Electronic Supporting Information for:

A convenient method for the generation of {Rh(PNP)}⁺ and {Rh(PONOP)}⁺ fragments: reversible formation of vinylidene derivatives

Matthew R. Gyton, Thomas M. Hood, and Adrian B. Chaplin*

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK Email: a.b.chaplin@warwick.ac.uk

Table of contents

1.	General methods	S2
2.	NMR scale reactions: Synthesis and reactivity of [Rh(pincer)(COD)][BArF ₄] ${\bf 1}$.	S2
3.	Preparation of [{Rh(PNP)}2(COD)][BArF4]2 1b-CH2	S16
4.	Preparation of [{Rh(PONOP)}2(COD)][BArF4]2 1b-0	S16
5.	Preparation of [Rh(PNP)(OH ₂)][BArF ₄] 2d-CH₂	S16
6.	Preparation of [Rh(PONOP)(OH ₂)][BArF ₄] 2d-O	S18
7.	NMR scale reactions of isolated [{Rh(pincer)} ₂ (COD)][BArF ₄] ₂ 1b	S20
8.	Preparation of [Rh(PNP)(CCH <i>t</i> Bu)][BArF ₄] 3a-CH ₂	S25
9.	Preparation of [Rh(PONOP)(CCH <i>t</i> Bu)][BAr ^F 4] 3a-O	S27
10.	Preparation of [Rh(PNP)(CCHAr')][BArF4] 3b-CH2	S29
11.	Preparation of an inseparable mixture of 2e-O and 3b-O	S31
12.	NMR scale reactions of [Rh(pincer)(CCHR)][BArF ₄] (3) with carbon monoxide	.S33
13.	References	S37

1. General methods

All manipulations were performed under an atmosphere of argon using Schlenk and glove box techniques unless otherwise stated. Dinitrogen and dihydrogen were dried by passage through a stainless steel column of activated 3 Å molecular sieves. Glassware was oven dried at 150 °C overnight and flame-dried under vacuum prior to use. Molecular sieves were activated by heating at 300 °C *in vacuo* overnight. 1,2-C₆H₄F₂ was pre-dried over Al₂O₃, distilled from calcium hydride and dried twice over 3 Å molecular sieves. CD₂Cl₂ was freeze-pump-thaw degassed and dried over 3 Å molecular sieves. Other anhydrous solvents were purchased from Acros Organics or Sigma-Aldrich, freeze-pump-thaw degassed and stored over 3 Å molecular sieves. Na[BAr^F₄],¹ PONOP,² PNP,³ HCCAr'⁴ and [Rh(COD)₂][BAr^F₄]⁵ were synthesised according to published procedures. All other reagents are commercial products and were used as received. NMR spectra were recorded on Bruker spectrometers under argon at 298 K unless otherwise stated. Chemical shifts are quoted in ppm and coupling constants in Hz. NMR spectra in 1,2-C₆H₄F₂ were recorded using an internal capillary of C₆D₆. Microanalyses were performed at the London Metropolitan University by Stephen Boyer.

2. NMR scale reactions: Synthesis and reactivity of [Rh(pincer)(COD)][BAr^F₄] 1

General procedure

A 0.02 mol [Rh] L⁻¹ solution of **1** was generated *in situ* from [Rh(COD)₂][BAr^F₄] and PONOP or PNP in 1,2-C₆H₄F₂ in an NMR tube fitted with a J. Young's valve. For reactions with gases, the solution was freeze-pump-thaw degassed and then placed under an atmosphere of dihydrogen, carbon monoxide or dinitrogen. Liquid reagents were added directly by syringe under an atmosphere of argon. Reactions were then followed by ¹H and ³¹P{¹H} NMR spectroscopy, with constant mixing when not in the spectrometer.

Reaction between [Rh(COD)₂][BAr^F₄] and pincer ligands

1. PNP

Following the general procedure and using $[Rh(COD)_2][BAr^F_4]$ (11.8 mg, 10.0 µmol), PNP (4.0 mg, 10 µmol) and 1,2-C₆H₄F₂ (0.50 mL) gave a mixture of monomeric **1a-CH**₂ and dimeric **1b-CH**₂ in an approximate 2:1 ratio (based on integration of ¹H NMR data, using the CH=CH resonances). Structural dynamics of **1a-CH**₂ is apparent from comparison of the ³¹P{¹H} NMR spectrum recorded at 121 MHz and 162 MHz.

1a-CH₂:

¹H NMR (300 MHz, 1,2-C₆H₄F₂, selected data): δ 5.58 (br, 2H, CH), 4.88 (br, 2H, RhCH). ³¹P{¹H} NMR (121 MHz, 1,2-C₆H₄F₂): δ 63.4 (vbr dd, ²J_{PP} ~ 320, ¹J_{RhH} ~ 140), 52.6 (vbr dd, ²J_{PP} ~ 320, ¹J_{RhH} ~ 130). ³¹P{¹H} NMR (162 MHz, 1,2-C₆H₄F₂): δ 63.4 (br dd, ²J_{PP} ~ 320, ¹J_{RhH} ~ 140), 52.6 (br dd, ²J_{PP} ~ 320, ¹J_{RhH} ~ 130).

1b-CH₂:

¹**H NMR** (300 MHz, 1,2-C₆H₄F₂, selected data): δ 4.96 (br, 4H, RhCH). ³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 66.0 (br d, ¹*J*_{RhH} ~ 120). ³¹**P**{¹**H**} **NMR** (162 MHz, 1,2-C₆H₄F₂): δ 66.0 (br d, ¹*J*_{RhH} ~ 120).

