Electronic Supplementary Data

Synthesis, characterisation and redox properties of anti-bimetallic permethylpentalene complexes

Samantha C. Binding,^a Jennifer C. Green,^{b,*} Zoë R. Turner,^a Jean-Charles Buffet,^a and Dermot O'Hare^{a,*}

^aChemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK

^bInorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, UK

Corresponding author: <u>Dermot.ohare@chem.ox.ac.uk;</u> Jennifer.green@chem.ox.ac.uk

Table of contents

1. General details	S2
2. X-ray crystallography	S4
3. Magnetic studies	S10
4. DFT and electronic studies	S13
5. Cyclic voltammetry	S16
6. Cartesian coordinates for optimised structures	S20
7. References	S31

1. General details

General methods and materials

Air- and moisture-sensitive reactions were performed on a dual-manifold vacuum/N₂ line using standard Schlenk techniques, or in a N₂ filled MBraun Unilab glovebox. All glassware was heated in an oven at 170 °C for at least 1 hour prior to use. Hexane, pentane, dichloromethane, benzene, and toluene were dried using a MBraun SPS-800 solvent purification system. Diethyl ether was distilled from potassium, and tetrahydrofuran was dried over Na/benzophenone until purple, and distilled under N₂. Dry solvents were stored under N₂ in oven dried ampoules with a Rotaflo cap containing K mirrors (pentane, hexane, benzene, toluene, ether) or 3 Å molecular sieves dried for 12 hours at 140 °C (THF, dichloromethane). Deuterated NMR spectroscopic solvents were purchased from Goss Scientific or Cambridge Isotopes Laboratories and stored in the glovebox after drying. Benzene- d_6 and toluene- d_8 were either stirred over NaK for at least 3 days then distilled, or dried over a potassium mirror and freeze-thaw-degassed three times. THF- d_8 , pyridine- d_5 , chloroform- d_1 , and dichloromethane- d_2 were stirred over powdered calcium hydride for at least three days then distilled. All solvents were degassed prior to use.

Reagents were purchased from Sigma Aldrich or Alfa Aesar and used without further purification unless otherwise stated. Metal(II) acetylacetonates were dried at 10^{-2} mbar overnight and stored in the glovebox and freshly sublimed prior to use. Li₂Pn*TMEDA_x,¹ Cp*FeCl·TMEDA,² Cp*Fe(acac),^{3,4} Cp*Co(acac),⁴ and Cp*Ni(acac),⁴ were prepared according to literature methods.

NMR spectroscopy

¹H and ¹³C{¹H} NMR spectra were obtained either on a Agilent Mercury VX-Works 300 MHz spectrometer running Varian software, or on a Bruker AVIII 400 MHz running ICON automation of TOPSPIN software. Air sensitive NMR samples were prepared in a glovebox under a nitrogen atmosphere and sealed in 5 mm tubes with Young type concentric stopcocks. ¹H and ¹³C{¹H} shifts (in parts per million, ppm) are referenced internally to residual protio-solvent relative to TMS ($\delta = 0$. *J* values are given in Hz.

¹H and 2D spectra of paramagnetic molecules, variable temperature, and Evans NMR studies were conducted on a Bruker AVIII 500 MHz running TOPSPIN software.

For Evans' NMR measurements, a concentrated toluene- d_8 solution of a paramagnetic complex and a sealed glass capilliary containing pure toluene- d_8 were placed in an NMR tube sealed with a Young's concentric stopcock. The samples were heated as required to ensure full solvation of the complex.

Mass spectroscopy and elemental analysis

Electrospray ionisation spectra of air- and moisture-stable samples diluted in methanol or acetonitrile were collected in positive and negative modes on an Agilent Technologies 6120 Quadrupole LCMS spectrometer. Electrospray ionisation mass spectra of air and moisture sensitive samples were recorded by Colin Sparrow of the Chemistry Research Laboratory, University of Oxford, using a Bruker μ TOF spectrometer. Elemental analyses were carried out by Stephen Boyer of London Metropolitan University.

Single crystal X-ray crystallography

A typical crystal was mounted on a MiTeGen Micromounts using perfluoropolyether oil and cooled rapidly to 150 K in a stream of nitrogen gas using an Oxford Cryosystems Cryostream unit.⁵ Data were collected with an Enraf-Nonius KappaCCD diffractometer (using graphite-monochromated Mo K_{α} radiation, $\lambda = 0.71073$ Å) or on an Agilent SuperNova A diffractomenter (Cu K_{α} radiation, $\lambda =$ 1.54180 Å). Raw frame data were reduced using the DENZO-SMN package or using CrysAlisPro.^{6,7} Intensity data were corrected using multi-scan method with SCALEPACK (within DENZO-SMN). The structure was solved using direct methods with SIR92⁸ or Superflip⁹ and refined using full-matrix least squares refinement on all F^2 data using the CRYSTALS program suite.¹⁰⁻¹² In general distances and angles were calculated using the full variance–covariance matrix. Dihedral angles were calculated using PLATON.¹³

DFT Calculations

All DFT calculations were performed with the ADF program package.^{14,15} Geometry optimisation calculations were carried out at BP,^{16,17} and B3LYP,¹⁸ and MO6L¹⁹ levels of DFT. For geometry optimisations the triple-zeta²⁰ Slater type basis sets were used.

