Electronic Supporting Information

Intrinsic Hydrogen Evolution Capability and Theoretically Supported Reaction Mechanism of Paddlewheel-type Dirhodium Complex

Yusuke Kataoka,^{a),*} Natsumi Yano,^{a)} Makoto Handa,^{a)} and Tatsuya Kawamoto^{b),*}

a) Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
 E-mail: kataoka@riko.shiamne-u.ac.jp

b) Department of Chemistry, Faculty of Science, Kanagawa University
2946, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
E-mail: kaw@kanagawa-u.ac.jp

Figure S1. Total amount of hydrogen evolution at 12 h of irradiation versus concentration of H₂O (n mL) in the AP system. Here, the AP systems comprise 0.50 mM [Ir-PS-1], 50.0 μ M [1(H₂O)₂], 0.5 mL TEA, n mL H₂O, and 9.5 – n mL THF.

Figure S2. Total amounts of hydrogen evolution at 12 h of irradiation versus concentration of **[Ir-PS-1]** in the AP system. Here, the AP systems comprise 0.10 - 0.60 mM **[Ir-PS-1]**, 50.0 μ M **[1(H₂O)₂]**, 0.5 mL TEA, 3.0 mL H₂O, and 6.5 mL THF.

Figure S3. Total amount of H_2 evolution at 12 h of irradiation versus concentration of $[1-(H_2O)_2]$. The AP systems comprise 0.50 mM [Ir-PS-1], 5 - 150 μ M [1(H₂O)₂], 0.5 mL TEA, 3.0 mL H₂O, and 6.5 mL THF. Here, we denoted "Appearance TON" (\bigcirc) and "Realistic TON" (\square). The former is total amount of hydrogen evolution (raw data) catalyzed by $[1(H_2O)_2]$ with the AP system, and the later is the calculated amount of hydrogen evolution, which is subtracted total amount of hydrogen evolution catalyzed by the AP system without $[1(H_2O)_2]$ from observed amount of hydrogen evolution catalyzed by $[1(H_2O)_2]$ with AP system (raw data).

Figure S4. Absorption spectra of (a) [Ir-PS-1] and (b) $[1(H_2O)_2]$ in THF/H₂O (7:3).

Figure S5. (a) Emission spectra and (b) decays of [Ir-PS-1] and [Ir-PS-3] in THF/H₂O (7:3).

Figure S6. Emission spectra and Stern-Volmer plots of [Ir-PS-1] quenched by TEA ((a) and (c)) and $[1(H_2O)_2]$ ((b) and (d)), respectively, in the THF/H₂O (7:3) solution.

Figure S7. CV of **[Ir-PS-n]** (1.0 mM) in DMF containing the TBAPF₆ as a supporting electrolyte.

Figure S8. LUMO of the [H-1].

Figure S9. Molecular structures of possible **[2H-1]** intermediates. (a) Side-on structure and (b) top-on structure.

Table. S1. Total amount of H₂ evolution and TON of catalysis using AP system containing **[Ir-PS-1]** (0.50 mM), **[1(H₂O)₂]** (5.0 μ M), and 1:6:13 (v/v/v) of the TEA/H₂O/organic solution (10.0 mL) after 12 h photo-irradiation.

Solvents	H_2 evolution (µmol)	TON (per Rh ion)
THF	385.7	3857
DMF	344.3	3443
Acetone	356.9	3569
DMSO	16.6	166
Acetonitrile	23.8	238