S3

2. PONOP

Following the general procedure and using $[Rh(COD)_2][BAr^{F_4}]$ (12.4 mg, 10.5 µmol), PONOP (4.2 mg, 10 µmol) and 1,2-C₆H₄F₂ (0.53 mL) gave a mixture of monomeric **1a-O** and dimeric **1b-O** in an approximate 5:1 ratio (based on integration of ³¹P{¹H} NMR data).

1a-O:

¹**H NMR** (300 MHz, 1,2-C₆H₄F₂, selected data): δ 5.54 (br, 2H, CH), 5.13 (br, 2H, RhCH), ³¹P{¹H} NMR (121 MHz, 1,2-C₆H₄F₂): δ 202.5 (d, ¹J_{RhP} = 134).

1b-0:

¹**H NMR** (300 MHz, 1,2-C₆H₄F₂, selected data): δ 4.92 (br, 4H, RhCH). ³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 202.2 (d, ¹*J*_{RhP} = 132).

Figure S4. ¹H NMR spectrum of the reaction between [Rh(COD)₂][BAr^F₄] and PONOP (1,2-C₆H₄F₂, 300 MHz).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S5.** ${}^{31}P{}^{1}H{}$ NMR spectrum of the reaction between [Rh(COD)₂][BAr^F₄] and PONOP (1,2-C₆H₄F₂, 121 MHz).

Addition of 1,5-cycloctadiene

1. PNP

Following the general procedure and using $[Rh(COD)_2][BAr^{F_4}]$ (11.8 mg, 10.0 µmol), PNP (4.0 mg, 10 µmol), 1,2-C₆H₄F₂ (0.50 mL) and 1,5-cycloctadiene (12.9 µL, 105 µmol) gave **1a-CH**₂, which was subsequently characterised *in situ*. Under these conditions, **1a-CH**₂ is highly dynamic on the ³¹P NMR time scale. These dynamics are considerably less pronounced in the absence of excess 1,5-cycloctadiene (*vide supra*).

¹**H NMR** (500 MHz, 1,2-C₆H₄F₂): δ 8.09 – 8.15 (m, 8H, Ar^F), 7.53 (t, ³J_{HH} = 8.1, 1H, py), 7.49 (br, 4H, Ar^F), 5.56 – 5.60 (m, 2H, CH), 4.88 (br, 2H, RhCH), 3.30 – 3.35 (m, 4H, PCH₂), 2.22 – 2.33 (m, 4H, CH₂), 1.16 – 1.27 (m, 4H, CH₂), 1.10 – 1.19 (m, 36H, *t*Bu).

¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂): δ 162.3 (q, ¹J_{BC} = 50, Ar^F), 161.8 (vt, J_{PC} = 3, py), 140.0 (s, py), 134.8 (s, Ar^F), 129.9 (s, CH), 129.5 (qq, ¹J_{FC} = 32, ¹J_{BC} = 3, Ar^F), 125.1 (q, ¹J_{FC} = 272, Ar^F), 120.5 (br, py), 117.3 (sept, ³J_{FC} = 4, Ar^F), 70.4 (d, ¹J_{RhC} = 12, RhCH), 36.5 (s, CH₂), 36 (HMBC, *t*Bu{C}), 36 (HSQC, PCH₂), 29.7 (s, CH₂), 29.4 (br, *t*Bu{CH₃}),

³¹**P**{¹**H**} **NMR** (300 MHz, 1,2-C₆H₄F₂): δ 57.6 (br, fwhm = 1700 Hz).

Figure S6. ¹H NMR spectrum of **1a-CH**₂ generated *in situ* from the reaction between [Rh(COD)₂][BAr^F₄] and PNP in the presence of excess 1,5-cyclooctadiene (1,2-C₆H₄F₂, 500 MHz).

Figure S7. ¹H NMR spectrum of **1a-CH**₂ generated *in situ* from the reaction between [Rh(COD)₂][BAr^F₄] and PNP in the presence of excess 1,5-cyclooctadiene (1,2-C₆H₄F₂, 126 MHz).

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Figure S8. ³¹P{¹H} NMR spectrum of **1a-CH**₂ generated *in situ* from the reaction between [Rh(COD)₂][BAr^F₄] and PNP in the presence of excess 1,5-cyclooctadiene (1,2-C₆H₄F₂, 121 MHz).

2. PONOP

Following the general procedure and using $[Rh(COD)_2][BAr^F_4]$ (12.4 mg, 10.5 µmol), PONOP (4.2 mg, 10 µmol), 1,2-C₆H₄F₂ (0.53 mL) and 1,5-cycloctadiene (12.9 µL, 105 µmol) gave **1a-CH**₂, which was subsequently characterised *in situ*.

¹**H NMR** (500 MHz, 1,2-C₆H₄F₂): δ 8.03 – 8.09 (m, 8H, Ar^F), 7.57 (t, ³*J*_{HH} = 8.1, 1H, py), 7.49 (br, 4H, Ar^F), 6.58 (d, ³*J*_{HH} = 8.0, 2H, py), 5.49 – 5.59 (m, 2H, CH), 5.12 (br, 2H, RhCH), 1.96 – 2.69 (m, 8H, CH₂), 1.23 (vt, *J*_{PH} = 7, 36H, *t*Bu).

¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂): δ 163.4 (vt, *J*_{PC} = 3, py), 162.6 (q, ¹*J*_{BC} = 50, Ar^F), 145.2 (s, py), 135.1 (s, Ar^F), 129.7 (qq, ¹*J*_{FC} = 32, ¹*J*_{BC} = 3, Ar^F), 129.5 (s, CH), 124.9 (q, ¹*J*_{FC} = 272, Ar^F), 117.6 (sept, ³*J*_{FC} = 4, Ar^F), 102.3 (vt, *J*_{PC} = 2, py), 77.6 (d, ¹*J*_{RhC} = 11, RhCH), 41.5 (vtd, *J*_{PC} = 5, ²*J*_{RhC} = 2, *t*Bu{C}), 35.7 (s, CH₂), 30.1 (s, CH₂), 27.5 (vt, *J*_{PC} = 3, *t*Bu{CH₃}).

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 202.6 (d, ¹*J*_{RhP} = 134).

Figure S9. ¹H NMR spectrum of **1a-O** generated *in situ* from the reaction between [Rh(COD)₂][BAr^F₄] and PONOP in the presence of excess 1,5-cyclooctadiene (1,2-C₆H₄F₂, 500 MHz).

Figure S10. ¹³C{¹H} APT NMR spectrum of **1a-O** generated *in situ* from the reaction between [Rh(COD)₂][BAr^F₄], and PONOP in the presence of excess 1,5-cyclooctadiene (1,2-C₆H₄F₂, 126 MHz).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Figure S11. ³¹P{¹H} NMR spectrum of **1a-O** generated *in situ* from the reaction between [Rh(COD)₂][BAr^F₄] and PONOP in the presence of excess 1,5-cyclooctadiene (1,2-C₆H₄F₂, 121 MHz).

Carbon monoxide

1. PNP

Following the general procedure using $[Rh(COD)_2][BAr^{F_4}]$ (11.8 mg, 10.0 µmol), PNP (4.0 mg, 10 µmol), 1,2-C₆H₄F₂ (0.50 mL), and carbon monoxide (1 atm) gave **2a-CH**₂ in < 5 min. Data are consistent with the literature.^{6,7}

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 78.1 (d, ¹*J*_{RhP} = 121).

Figure S13. ³¹P{¹H} NMR spectrum of the reaction between 1-CH₂ and carbon monoxide (1,2-C₆H₄F₂, 121 MHz).

2. PONOP

Following the general procedure and using $[Rh(COD)_2][BAr^{F_4}]$ (13.0 mg, 11.0 µmol), PONOP (4.4 mg, 11 µmol), 1,2-C₆H₄F₂ (0.55 mL) and carbon monoxide (1 atm) gave **2a-O** in < 5 min. Data are consistent with the literature.⁸

Figure S14. ¹H NMR spectrum of the reaction between 1-O and carbon monoxide (1,2-C₆H₄F₂, 300 MHz).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S15. ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between 1-O and carbon monoxide (1,2-C₆H₄F₂, 121 MHz).

Dihydrogen

1. PNP

Following the general procedure using $[Rh(COD)_2][BAr^F_4]$ (11.8 mg, 10.0 µmol), PNP (4.0 mg, 10 µmol), 1,2-C₆H₄F₂ (0.50 mL), and dihydrogen (1 atm) gave **2b-CH**₂, alongside cyclooctadiene, cyclooctene and cyclooctane, in < 5 min. Data are consistent with the literature.⁷

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 81.7 (d, ¹*J*_{RhP} = 120).

 $_{230}$ 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S17. $^{31}P{^{1}H}$ NMR spectrum of the reaction between 1-CH₂ and dihydrogen (1,2-C₆H₄F₂, 121 MHz).

2. PONOP

Following the general procedure and using $[Rh(COD)_2][BAr^{F_4}]$ (13.0 mg, 11.0 µmol), PONOP (4.4 mg, 11 µmol), 1,2-C₆H₄F₂ (0.55 mL) and dihydrogen (1 atm) gave **2b-O**, alongside cyclooctane after 2 days. Data are consistent with the literature.⁹

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S19. ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between 1-O and dihydrogen (1,2-C₆H₄F₂, 121 MHz).

Dinitrogen

1. PNP

Following the general procedure using $[Rh(COD)_2][BAr^{F_4}]$ (11.8 mg, 10.0 µmol), PNP (4 mg, 10 µmol), 1,2-C₆H₄F₂ (0.50 mL), and dinitrogen (1 atm) gave **2c-CH**₂ after 3 h. The data are consistent with the literature.^{7,10}

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S21. ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between 1-CH₂ and dinitrogen (1,2-C₆H₄F₂, 121 MHz).

2. PONOP

Following the general procedure and using $[Rh(COD)_2][BAr^{F_4}]$ (11.7 mg, 9.89 µmol), PONOP (4.0 mg, 10 µmol), 1,2-C₆H₄F₂ (0.55 mL) and dinitrogen (1 atm) gave **2c-O** with 95% conversion after 2 days. Data are consistent with the literature.⁸

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 210.6 (d, ¹*J*_{RhP} = 133).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S23. ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between **1-O** and dinitrogen (1,2-C₆H₄F₂, 121 MHz).

Water

1. PNP

Following the general procedure and using $[Rh(COD)_2][BArF_4]$ (11.8 mg, 10.0 µmol), PNP (4.0 mg, 10 µmol), 1,2-C₆H₄F₂ (0.50 mL) and water (7.2 µL, 400 µmol) gave **2d-CH**₂ after 3 h.

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 63.1 (d, ¹*J*_{RhP} = 144).

www.witheninty.interfeation of the second and the

0.0

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S25. ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between 1-CH₂ and water (1,2-C₆H₄F₂, 121 MHz).

