Electronic Supplementary Information

Regulating Effect of Heterojunction on Electrocatalytic Oxidation of

Methanol for Pt/WO₃-NaTaO₃ Catalyst Regenerated CO

Xi Bi^a, Ping Bai^a, Ting Yang^a, Juanjuan Lv^a, Zhanli Chai^a*, Xiaojing Wang^a*, Cheng Wang^b

^a Chemistry and Chemical Engineering Department, Inner Mongolia University, Inner Mongolia

010021, People's Republic of China

^b Institute for New Energy Materials and Low-carbon Technologies, Tianjin University of

Technology, Tianjin 300384, People's Republic of China

Fig. S1. XRD patterns of Pt/WO_3 , $Pt/NaTaO_3$, and Pt/WO_3 -NaTaO_3 composites with different molar ratio (W:Ta = 5:1, 3:1, 1:1, 0.5:1, 0.3:1, 0.2:1, 0.1:1).

Fig. S2. Full XPS spectrum of (a) pure WO₃, (b) bare NaTaO₃, (c) Pt/WO₃-NaTaO₃ composites with W:Ta =3:1, (d) Pt/WO₃-NaTaO₃ composites with W:Ta =0.2:1.

Fig. S3. TEM and HRTEM images of the commercial Pt/C (20 wt.%).

Table S1. The electrochemically active surface area (ECSA) calculated by the cyclic voltammetric curves in Fig. 7 and the onset potential, peak potential, current density and the tolerance (I_f/I_b) of commercial Pt/C catalyst and three as-prepared Pt/WO₃-NaTaO₃ composite catalysts in acid.

Type of Pt/C catalyst	ECSA/m ³ ·g ⁻¹ Pt	Oneset potential/V	Peak potential/V	Current density /mA·cm ⁻²	I _f /I _b
Pt/WO_3 -NaTaO ₃ W:Ta = 5:1	16.8	0.42	0.64	55	0.81
W.Ta = 5.1 Pt/WO ₃ -NaTaO ₃ W:Ta = 3.1	40.6	0.35	0.69	120	1.19
Pt/WO_3 -NaTaO ₃ $W:T_2 = 1:1$	31.88	0.36	0.68	100	1.12
W.Ta = 1.1 Pt/WO ₃ -NaTaO ₃	23.41	0.35	0.62	85	1.09
W:Ta = 0.5:T $Pt/WO_3-NaTaO_3$ W:Ta = 0.3:T	21.6	0.45	0.64	70	1.06
Pt/WO_3 -NaTaO ₃ W·Ta = 0.2·1	18.3	0.41	0.63	60	0.98
Pt/WO_3 -NaTaO ₃ W·Ta = 0 1·1	13.2	0.44	0.64	30	0.92
commercial Pt/C	14.4	0.41	0.64	40	0.88
Pt/WO ₃	14.3	0.43	0.65	35	0.86
Pt/NaTaO ₃	13.6	0.46	0.65	30	0.79

Table S2. The electrochemically active surface area (ECSA) calculated by the cyclic voltammetric curves in Fig. 8 and the onset potential, peak potential, current density and the tolerance (I_f/I_b) of commercial Pt/C catalyst and three as-prepared Pt/WO₃-NaTaO₃ composite catalysts in alkali.

Type of Pt/C catalyst	ECSA/m ³ ·g ⁻¹ Pt	Oneset potential/V	Peak potential/V	Current density /mA·cm ⁻²	I _f /I _b
Pt/WO_3 -NaTa O_3 W:Ta = 5:1	13.7	-0.36	-0.14	28	0.86
W.Ta = 5.1 Pt/WO ₃ -NaTaO ₃ W.Ta = 3.1	22.51	-0.37	-0.09	48	1.15
Pt/WO_3 -NaTaO ₃	24.3	-0.38	-0.09	55	1.09
W.Ta = 1.1 Pt/WO ₃ -NaTaO ₃	26.3	-0.44	-0.06	60	1.02
W.Ta = 0.51T Pt/WO ₃ -NaTaO ₃	29.1	-0.45	-0.05	75	0.99
$W: Ia = 0.3:I$ $Pt/WO_3-NaTaO_3$	31.9	-0.51	-0.1	90	0.93
W:1a = $0.2:1$ Pt/WO ₃ -NaTaO ₃ W:Ta = $0.1:1$	13.2	-0.36	-0.094	23	0.89
commercial Pt/C	13.5	-0.37	-0.131	28	0.81
Pt/WO ₃	7.17	-0.32	-0.178	18	0.78
Pt/NaTaO ₃	14.2	-0.38	-0.092	30	0.88

Fig. S4. Schematic drawing of supercell model for WO₃(020) surface: (a) before relaxation, (b) after relaxation.

Adsorption location	$\Delta E_{chem}(eV)$
W-top	-0.19
W-W	0.77
hollow	0.89

Table S3. Chemical adsorption energy (ΔE_{chem}) of CH3OH molecule on different location forWO3(020) surface.

Fig. S5. Density of state for CH₃OH molecule adsorbed on W-top site of WO₃(020).