Electrochemical measurements

Cyclic voltammetry measurements were carried out in a three-electrode configuration, with a silver quasi-reference electrode, a glassy-carbon working electrode and a platinum auxiliary electrode, all sourced from Bioanalytical Systems®, within a Saffron Omega Scientific glovebox under anhydrous Nitrogen on a PARAMETEK® VersaSTAT 3 potentiostat. The supporting electrolyte (0.1 M [NBu₄][PF₆] in THF) was prepared from recrystallised salt with freshly distilled THF, thoroughly degassed, and tested prior to use. The electrodes were immersed in 10 mL of a 1 mM solution of the analyte, prepared in the glovebox. Voltammograms were collected, typically scanning a potential range between -2.5 and 1.5 V vs Ag at scan rates ranging from 0.1 to 10 V s⁻¹. All potentials were referenced to the internal ferrocene/ferrocenium (Fc^{0/+}) couple by addition of ferrocene to each sample and recording its potential under identical conditions.

2. X-ray crystallography

1

3

 $\left(- \right)$

Fig. S1. Plan views of the *anti*-bimetallic complexes *anti*- $(MCp^*)_2Pn^*$ (M = Fe (1), Co (2) and Ni (3)) and *anti*- $(MCp)_2Pn^*$ (M = Co (4) and Ni (5)), showing the staggered (1-3) and eclipsing (4-5) capping groups. One capping group has been removed to show the perpendicular projection of the metal atom onto the Pn* plane.

Fe1–C1	2.050(3)
Fe1–C2	2.018(3)
Fe1–C3	2.050(3)
Fe1–C4	2.185(2)
Fe1–C4'	2.185(3)
Fe1–C8	2.065(3)
Fe1–C9	2.073(3)
Fe1-C10	2.056(3)
Fe1-C11	2.060(3)
Fe1-C12	2.071(3)
C4–C4'	1.453(3)
$\operatorname{Fel}_{-}^{P} \mathfrak{p}_{e n t}^{*}$	1.703
$Fe1-C p_{ent}^*$	1.673
Fe1-Fe1'	4.1208(7)
$C p_{en,Fe1}^* P p_{ent}^*$	176.52
Tilt angle	2.39
Hinge angle	6.20
(C-4C4) _{c e n} C2-C6	175.64
Tilt angle = angle between mean planes of C1,2,3,4,4' and C8,9,10,11,12;	Hinge angle = angle between mean planes of
$\delta(\%) = \frac{[(M - C)] + (M - C)}{[(M - C)] + (M - C)]} \times 1^{-1} 0 0$	

Table S1. Selected bond lengths, angles and distances for $(FeCp^*)_2Pn^*$ (1).

 $\delta(\%) = \frac{\left[(M - C) 4 - (M + C)^2\right]}{(M + C)^2} \times 1^{-1} 0 0$

	2	4
Co1–C1	2.059(3)	2.055(2)
Co1–C2	1.991(3)	2.008(3)
Co1–C3	2.055(2)	2.052(3)
Co1–C4	2.265(2)	2.249(2)
Co1–C4'	2.267(2)	2.251(2)
Co1–C8	2.056(3)	2.081(1)
Co1–C9	2.103(3)	2.144(2)
Co1-C10	2.092(3)	2.097(3)
Co1-C11	2.065(3)	2.070(3)
Co1-C12	2.082(3)	2.076(2)
C4–C4'	1.422(4)	1.425(3)
$Co1-^{p} \mathfrak{p}_{ent}^{*}$	1.745	1.739
Co1-C Pent	1.691	1.710
Col-Col'	4.3032(5)	4.2697(4)
$C p_{e n}^* p_{01}^* P p_{e n t}^*$	172.48	171.42
Tilt angle	1.06	2.15
Hinge angle	6.84	7.33
(C 4C4') _{c e n} €2–C6	173.38	174.41

Table S2. Selected bond lengths, angles and distances for $(CoCp^*)_2Pn^*$ (2) and $(CoCp)_2Pn^*$ (4).

	3	5
Ni1-C1	2.131(3)	2.142(4)
Ni1–C2	1.996(3)	1.998(3)
Ni1–C3	2.147(3)	2.145(3)
Ni1–C4	2.353(3)	2.390(3)
Ni1–C4'	2.360(2)	2.392(3)
Ni1–C8	2.141(3)	2.182(4)
Ni1–C9	2.145(3)	2.185(3)
Ni1-C10	2.151(3)	2.181(4)
Ni1-C11	2.146(3)	2.133(6)
Ni1-C12	2.118(3)	2.128(4)
C4–C4'	1.463(3)	1.470(4)
Ni1- $P p^*_{ent}$	1.830	1.850
Nil-C pent	1.769	1.800
Ni1–Ni1'	4.4806(6)	4.5495(6)
$C p_{e nNi1}^* P p_{e nt}^*$	171.27	175.95
Tilt angle	2.34	6.48
Hinge angle	2.06	3.21
(C-4C4') _c * #@2-C6	173.64	173.99

 Table S3. Selected bond lengths, angles and distances for $(NiCp^*)_2Pn^*$ (3) and $(NiCp)_2Pn^*$ (5).