2. PONOP

Following the general procedure and using $[Rh(COD)_2][BAr^F_4]$ (11.7 mg, 9.89 µmol), PONOP (4.0 mg, 10 µmol), 1,2-C₆H₄F₂ (0.55 mL) and water (7.2 µL, 400 µmol) gave **2d-O** with 88% conversion after 3 days.

Figure S26. ¹H NMR spectrum of the reaction between 1-O and water (1,2-C₆H₄F₂, 300 MHz).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S27.** ${}^{31}P{}^{1}H{}$ NMR spectrum of the reaction between **1-O** and water (1,2-C₆H₄F₂, 121 MHz).

3. Preparation of [{Rh(PNP)}2(COD)][BArF4]2 1b-CH2

A solution of $[Rh(COD)_2][BAr^F_4]$ (206 mg, 174 µmol) and PNP (69.0 mg, 174 µmol) in 1,2-C₆H₄F₂ (*ca.* 5 mL) was mixed at ambient temperature for 5 mins and then layered with excess hexane (*ca.* 50 mL). Storage at ambient temperature afforded **1b-CH**₂ as a mixture of red rods and yellow orange powder. Yield: 221 mg (90%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a solution in 1,2-C₆H₄F₂ at ambient temperature.

Anal. Calcd for C₁₁₈H₁₂₂B₂F₄₈N₂P₄Rh₂ (2831.5 gmol⁻¹): C, 50.05; H, 4.34; N, 0.99. Found: C, 50.14; H, 4.21; N, 0.94.

4. Preparation of [{Rh(PONOP)}2(COD)][BAr^F4]2 1b-O

A solution of $[Rh(COD)_2][BAr^F_4]$ (240 mg, 203 µmol) and PONOP (80.9 mg, 203 µmol) in 1,2-C₆H₄F₂ (*ca*. 5 mL) was mixed at ambient temperature for 5 mins and then layered with excess hexane (*ca*. 50 mL). Storage at ambient temperature afforded **1b-O** as a mixture of red rods and yellow orange powder. Yield: 277 mg (96%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a solution in 1,2-C₆H₄F₂ at ambient temperature.

Anal. Calcd for C₁₁₄H₁₁₄B₂F₄₈N₂O₄P₄Rh₂ (2839.43 gmol⁻¹): C, 48.22; H, 4.05; N, 0.99. Found: C, 48.50; H, 4.07; N, 0.95.

5. Preparation of [Rh(PNP)(OH₂)][BAr^F₄] 2d-CH₂

A mixture of $[Rh(COD)_2][BAr^F_4]$ (29.6 mg, 25.0 µmol), PNP (9.9 mg, 25 µmol), 1,2-C₆H₄F₂ (*ca.* 0.5 mL) and H₂O (0.12 mL, 6.3 mmol) was vigorously stirred at ambient temperature for 2 h. Excess hexane (*ca.* 40 mL) was added and the suspension cooled to -78 °C with vigorous stirring. The supernatant was filtered away, washed with hexane (2 x 2 mL), the solid dried redissolved in 1,2-C₆H₄F₂ (*ca.* 1 mL) layered with excess hexane (*ca.* 50 mL) and stored at ambient temperature to afford **2d-CH**₂ as orange rods. Yield: 24.7 mg (71%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a solution in 1,2-C₆H₄F₂ at ambient temperature.

¹**H NMR** (500 MHz, 1,2-C₆H₄F₂, selected data): δ 8.12 – 8.15 (m, 8H, Ar^F), 7.49 (br, 4H, Ar^F), 7.16 (obsc. t, ³*J*_{HH} = 7.8, 1H, py), 2.96 (vt, *J*_{PH} = 3.8, 4H, PCH₂), 1.44 (s, 2H, RhOH₂), 1.22 (vt, *J*_{PH} = 7, 36H, *t*Bu).

¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂): δ 166.2 (vt, *J*_{PC} = 6, py), 162.5 (q, ¹*J*_{BC} = 50, Ar^F), 135.1 (s, Ar^F), 134.3 (s, py), 129.8 (qq, ¹*J*_{FC} = 32, ¹*J*_{BC} = 3, Ar^F), 125.1 (q, ¹*J*_{FC} = 272, Ar^F), 120.3 (vt, *J*_{PC} = 5, py), 117.6 (sept, ³*J*_{FC} = 4, Ar^F), 34.5 (vt, *J*_{PC} = 7, *t*Bu{C}), 34.4 (vt, *J*_{PC} = 7, PCH₂), 28.4 (vt, *J*_{PC} = 4, *t*Bu{CH₃}).

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 63.1 (d, ¹*J*_{RhP} = 144).

Anal. Calcd for C₅₅H₅₇BF₂₄NOP₂Rh (1379.69 gmol⁻¹): C, 47.88; H, 4.16; N, 1.02. Calcd for C₅₅H₅₇BF₂₄NOP₂Rh·H₂O (1397.71 gmol⁻¹): C, 47.26; H, 4.25; N, 1.00. Found: C, 47.89; H, 4.07; N, 0.98.

