ¹H-¹³C HSQC spectra (THF-*d*₈, 298 K) of [Ru(IMes)'(PPh₃)(CO)ZnMe] (15).

IMes cyclometallated region (Ru-CH₂):

Figure S25. NOESY NMR spectra (400 MHz, THF-*d*₈, 298 K) of [Ru(IMes)'(PPh₃)(CO)ZnMe] (15). The exchange peaks are labelled.

[Ru(IMes)(PPh₃)(CO)(ZnMe)Cl] (16). The slow, dropwise addition of ZnMe₂ (0.60 mL of 1.2 M in toluene, 0.72 mmol) to a THF (4 mL) solution of [Ru(IMes)(PPh₃)(CO)HCl] (105 mg, 0.143 mmol) brought about a colour change from yellow to dark orange. After stirring for 1 h, the volatiles were removed under vacuum and the residue treated with Et₂O (15 mL). This afforded a yellow precipitate of **16**, which was separated and dried in vacuum. Yield 20 mg (17 % yield). ¹H NMR: $\delta_{\rm H}$ (400 MHz, C₆D₆, 298 K) 7.66-7.55 (m, 6H, PPh₃), 6.99 (br s, 9H, PPh₃), 6.79 (s, 2H, Ar), 6.76 (s, 2H, Ar), 6.18 (s, 2H, NC*H*=NC*H*), 2.43 (s, 6H, C*H*₃), 2.31 (br s, 6H, C*H*₃), 2.19 (s, 6H, C*H*₃), -0.51 (s, 3H, ZnC*H*₃). ³¹P{¹H} NMR: $\delta_{\rm P}$ (162 MHz, C₆D₆, 298 K) 40.3 (s). Selected ¹³C {¹H}NMR: $\delta_{\rm C}$ (101 MHz, C₆D₆, 298 K) 200.8 (d, ²*J*_{CP} = 13 Hz, Ru-CO), 192.2 (d, ²*J*_{CP} = 95 Hz, Ru-C_{NHC}), 134.7 (d, *J*_{CP} = 11 Hz, PPh₃), 129.3 (d, *J*_{CP} = 2 Hz, PPh₃), 21.3 (s, CH₃), 19.0 (br s, CH₃), -2.7 (d, ³*J*_{CP} = 3 Hz, ZnCH₃). IR (KBr, cm⁻¹): 1878 (v_{CO}).

Figure S26. ¹H NMR spectrum (400 MHz, C₆D₆, 298 K) of [Ru(IMes)(PPh₃)(CO)(ZnMe)Cl] (16).

Figure S27. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, C₆D₆, 298 K) of [Ru(IMes)(PPh₃)(CO)(ZnMe)Cl] (16).

Figure S28. ¹³C $\{^{1}H\}$ PENDANT NMR spectrum (101 MHz, C₆D₆, 298 K) of [Ru(IMes)(PPh₃)(CO)(ZnMe)Cl] (16).

Figure S29. ¹H NMR spectrum (400 MHz, C₆D₆, 298 K) of [Ru(IMes)'(PPh₃)(CO)(H)₂ZnMe] (17).

Figure S30. ³¹P{¹H} NMR spectrum (202 MHz, C_6D_6 , 298 K) of [Ru(IMes)'(PPh₃)(CO)(H)₂ZnMe] (17).

Figure S31. ¹³C{¹H} PENDANT NMR spectrum (126 MHz, C_6D_6 , 298 K) of [Ru(IMes)'(PPh₃)(CO)(H)₂ZnMe] (17).

Figure S32. ¹H-¹³C HSQC spectrum (THF- d_8 , 298 K) of [Ru(IMes)'(PPh₃)(CO)(H)₂ZnMe] (17), with expansion of the cyclometallated (Ru-CH₂) region.

1. U. L. Dharmasena, H. M. Foucault, E. N. dos Santos, D. E. Fogg and S. P. Nolan, *Organometallics*, 2005, **24**, 1056-1058.