Complex	(%)	Ref	Complex	(%)	Ref
1	8.2	а	(FeCp*) ₂ Pn	5.08	21
2	13.8	а	$(CoCp^*)_2Pn$	16.2	22
3	18.1	а	(FePnH)Pn(CoCp*)	Fe 4.9 Co 13.05	23
4	12.1	а	[Ni(allyl)] ₂ Pn	11.8	24
5	19.7	а			

Table S4. Distortions towards $\eta^{\scriptscriptstyle 3}$ coordination

Table S5. Selected experimental crystallographic data for $(FeCp^*)_2Pn^*$ (1), $(CoCp^*)_2Pn^*$ (2), $(NiCp^*)_2Pn^*$ (3), $(CoCp)_2Pn^*$ (4) and $(NiCp)_2Pn^*$ (5).

Complex	1	2	3	4	5
		Cryst	al data		
Chemical formula	$C_{34}H_{48}Fe_2$	$C_{34}H_{48}Co_2$	$C_{34}H_{48}Ni_2$	$C_{24}H_{28}Co_2$	$C_{24}H_{28}Ni_2$
$M_{ m r}$	568.45	574.62	574.17	434.35	433.91
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, C2/c	Monoclinic, $P2_1/n c$	Triclinic, P ⁻¹	Triclinic, P^{-1}
Temperature (K)	150	150	150	150	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.1531 (3), 15.1021 (4), 11.1714 (3)	16.7219 (4), 8.6986 (2), 20.5957 (5)	8.8663 (3), 15.1452 (7), 11.5069 (4)	7.9066 (2), 8.1643 (2), 9.3165 (4)	7.6274 (4), 8.2173 (4), 9.6561 (7)
α, β, γ (°)	90, 109.768 (3), 90	90, 104.8732 (10), 90	90, 104.974 (3), 90	67.9417 (14), 83.4571 (14), 61.8652 (17)	68.600 (3), 87.710 (3), 62.426 (4)
$V(Å^3)$	1453.23 (7)	2895.42 (12)	1492.70 (10)	490.05 (3)	493.33 (5)
Ζ	2	4	2	1	1
Radiation type	Cu Ka	Μο Κα	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	8.13	1.17	1.28	1.70	1.91
Crystal size (mm)	$0.30\times0.08\times0.08$	$0.16 \times 0.16 \times 0.05$	$0.20\times0.08\times0.08$	$0.42 \times 0.40 \times 0.40$	$0.16 \times 0.16 \times 0.10$
		Data C	ollection		
Diffractometer	SuperNova, Dual, Cu at zero, Atlas diffractometer	Nonius KappaCCD	Nonius KappaCCD	Nonius KappaCCD	Nonius KappaCCD
Absorption correction	Multi-scan.	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997).	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997).	Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997).	Multi-scan <i>DENZO/SCALEPACK</i> (Otwinowski & Minor, 1997).

T_{\min}, T_{\max}		0.87, 0.94	0.84, 0.90	0.43, 0.51	0.74, 0.83
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7782, 3013, 2281	17044, 3296, 2456	13864, 5069, 2466	6663, 2232, 2013	6788, 2245, 2099
$R_{\rm int}$	0.044	0.029	0.027	0.019	0.029
		Refin	ement		
$R[F^2 > 2\sigma(F^2)], wR(F^2),$ S	0.044, 0.117, 0.98	0.036, 0.098, 0.94	0.040, 0.107, 0.95	0.029, 0.066, 0.89	0.040, 0.102, 0.88
No. of reflections	3001	3296	3387	2232	2245
No. of parameters	163	163	163	118	119
No. of restraints	0	0	0	0	0
$(\Delta/\sigma)_{\rm max}$	0.001	0.0004	0.001	0.0004	0.001
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.75, -0.45	0.86, -0.58	0.66, -0.65	0.50, -0.39	0.87, -0.64

Computer programs: *CrysAlis PRO*, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012, 18:06:46), *CrysAlis PRO* 1.171.38.41 (Rigaku OD, 2015), Collect (Nonius BV, 1997-2000), *HKL SCALEPACK* (Otwinowski & Minor 1997), *HKL DENZO* and *SCALEPACK* (Otwinowski & Minor 1997), SUPERFLIP. Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790, Sir-92. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1994, 27, 435., *SHELXL2014* (Sheldrick, 2014), *ORTEP-3 for Windows*. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.

3. Magnetic studies

The size of the magnetisation, m(T), is proportional to the difference in population between the ground and excited states. For molecules with a diamagnetic ground state therefore, $(T) \propto \frac{p(T)}{r}$

 $(T) \propto \frac{p(T)}{T}$, where p(T) is the Boltzmann population of the excited state, and the factor T⁻¹ accounts for the temperature-dependent Curie behaviour of the excited state. Assuming relaxation of electron spin is fast, the nuclei in the molecules will experience a magnetic field proportional to this magnetisation, which augments the field applied inside a spectrometer, causing the chemical shifts to have a temperature-dependent contribution (the isotropic shift). The Boltzmann population, p(T), of a state that differs in energy from the ground state by $\Delta \varepsilon = 2J$, is found by normalising the population of that state $(g_i e^{\Delta \varepsilon/kT}, \text{ where } g_i \text{ is the } (Z = \sum_i g_i e^{-\varepsilon_i/kT})$. For a two

multiplicity of state *i*) by the partition function for the system \overline{i} . For a two level system containing a singlet ground and a triply degenerate triplet excited state, this results in the expression $p(T) = 3e^{2J/kT}/(1 + 3e^{2J/kT})$, which is valid when the Zeeman splitting of the triplet state is small compared to *k*T.