S17

6. Preparation of [Rh(PONOP)(OH₂)][BAr^F₄] 2d-O

A mixture of $[\{Rh(PONOP)\}_2(COD)][BAr^F_4]_2$ (35.2 mg, 12.4 µmol), 1,2-C₆H₄F₂ (*ca.* 0.5 mL) and H₂O (0.12 mL, 6.3 mmol) was vigorously stirred at ambient temperature for 2 h. Excess hexane (*ca.* 40 mL) was added and the suspension cooled to -78 °C with vigorous stirring. The supernatant was filtered away. The solid dried redissolved in 1,2-C₆H₄F₂ (*ca.* 1 mL) layered with excess hexane (*ca.* 50 mL) and stored at ambient temperature to afford **2d-O** as orange rods. Yield: 16.9 mg (49%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a solution in 1,2-C₆H₄F₂ at ambient temperature.

¹**H NMR** (500 MHz, 1,2-C₆H₄F₂): δ 8.10 – 8.17 (m, 8H, Ar^F), 7.49 (br, 4H, Ar^F), 7.33 (t, ³*J*_{HH} = 8.1, 1H, py), 6.37 (d, ³*J*_{HH} = 8.1, 1H, py), 2.13 (s, 2H, RhOH₂), 1.30 (vt, *J*_{PH} = 7, 36H, *t*Bu).

¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂): δ 165.8 (vt, $J_{PC} = 4$, py), 162.6 (q, ${}^{1}J_{BC} = 50$, Ar^F), 140.3 (s, py), 135.1 (Ar^F), 129.7 (qq, ${}^{1}J_{FC} = 32$, ${}^{1}J_{BC} = 3$, Ar^F), 125.4 (q, ${}^{1}J_{FC} = 272$, Ar^F), 117.6 (sept, ${}^{3}J_{FC} = 4$, Ar^F), 102.1 (vt, $J_{PC} = 3$, py), 39.8 (vtd, $J_{PC} = 6$, ${}^{2}J_{RhC} = 2$, $tBu\{C\}$), 26.8 (vt, $J_{PC} = 4$, $tBu\{CH_3\}$).

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 199.4 (d, ¹*J*_{RhP} = 148).

Anal. Calcd for C₅₃H₅₃BF₂₄NO₃P₂Rh (1383.64 gmol⁻¹): C, 46.01; H, 3.86; N, 1.01. C₅₃H₅₃BF₂₄NO₃P₂Rh·H₂O (1401.65 gmol⁻¹) C, 45.42; H, 3.96 N; 1.00. Found: C, 45.79; H, 3.68; N, 1.10.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S33.** ${}^{31}P{}^{1}H$ NMR spectrum of **2d-O** (121 MHz, 1,2-C₆H₄F₂).

7. NMR scale reactions of isolated [{Rh(pincer)}2(COD)][BAr^F4]2 1b

General procedure

A 0.02 mol [Rh] L⁻¹ solution of **1b** in 1,2-C₆H₄F₂ was either freeze-pump-thaw degassed and placed under an atmosphere of dinitrogen, or treated with three equivalents of terminal alkyne in an NMR tube fitted with a J. Young's valve and followed by ¹H and ³¹P{¹H} NMR spectroscopy, with constant mixing when not in the spectrometer.

Dinitrogen

1. $[{Rh(PONOP)}_{2}(COD)][BArF_{4}]_{2}(1b-O)$

Following the general procedure and using **1b-O** (14.2 mg, 5.00 μ mol), 1,2-C₆H₄F₂ (0.50 mL) and dinitrogen gave **2c-O** after 2 days. Data are consistent with the literature.⁸

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 210.6 (d, ¹*J*_{RhP} = 133).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S35.** ³¹P{¹H} spectrum of the reaction between **1b-O** and dinitrogen (1,2-C₆H₄F₂, 121 MHz).

HCC*t*Bu

1. $[{Rh(PNP)}_2(COD)][BAr^{F_4}]_2(1b-CH_2)$

Following the general procedure and using **1b-CH**₂ (14.2 mg, 5.0 μ mol), 1,2-C₆H₄F₂ (0.50 mL) and HCC*t*Bu (0.2 mol L⁻¹ solution, 73 μ L, 15 μ mol) gave **3a-CH**₂ in < 5 mins.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S37. ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between **1b-CH**₂ and HCC*t*Bu (1,2-C₆H₄F₂, 121 MHz).

2. $[{Rh(PONOP)}_{2}(COD)][BArF_{4}]_{2}(1b-O)$

Following the general procedure and using **1b-O** (13.8 mg, 4.86 μ mol), 1,2-C₆H₄F₂ (0.50 mL) and HCC*t*Bu (0.20 mol L⁻¹ solution, 73 μ L, 15 μ mol) gave **3a-O** after 18 h.

Figure S38. ¹H NMR spectrum of the reaction between **1b-O** and HCC*t*Bu (1,2-C₆H₄F₂, 300 MHz).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S39.** ³¹P{¹H} NMR spectrum of the reaction between **1b-O** and HCC*t*Bu (1,2-C₆H₄F₂, 121 MHz).

HCCAr'

1. $[{Rh(PNP)}_2(COD)][BAr^{F_4}]_2(1b-CH_2)$

Following the general procedure and using **1b-CH**₂ (14.2 mg, 5.0 μ mol), 1,2-C₆H₄F₂ (0.50 mL) and HCCAr' (3.2 mg, 15 μ mol) gave **3b-CH**₂ in < 5 mins.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S41. ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between 1b-CH₂ and HCCAr' (1,2-C₆H₄F₂, 121 MHz).

2. $[{Rh(PONOP)}_{2}(COD)][BArF_{4}]_{2}(1b-O)$

Following the general procedure and using **1b-O** (14.6 mg, 5.14 μ mol), 1,2-C₆H₄F₂ (0.51 mL) and HCCAr' (3.3 mg, 15 μ mol) gave a mixture of **2e-O** and **3b-O** in an approximate 7:3 ratio after 2 days.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S43.** ³¹P{¹H} NMR spectrum of the reaction between **1b-O** and HCCAr' (1,2-C₆H₄F₂, 121 MHz).

8. Preparation of [Rh(PNP)(CCH*t*Bu)][BAr^F₄] 3a-CH₂

A solution of HCC⁴Bu (0.20 mol L⁻¹, 0.37 mL, 74 µmol) in 1,2-C₆H₄F₂ was added at ambient temperature to a solution of **1b-CH**₂ (70.7 mg, 25.2 µmol) in 1,2-C₆H₄F₂ (2 mL) and stirred for 1 h. The resulting solution was layered with excess hexane (*ca.* 20 mL) and stored at ambient temperature to afford **3a-CH**₂ as green blocks. Yield: 69.8 mg (96%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a solution in 1,2-C₆H₄F₂ at ambient temperature.

¹**H NMR** (500 MHz, 1,2-C₆H₄F₂): δ 8.09 – 8.16 (m, 8H, Ar^F), 7.48 (br, 4H, Ar^F), 7.45 (t, ³*J*_{HH} = 7.9, 1H, py), 7.17 (d, ³*J*_{HH} = 7.9, 2H, py), 3.52 (vt, *J*_{PH} = 3.6, 4H, PCH₂), 1.22 (vt, *J*_{PH} = 7, 36H, P*t*Bu), 1.16 (s, 1H, RhCC<u>H</u>*t*Bu), 1.01 (s, 9H, RhCCH<u>*t*Bu</u>).

¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂): δ 317.5 (HMBC, Rh<u>C</u>CH*t*Bu), 164.9 (vtd, J_{PC} = 5, ²J_{RhC} = 2, py), 162.5 (q,¹J_{BC} = 50, Ar^F), 141.1 (s, py), 135.1 (Ar^F), 129.7 (qq, ¹J_{FC} = 32, ¹J_{BC} = 3, Ar^F), 125.1 (q, ¹J_{FC} = 272, Ar^F), 120.9 (vt, J_{PC} = 5, py), 120.7 (dt, ²J_{RhC} = 15, ³J_{PC} = 5, RhC<u>C</u>H*t*Bu), 117.6 (sept, ³J_{FC} = 4, Ar^F), 36.2 (vt, J_{PC} = 8, PCH₂), 35.8 (vtd, J_{PC} = 8, ²J_{RhC} = 2, P*t*Bu{C}), 31.7 (s, RhCCH*t*Bu{CH₃}), 29 (obscured, RhCCH*t*Bu{C}), 28.8 (vt, J_{PC} = 3, P*t*Bu{CH₃}). ³¹P{¹H} NMR (121 MHz, 1,2-C₆H₄F₂): δ 65.6 (d, ¹J_{RhP} = 139).

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂): δ 65.7 (d, ¹*J*_{RhP} = 139).

Anal. Calcd for $C_{59}H_{61}BF_{24}NO_2P_2Rh$ (1443.82 gmol⁻¹): C, 50.75; H, 4.54; N, 0.97. Found: C, 50.62; H, 4.39; N, 0.97.

Figure S47. ³¹P{¹H} NMR spectrum of **3a-CH**₂ (CD₂Cl₂, 162 MHz).

9. Preparation of [Rh(PONOP)(CCH*t*Bu)][BAr^F₄] 3a-O

A solution of HCC*t*Bu (0.20 mol L⁻¹, 0.37 mL, 74 μ mol) in 1,2-C₆H₄F₂ was added at ambient temperature to a solution of **1b-O** (71.6 mg, 25.2 μ mol) in 1,2-C₆H₄F₂ (2 mL) and stirred for 18 h. The resulting solution was layered with excess hexane (*ca.* 20 mL) and stored at ambient temperature to afford **3a-O** as indigo blocks. Yield: 62.5 mg (86%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a solution in 1,2-C₆H₄F₂ at ambient temperature.

¹**H NMR** (500 MHz, 1,2-C₆H₄F₂, selected data): δ 8.07 – 8.18 (m, 8H, Ar^F), 7.59 (t, ³J_{HH} = 8.2, 1H, py), 7.49 (br, 4H, Ar^F), 2.24 (s, 1H, RhCC<u>H</u>*t*Bu), 1.29 (vt, J_{PH} = 8, 36H, P*t*Bu), 1.04 (s, 9H, RhCCH<u>*t*Bu</u>).

¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂): δ 330.0 (HMBC run in CD₂Cl₂, Rh<u>C</u>CH*t*Bu), 163.5 (vt, J_{PC} = 3, py), 162.6 (q, ¹J_{BC} = 50, Ar^F), 147.7 (s, py), 135.1 (s, Ar^F), 129.7 (qq, ¹J_{FC} = 32, ¹J_{BC} = 3, Ar^F), 125.1 (q, ¹J_{FC} = 272, Ar^F), 121.6 (dt, ²J_{RhC} = 15, ³J_{PC} = 4, RhC<u>C</u>H*t*Bu), 117.6 (sept, ³J_{FC} = 4, Ar^F), 103.0 (t, ³J_{RhC} = 3, py), 40.9 (vtd, J_{PC} = 6, J_{RhC} = 3, P*t*Bu{C}), 31.6 (s, RhCCH*t*Bu{CH₃}), 30.7 (s, RhCCH*t*Bu{C}), 26.9 (t, ²J_{PC} = 4, P*t*Bu{CH₃}).