The temperature-dependence of the chemical shifts of a given nucleus can therefore be modelled using the expression

$$\delta(T) = \delta_0 + \delta_P \cdot m(T) = \delta_0 + \delta_P \cdot \frac{3e^{2J/kT}}{T(1 + 3e^{2J/kT})}$$

where $\delta(T)$ is the position of the chemical shift at temperature T, and δ_p is a constant that relates the temperature-dependence of the high-spin state and hyperfine coupling constant of the described nucleus to the isotropic chemical shift.

In the solid state, both on **3** and **5** appear to be paramagnetic. There is no evidence of a singlet ground state.

Inverse molar magnetic susceptibility data (as $\chi mol}^{-1}$) and the derived effective magnetic moment for **3** are plotted in Fig S2a. Compound **3** obeys the Curie-Weiss law below 40 K with a magnetic moment, $\mu_B = 2.04 \ \mu_{BM}$ and Weiss constant of 1 K indicating negligible spin-spin interactions at low temperature. Above 40 K, there is a small deviation from the Cure-Weiss law which may be tentatively attributed to TIP. The observed magnetic moment is slightly low for a species with a triplet ground state ($\mu_{s.o}=2.83 \ \mu_{BM}$).

Inverse molar magnetic susceptibility data and the derived effective magnetic moment for **5** is shown in Fig S2b. Compound **5**, obeys the Curie-Weiss law below 210 K. The effective magnetic moment, $\mu_{eff} = 3.49 \,\mu_{BM}$ with a Weiss constant of $-14.6 \,\text{K}$ suggesting weak antiferromagnetic spin-spin interactions between neighbouring spins. The magnetic moment is higher than the spin-only value of $2.83 \,\mu_B$ of an S = 1 species and is consistent with two

unpaired electrons occupying orbitals where the spatial component of angular momentum is not fully quenched. Using $(\mu_{eff})^2 = g^2 S(S+1)$; g is estimated to be 2.467.

Fig. S2. Plot of effective magnetic moment and inverse magnetic susceptibility for a) $(NiCp^*)_2Pn^*$ (3) and $(NiCp)_2Pn$ (5) between 5 and 300 K.

4. DFT studies and electronic studies

	1		2		4	
	calcd	obsd	calcd	obsd	calcd	obsd
M—C1/3	2.055	2.050(3)	2.079	2.057	2.064	2.054
M—C2	2.041	2.018(3)	1.968	1.991(3)	1.968	2.008(3)
M—C4/4'	2.175	2.185(3)	2.382	2.266	2.352	2.25
delta (%)	6.6	8.3	21.0	13.8	19.5	12.1
C4—C4'	1.477	1.453(3)	1.435	1.422(4)	1.435	1.425(3)
Tilt angle	5.14	2.39	6.64	1.06	5.04	2.15
Hinge angle	6.81	6.2	8.21	6.84	8.37	7.33

Table S6. Comparison of calculated and observed structural data for 1-5

	3			5		
	calcd	calcd	ahad	calcd	calcd	ahad
	(S = 0)	(S = 1)	obsu	(S = 0)	(S = 1)	obsu
M—C1/3	2.179	2.192	2.139	2.175	2.157	2.144
M—C2	1.967	2.014	1.996(3)	1.968	1.997	1.998(3)
M—C4/4'	2.551	2.448	2.357	2.531	2.537	2.391
delta (%)	29.7	21.5	18.1	28.6	27.0	19.7
C4—C4'	1.479	1.472	1.463(3)	1.479	1.437	1.470(4)
Tilt angle	10.47	6.25	2.34	10.93	6.75	6.48
Hinge angle	5.47	1.98	2.06	5.24	8.64	3.21

Fig. S3. Classification of linked and fused bimetallics according to the total number of electrons (TNE) for comparison of magnetic properties.

Fig. S4. Illustrations depicting visualisations of a) the pseudocontact shift mechanism, nuclei interact with a magnetic field generated by the molecules anisotropic spin density; b), c) and d) Fermi contact shift mechanisms: b) electron spin density in mixed Md-L π molecular orbitals (depicted blue) results in polarisation of the ring carbon nuclei (depicted red). The spin polarisation mechanism²⁵ (depicted green) transmits this polarisation to ring substituents through bonds that have electron density at both nuclei; c) electrons in bonding orbitals (green) that overlap with the metal atom are polarised through exchange interactions with the metal-based spin density (blue); d) mixing between the metal based orbital(s) housing the unpaired electron(s) and ligand σ -networks directly causes spin density to reside on the ring protons.