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 206.5 (d, ¹*J*_{RhP} = 144).

³¹**P**{¹**H**} **NMR** (121 MHz, CD₂Cl₂): δ 206.8 (d, ¹*J*_{RhP} = 144).

Anal. Calcd for C₅₉H₆₁BF₂₄NO₂P₂Rh (1447.77 gmol⁻¹): C, 48.95; H, 4.25; N, 0.97. Found: C, 48.84; H, 4.07; N, 0.95.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S51. ³¹P{¹H} NMR spectrum of **3a-O** (CD₂Cl₂, 121 MHz).

10. Preparation of [Rh(PNP)(CCHAr')][BAr^F₄] 3b-CH₂

A solution of **1b-CH**₂ (70.7 mg, 25 μ mol) and HCCAr' (8.0 mg, 75 μ mol) in 1,2-C₆H₄F₂ (*ca*. 1mL) was stirred at ambient temperature for 1 h. The dark green solution was layered with excess hexane (*ca*. 40 mL) to afford **3b-CH**₂ as malachite rods. Yield: 71.4 mg (90%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a solution in 1,2-C₆H₄F₂ at ambient temperature.

¹**H NMR** (500 MHz, 1,2-C₆H₄F₂): δ 8.07 – 8.18 (m, 8H, Ar^F), 7.50 (obsc. t, ³*J*_{HH} = 7.8, 1H, py), 7.49 (br, 4H, Ar^F), 7.26 (br, 1H, Ar'-H), 7.25 (d, ³*J*_{HH} = 7.8, 2H, py), 7.00 (s, 2H, Ar'-H), 3.63 (vt, *J*_{PH} = 3.6, 4H, PCH₂), 2.82 (s, 1H, RhCC<u>H</u>Ar'), 1.24 (s, Ar'-*t*Bu, 9H), 1.22 (s, Ar'-*t*Bu, 9H), 1.22 (vt, *J*_{PH} = 7.1, 36H, P*t*Bu). ¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂): δ 326.9 (HMBC, Rh<u>C</u>CHAr'), 165.0 (vt, *J*_{PC} = 5, py), 162.5 (q, ¹*J*_{BC} = 50, Ar^F),

141.4 (s, py), 135.0 (s, Ar^F), 129.6 (qq, ${}^{1}J_{FC} = 32$, ${}^{1}J_{BC} = 3$, Ar^F), 125.1 (q, ${}^{1}J_{FC} = 272$, Ar^F), 121.6 (s, Ar'{CH}), 121.1 (vt, $J_{PC} = 5$, py), 121.1 (s, Ar'{CH}), 117.1 (sept, ${}^{3}J_{FC} = 4$, Ar^F), 115.2 (dt, ${}^{2}J_{RhC} = 16$, ${}^{3}J_{PC} = 5$, RhC<u>C</u>HAr'), 36.1 (vt, $J_{PC} = 8$, PCH₂), 35.6 (vtd, $J_{PC} = 8$, ${}^{2}J_{RhC} = 2$, PtBu{C}), 34.7 (s, Ar'-tBu{C}), 30.8 (s, Ar'-tBu{CH₃}), 28.6 (vt, $J_{PC} = 3$, PtBu{CH₃}). The Ar'{C} resonances were not unambiguously located.

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 65.9 (d, ¹*J*_{RhP} = 137).

³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ 65.7 (d, ¹J_{RhP} = 139).

Anal. Calcd for C₇₁H₇₇BF₂₄NP₂Rh (1576.03 gmol⁻¹): C, 54.11; H, 4.92; N, 0.89. Found: C, 53.95; H, 4.81; N, 0.83.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S55.** ³¹P{¹H} NMR spectrum of **3b-CH**₂ (CD₂Cl₂, 162 MHz).

11. Preparation of an inseparable mixture of 2e-O and 3b-O

A solution of **1b-O** (35.7 mg, 12.6 μ mol) and HCCAr' (8.1 mg, 37.8 μ mol) in 1,2-C₆H₄F₂ (*ca.* 1mL) was stirred at ambient temperature for 18 h. The dark green solution was layered with excess hexane (*ca.* 50 mL) and stored at - 30 °C to afford a 7:3 mixture of **2e-O** and **3b-O** as malachite rods. Yield: 20.2 mg (51%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a solution in 1,2-C₆H₄F₂ at ambient temperature.

2e-O:

¹H NMR (500 MHz, 1,2-C₆H₄F₂, selected data): δ 7.66 (s, 2H, Ar'-H), 7.63 (obscured t, ³*J*_{HH} = 8, 1H, py), 7.58 (s, 1H, Ar'-H), 4.59 (s, 1H, <u>H</u>CCAr'), 1.25 (s, 18H, Ar'-*t*Bu}), 1.15 (vt, *J*_{PH} = 8, 36H, *Pt*Bu). ¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂, selected data): δ 75.9 (d, ¹*J*_{RhC} = 12, HC<u>C</u>Ar'), 67.6 (d, ¹*J*_{RhC} = 13, H<u>C</u>CAr'), ³¹P{¹H} NMR (121 MHz, 1,2-C₆H₄F₂): δ 194.6 (d, ¹*J*_{RhP} = 129).

3b-O:

¹**H NMR** (500 MHz, 1,2-C₆H₄F₂, selected data): δ 7.63 (obscured t, ³*J*_{HH} = 8, 1H, py), 7.34 (s, 1H, Ar'), 7.18 (s, 2H, Ar'), 3.75 (s, 1H, CC<u>H</u>Ar'), 1.27 (vt, *J* = 8, 36H, *t*Bu), 1.21 (s, 18H, Ar'-*t*Bu). ¹³C{¹H} NMR (126 MHz, 1,2-C₆H₄F₂, selected data): δ 339.5 (HMBC, RhCCHAr'), 128 (obscured, RhCCHAr').