	31	32	5
Ni	0.5724	0.5024	0.6183
Pn* ring C WT	0.0696	-0.0434	0.0777
Pn* Me C WT	-0.0068	0.0032	-0.0065
Pn* Me H WT	0.0013	-0.0013	0.002
Pn* ring C NWT	-0.0398	0.1510	-0.0460
Pn* Me C NWT	0.0025	-0.0140	0.0034
Pn* Me H Pn*	-0.0011	0.0056	-0.0014
NWT			
Cp* ring C	0.0603	0.0432	
Cp* Me C	-0.0057	-0.0038	
Cp* Me H	0.0021	0.0022	
Cp ring C			0.0486
Cp H			-0.0039

Table S7. Calculated spin densities of **3** and **5** with S=1. **3**¹ corresponds to the first excited state with a $b_g^{1}b_u^{1}$ configuration and **3**² to the second excited state with a $b_g^{1}a_u^{1}$ configuration.

Fig. S5. Spin-density distribution in nickelocene calculated by Hrobárik *et al.* with DFT methods, +/-0.0001 a.u. isosurfaces; red "chickenwire" indicates positive spin density, blue "transparent" indicates negative spin density.²⁶

5. Cyclic voltammetry

Table S8. Peak potentials of reversible ET events obtained from cyclic voltammograms of 1.

Fig. S6. Overlaid cyclic voltammograms (1 cycle) obtained by scanning a 0.1 mM solution of **1** in THF containing 0.1 M [NBu₄][PF₆] over the region 0 to 3.0 V at scan rates ranging from 0.1 to 10 V s⁻¹.

Fig. S7. Plots of a) peak potentials of ET events versus scan rate for 1, and b) difference in peak potentials, $\Delta E = (E_{pa} - E_{pc})/2$, for the ET events shown in a).

Table S9. Peak potentials of reversible ET events obtained from cyclic voltammograms of 5.

	E _{1/2} (I)	E _{1/2} (II)	E _{1/2} (III)	E _{1/2} (IV)	E _{1/2} (V)
vs Ag	-1.86	-1.48 ^{<i>a</i>}	0.08	0.39	0.87
$vs \ Fc^{0/+}$	-3.48	-3.10^{a}	-1.54	-1.15	-0.75

Fig. S8. Offset plot of overlaid cyclic voltammograms (5 cycles) obtained by scanning a 0.1 mM solution of **5** in THF containing 0.1 M [NBu₄][PF₆] over the region -1.0 to 3.0 V at scan rates of 0.01, 0.1, and 1 V s⁻¹.

Fig. S9. Overlaid cyclic voltammograms (1 cycle) obtained by scanning a 0.1 mM solution of **2** in THF containing 0.1 M [NBu₄][PF₆] over the region -2.75 to -0.5 V at scan rates ranging from 0.05 to 10 V s⁻¹.

Fig. S10. Plots of the modulus peak currents *vs* the square root of the scan rate for the two events, a) $E_{\frac{1}{2}}=-0.03 \text{ V}$, b) $E_{\frac{1}{2}}=0.86 \text{ V}$, \blacksquare indicates an anodic peak current (i_{pa}) , \bullet indicates the modulus of a cathodic peak current (i_{pc}) .

Fig. S11. Overlaid cyclic voltammograms (5 cycles) obtained by scanning a 0.1 mM solution of **4** in THF containing 0.1 M [NBu₄][PF₆] over the region -4.0 to 0 V at a scan rate of 5 V s⁻¹, and an inset scheme showing the three ET events corresponding to the peaks observed.

6. Cartesian coordinates for optimised structures

Fe₂Pn*Cp*₂ 1

Fe	-2.04269908	0.10488581	-0.0000000
С	-1.10434374	1.91761897	-0.00000000
С	-0.74193864	1.16437701	-1.18767805
С	0.0000000	-0.0000000	-0.73873347
С	-0.74193864	1.16437701	1.18767805
С	-0.89595117	1.62891371	-2.60851049
С	-1.71108392	3.29347222	-0.00000000
С	-3.37340862	-1.00586169	-1.16901856
С	-3.00675850	-1.76051470	-0.00000000
С	-3.37340862	-1.00586169	1.16901856
С	-3.96137327	0.23329693	0.72354005
С	-3.96137327	0.23329693	-0.72354005
С	-4.59732808	1.27115999	-1.60392216
С	-4.59732808	1.27115999	1.60392216
С	-3.27638604	-1.47602595	2.59310542
С	-2.39847988	-3.13376788	-0.00000000
С	-3.27638604	-1.47602595	-2.59310542
С	-0.89595117	1.62891371	2.60851049
Н	-1.01694944	0.78021650	-3.29640588
Н	-1.77052876	2.28372877	-2.72875582
Н	-0.01251927	2.19930278	-2.94624872
Н	-2.33804504	3.46106489	0.88682790
Н	-2.33804504	3.46106489	-0.88682790
Н	-0.93036902	4.07419770	-0.00000000
Н	-4.56685046	2.27000868	-1.14627031
Н	-5.65903068	1.03220471	-1.79272226
Н	-4.10091586	1.33599221	-2.58257998
Н	-4.56685046	2.27000868	1.14627031
Н	-5.65903068	1.03220471	1.79272226
Н	-4.10091586	1.33599221	2.58257998
H	-3.13641159	-0.63872290	3.29145169
Н	-4.19544974	-2.00631939	2.89990962
H	-2.43711465	-2.17088620	2.73503833
Н	-1.77004290	-3.29872584	0.88610133
Н	-3.18293981	-3.91068574	-0.00000000
Н	-1.77004290	-3.29872584	-0.88610133
Н	-3.13641159	-0.63872290	-3.29145169
Н	-4.19544974	-2.00631939	-2.89990962
Н	-2.43711465	-2.17088620	-2.73503833
Н	-1.01694944	0.78021650	3.29640588
Н	-1.77052876	2.28372877	2.72875582
Н	-0.01251927	2.19930278	2.94624872
С	1.10434374	-1.91761897	-0.00000000
С	0.74193864	-1.16437701	1.18767805
С	0.0000000	-0.0000000	0.73873347
С	0.74193864	-1.16437701	-1.18767805
С	0.89595117	-1.62891371	2.60851049
С	1.71108392	-3.29347222	-0.00000000
С	0.89595117	-1.62891371	-2.60851049
Н	1.01694944	-0.78021650	3.29640588
Н	1.77052876	-2.28372877	2.72875582
Н	0.01251927	-2.19930278	2.94624872

Н	2.33804504	-3.46106489	-0.88682790
Н	2.33804504	-3.46106489	0.88682790
Н	0.93036902	-4.07419770	-0.00000000
Н	1.01694944	-0.78021650	-3.29640588
Н	1.77052876	-2.28372877	-2.72875582
Н	0.01251927	-2.19930278	-2.94624872
Fe	2.04269908	-0.10488581	-0.0000000
С	3.37340862	1.00586169	1.16901856
С	3.00675850	1.76051470	-0.0000000
С	3.37340862	1.00586169	-1.16901856
С	3.96137327	-0.23329693	-0.72354005
С	3.96137327	-0.23329693	0.72354005
С	4.59732808	-1.27115999	1.60392216
С	4.59732808	-1.27115999	-1.60392216
С	3.27638604	1.47602595	-2.59310542
С	2.39847988	3.13376788	-0.0000000
С	3.27638604	1.47602595	2.59310542
Н	4.56685046	-2.27000868	1.14627031
Н	5.65903068	-1.03220471	1.79272226
Н	4.10091586	-1.33599221	2.58257998
Н	4.56685046	-2.27000868	-1.14627031
Н	5.65903068	-1.03220471	-1.79272226
Н	4.10091586	-1.33599221	-2.58257998
Н	3.13641159	0.63872290	-3.29145169
Н	4.19544974	2.00631939	-2.89990962
Н	2.43711465	2.17088620	-2.73503833
Н	1.77004290	3.29872584	-0.88610133
Н	3.18293981	3.91068574	-0.0000000
Н	1.77004290	3.29872584	0.88610133
Н	3.13641159	0.63872290	3.29145169
Н	4.19544974	2.00631939	2.89990962
Н	2.43711465	2.17088620	2.73503833

Co₂Pn*Cp*₂ 2

Со	2.25850491	6.19768328	12.08162494
С	0.32896210	6.00305825	11.74735431
С	1.01262004	5.05825024	10.87237505
С	1.63186363	5.82627444	9.81368776
С	0.69972534	7.34915735	11.32697780
С	0.84092673	3.56400083	10.89952882
С	-0.71992761	5.65305066	12.76628648
С	3.97590492	5.13874218	12.61556708
С	4.36266162	6.47615502	12.25917125
С	3.63599037	7.37012224	13.12122329
С	2.86318220	6.58356139	14.06346733
С	3.06951936	5.20297665	13.74835156
С	2.53163064	4.02486813	14.50906555
С	2.07686044	7.12667088	15.22237893
С	3.77687554	8.86602271	13.14711461
С	5.38097360	6.86842771	11.22734471
С	4.53621562	3.87615234	12.02331308
С	0.14727588	8.62548393	11.89999926
Н	1.74249279	3.04694413	10.54145715
Н	0.62901485	3.20089697	11.91485754
Н	0.00365986	3.24116844	10.25552605