³¹**P**{¹**H**} **NMR** (121 MHz, 1,2-C₆H₄F₂): δ 208.4 (d, ¹*J*_{RhP} = 143).

Anal. Calcd for C₆₉H₇₃ BF₂₄NO₂P₂Rh (1579.97 gmol⁻¹): C, 52.45; H, 4.66; N, 0.89. Found: C, 52.53; H, 4.77; N, 0.90.

Figure S56. ¹H NMR spectrum of 7:3 mixture of **2e-O** and **3b-O** (1,2-C₆H₄F₂, 500 MHz).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S58.** ³¹P{¹H} NMR spectrum of 7:3 mixture of **2e-O** and **3b-O** (1,2-C₆H₄F₂, 121 MHz).

12. NMR scale reactions of [Rh(pincer)(CCHR)][BAr^F₄] (3) with carbon monoxide

[Rh(PNP)(CCHtBu)][BArF4] (3a-CH2)

A solution of **3a-CH**₂ (6.0 mg, 4.2 μ mol) in 1,2-C₆H₄F₂ (0.50 mL) was freeze-pump-thaw degassed and placed under an atmosphere of carbon monoxide to afford **2a-CH**₂ in < 5 mins.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S60.** ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between **3a-CH**₂ and carbon monoxide (1,2-C₆H₄F₂, 121 MHz).

[Rh(PONOP)(CCH*t*Bu)][BAr^F₄] (3a-O)

A solution of **3a-O** (14.5 mg, 10.0 μ mol) in 1,2-C₆H₄F₂ (0.50 mL) was freeze-pump-thaw degassed and placed under an atmosphere of carbon monoxide to afford **2a-O** in < 5 mins.

³¹P{¹H} NMR (121 MHz, 1,2-C₆H₄F₂): δ 219.5 (d, ¹J_{RhP} = 127).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S62.** ³¹P{¹H} NMR spectrum of the reaction between **3a-O** and carbon monoxide (1,2-C₆H₄F₂, 121 MHz).

[Rh(PNP)(CCHAr')][BAr^F₄] (3b-CH₂)

A solution of **3b-CH₂** (14.9 mg, 9.45 μ mol) in 1,2-C₆H₄F₂ (0.47 mL) was freeze-pump-thaw degassed and placed and under an atmosphere of carbon monoxide to afford **2a-CH₂** after 90 min.

³¹P{¹H} NMR (121 MHz, 1,2-C₆H₄F₂): δ 78.1 (d, ¹J_{RhP} = 121).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S64.** ${}^{31}P{}^{1}H$ NMR spectrum of the reaction between **3b-CH**₂ and carbon monoxide (1,2-C₆H₄F₂, 121 MHz).

Mixture of [Rh(PONOP)(HCCAr')][BAr^F₄] (2e-O) and [Rh(PONOP)(CCHAr')][BAr^F₄] (3b-O)

A 7:3 mixture of **2e-O** and **3b-O** (6.8 mg, 4.3 μ mol) was dissolved in 1,2-C₆H₄F₂ (0.35 mL), freeze-pump-thaw degassed and placed under an atmosphere of carbon monoxide to afford **2a-O** in < 5 mins.

Figure S65. ¹H NMR spectrum of the reaction between a 7:3 mixture of **2e-O** and **3b-O** and carbon monoxide (1,2- $C_6H_4F_2$, 300 MHz).

Figure S66. ³¹P{¹H} NMR spectrum of the reaction between a 7:3 mixture of **2e-O** and **3b-O** and carbon monoxide $(1,2-C_6H_4F_2, 121 \text{ MHz})$.

13. References

- [1] W. E. Buschman, J. S. Miller, K. Bowman-James and C. N. Miller, *Inorg. Synth.*, 2002, **33**, 83–91.
- [2] S. Kundu, W. W. Brennessel and W. D. Jones, *Inorg. Chem.*, 2011, **50**, 9443–9453.
- [3] E. M. Pelczar, T. J. Emge, K. Krogh-Jespersen and A. S. Goldman, Organometallics, 2008, 27, 5759–5767.
- [4] R. Zhang, X. Hao, X. Li, Z. Zhou, J. Sun and R. Cao, *Cryst. Growth Des.*, 2015, **15**, 2505–2513.
- [5] E. Neumann and A. Pfaltz, *Organometallics*, 2005, **24**, 2008–2011.
- [6] M. Feller, E. Ben-Ari, T. Gupta, L. J. W. Shimon, G. Leitus, Y. Diskin-Posner, L. Weiner and D. Milstein, *Inorg. Chem.*, 2007, 46, 10479–10490.
- [7] A. B. Chaplin and A. S. Weller, *Organometallics*, 2011, **30**, 4466–4469.
- [8] G. M. Adams, F. M. Chadwick, S. D. Pike and A. S. Weller, *Dalton Trans.*, 2015, 44, 6340–6342.
- [9] M. Findlater, K. M. Schultz, W. H. Bernskoetter, A. Cartwright-Sykes, D. M. Heinekey and M. Brookhart, Inorg. Chem., 2012, 51, 4672–4678.
- [10] S. K. Hanson, D. M. Heinekey and K. I. Goldberg, *Organometallics*, 2008, 27, 1454–1463.