H -0.52075545 4.67684582 $13.$ H -1.72471462 5.60212075 $12.$ H 1.57040133 4.25525077 $14.$ H 3.22698358 3.70868722 $15.$ H 2.37652354 3.15482689 $13.$ H 2.37652354 3.15482689 $13.$ H 2.71264412 7.24847660 $16.$ H 1.64746013 8.11310723 $14.$ H 2.85461733 9.35868726 $13.$ H 2.85461733 9.35868726 $13.$ H 4.02592346 9.26624329 $12.$ H 5.14890160 7.84451251 $10.$ H 6.39278308 6.94028413 $11.$ H 5.42912343 3.54296051 $12.$ H 4.83786797 4.01887505 $10.$ H 0.86858565 9.45099044 $11.$ H -0.11003847 8.51184105 $12.$	22988015 31050230 99044249 30697245 85524974 50225255 11737125 99656169 48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H -1.72471462 5.60212075 $12.$ H 1.57040133 4.25525077 $14.$ H 3.22698358 3.70868722 $15.$ H 2.37652354 3.15482689 $13.$ H 1.24902457 6.45943175 $15.$ H 2.71264412 7.24847660 $16.$ H 1.64746013 8.11310723 $14.$ H 2.85461733 9.35868726 $13.$ H 2.85461733 9.35868726 $13.$ H 4.58239206 9.17320164 $13.$ H 4.02592346 9.26624329 $12.$ H 5.14890160 7.84451251 $10.$ H 6.39278308 6.94028413 $11.$ H 5.43070790 6.13667670 $10.$ H 3.80963523 3.05206060 $12.$ H 4.83786797 4.01887505 $10.$ H 0.86858565 9.45099044 $11.$ H -0.11003847 8.51184105 $12.$	31050230 99044249 30697245 85524974 50225255 11737125 99656169 48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 1.57040133 4.25525077 $14.$ H 3.22698358 3.70868722 $15.$ H 2.37652354 3.15482689 $13.$ H 1.24902457 6.45943175 $15.$ H 2.71264412 7.24847660 $16.$ H 1.64746013 8.11310723 $14.$ H 2.85461733 9.35868726 $13.$ H 4.58239206 9.17320164 $13.$ H 4.02592346 9.26624329 $12.$ H 5.14890160 7.84451251 $10.$ H 6.39278308 6.94028413 $11.$ H 5.42912343 3.54296051 $12.$ H 5.42912343 3.54296051 $12.$ H 4.83786797 4.01887505 $10.$ H 0.86858565 9.45099044 $11.$ H -0.11003847 8.51184105 $12.$	99044249 30697245 85524974 50225255 11737125 99656169 48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 3.22698358 3.70868722 $15.$ H 2.37652354 3.15482689 $13.$ H 1.24902457 6.45943175 $15.$ H 2.71264412 7.24847660 $16.$ H 1.64746013 8.11310723 $14.$ H 2.85461733 9.35868726 $13.$ H 4.58239206 9.17320164 $13.$ H 4.02592346 9.26624329 $12.$ H 5.14890160 7.84451251 $10.$ H 6.39278308 6.94028413 $11.$ H 5.43070790 6.13667670 $10.$ H 3.80963523 3.05206060 $12.$ H 4.83786797 4.01887505 $10.$ H 0.86858565 9.45099044 $11.$ H -0.11003847 8.51184105 $12.$	30697245 85524974 50225255 11737125 99656169 48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 2.37652354 3.15482689 $13.$ H 1.24902457 6.45943175 $15.$ H 2.71264412 7.24847660 $16.$ H 1.64746013 8.11310723 $14.$ H 2.85461733 9.35868726 $13.$ H 4.58239206 9.17320164 $13.$ H 4.02592346 9.26624329 $12.$ H 5.14890160 7.84451251 $10.$ H 6.39278308 6.94028413 $11.$ H 5.43070790 6.13667670 $10.$ H 3.80963523 3.05206060 $12.$ H 5.42912343 3.54296051 $12.$ H 4.83786797 4.01887505 $10.$ H 0.86858565 9.45099044 $11.$ H -0.11003847 8.51184105 $12.$	85524974 50225255 11737125 99656169 48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 1.24902457 6.45943175 $15.$ H 2.71264412 7.24847660 $16.$ H 1.64746013 8.11310723 $14.$ H 2.85461733 9.35868726 $13.$ H 4.58239206 9.17320164 $13.$ H 4.02592346 9.26624329 $12.$ H 5.14890160 7.84451251 $10.$ H 6.39278308 6.94028413 $11.$ H 5.43070790 6.13667670 $10.$ H 3.80963523 3.05206060 $12.$ H 5.42912343 3.54296051 $12.$ H 4.83786797 4.01887505 $10.$ H 0.86858565 9.45099044 $11.$ H -0.11003847 8.51184105 $12.$	50225255 11737125 99656169 48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 2.71264412 7.24847660 $16.$ H 1.64746013 8.11310723 $14.$ H 2.85461733 9.35868726 $13.$ H 4.58239206 9.17320164 $13.$ H 4.02592346 9.26624329 $12.$ H 5.14890160 7.84451251 $10.$ H 6.39278308 6.94028413 $11.$ H 5.43070790 6.13667670 $10.$ H 3.80963523 3.05206060 $12.$ H 5.42912343 3.54296051 $12.$ H 4.83786797 4.01887505 $10.$ H 0.86858565 9.45099044 $11.$ H -0.11003847 8.51184105 $12.$	11737125 99656169 48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 1.64746013 8.11310723 14. H 2.85461733 9.35868726 13. H 2.85461733 9.35868726 13. H 4.58239206 9.17320164 13. H 4.02592346 9.26624329 12. H 5.14890160 7.84451251 10. H 6.39278308 6.94028413 11. H 5.43070790 6.13667670 10. H 3.80963523 3.05206060 12. H 5.42912343 3.54296051 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12.	99656169 48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 2.85461733 9.35868726 13. H 4.58239206 9.17320164 13. H 4.02592346 9.26624329 12. H 5.14890160 7.84451251 10. H 6.39278308 6.94028413 11. H 5.43070790 6.13667670 10. H 5.42912343 3.55206060 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12.	48550942 83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 4.58239206 9.17320164 13. H 4.02592346 9.26624329 12. H 5.14890160 7.84451251 10. H 6.39278308 6.94028413 11. H 5.43070790 6.13667670 10. H 3.80963523 3.05206060 12. H 5.42912343 3.54296051 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12.	83687028 15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 4.02592346 9.26624329 12. H 5.14890160 7.84451251 10. H 6.39278308 6.94028413 11. H 5.43070790 6.13667670 10. H 3.80963523 3.05206060 12. H 5.42912343 3.54296051 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12.	15479303 77871761 66552378 40879800 05301141 58062096 97663602
H 5.14890160 7.84451251 10. H 6.39278308 6.94028413 11. H 5.43070790 6.13667670 10. H 3.80963523 3.05206060 12. H 5.42912343 3.54296051 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12.	77871761 66552378 40879800 05301141 58062096 97663602
H 6.39278308 6.94028413 11. H 6.39278308 6.94028413 11. H 5.43070790 6.13667670 10. H 3.80963523 3.05206060 12. H 5.42912343 3.54296051 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12.	66552378 40879800 05301141 58062096 97663602
H 5.43070790 6.13667670 10. H 5.42912343 3.05206060 12. H 5.42912343 3.54296051 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12. H -0.77024178 8.94158207 11.	40879800 05301141 58062096 97663602
H 3.43070790 0.13007070 10. H 3.80963523 3.05206060 12. H 5.42912343 3.54296051 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12. H -0.77024178 8.94158207 11.	40879800 05301141 58062096 97663602
H 5.80903323 5.03200000 12. H 5.42912343 3.54296051 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12.	58062096 97663602
H 5.42912343 5.34296031 12. H 4.83786797 4.01887505 10. H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12. H -0.77024178 8.94158207 11.	97663602 97663602
H 4.83786797 4.01887505 $10.$ H 0.86858565 9.45099044 $11.$ H -0.11003847 8.51184105 $12.$ H -0.77024178 8.94158207 $11.$	9/663602
H 0.86858565 9.45099044 11. H -0.11003847 8.51184105 12. H -0.77024178 8.94158207 11	
H -0.11003847 8.51184105 12.	81842897
	96240622
	3/2/1024
C 2.74546806 7.04484175 8.	15831221
C 2.06181012 7.98964976 9.	03329148
C 1.44256653 7.22162556 10.	09197876
C 2.37470482 5.69874265 8.	57868872
C 2.23350343 9.48389917 9.	00613770
C 3.79435777 7.39484934 7.	13938005
C 2.92715428 4.42241607 8.	00566726
Н 1.33193737 10.00095587 9.	36420937
Н 2.44541531 9.84700303 7.	99080898
Н 3.07077030 9.80673156 9.	65014047
Н 3.83772940 6.64949972 6.	33296605
Н 3.59518561 8.37105418 6.	67578637
H 4./99144/8 /.445//925 /.	59516422
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8.	59516422 08723755
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6.	59516422 08723755 94326030
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8.	59516422 08723755 94326030 53295629
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7.	59516422 08723755 94326030 53295629 82404159
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7.	59516422 08723755 94326030 53295629 2.82404159 29009945
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -1.28823146 6.57174498 7	59516422 08723755 94326030 53295629 2.82404159 29009945 64649528
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -1.28823146 6.57174498 7. C -0.56156021 5.67777776 6.	59516422 08723755 94326030 53295629 282404159 29009945 64649528 78444323
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -1.28823146 6.57174498 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5.	59516422 08723755 94326030 53295629 2.82404159 29009945 64649528 78444323 84219920
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -1.28823146 6.57174498 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5. C 0.00491080 7.84492335 6.	59516422 08723755 94326030 53295629 2.82404159 29009945 64649528 78444323 84219920 15731497
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -1.28823146 6.57174498 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5. C 0.00491080 7.84492335 6.	59516422 08723755 94326030 53295629 282404159 29009945 64649528 78444323 84219920 15731497
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -1.28823146 6.57174498 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5. C 0.54279953 9.02303187 5. C 0.98756072 5.92122012 4.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -1.28823146 6.57174498 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5. C 0.54279953 9.02303187 5. C 0.99756972 5.92122912 4.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097 68328759
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5. C 0.54279953 9.02303187 5. C 0.99756972 5.92122912 4. C -0.70244538 4.18187729 6.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5. C 0.00491080 7.84492335 6. C 0.54279953 9.02303187 5. C 0.99756972 5.92122912 4. C -0.70244538 4.18187729 6. C -2.30654344 6.17947229 8.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5. C 0.00491080 7.84492335 6. C 0.54279953 9.02303187 5. C 0.99756972 5.92122912 4. C -0.70244538 4.18187729 6. C -2.30654344 6.17947229 8. C -1.46178546 9.17174766 7.	59516422 08723755 94326030 53295629 2.82404159 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344
H 4.79914478 7.44577925 7. H 2.20584451 3.59690956 8. H 3.18446863 4.53605895 6. H 3.84467194 4.10631793 8. Co 0.81592525 6.85021672 7. C -0.90147476 7.90915782 7. C -0.56156021 5.67777776 6. C 0.21124796 6.46433861 5. C 0.54279953 9.02303187 5. C 0.54279953 9.02303187 5. C 0.99756972 5.92122912 4. C -0.70244538 4.18187729 6. C -2.30654344 6.17947229 8. C -1.46178546 9.17174766 7. H 1.50402883 8.79264923 4.	59516422 08723755 94326030 53295629 2.82404159 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403
H4.799144787.445779257.H2.205844513.596909568.H3.184468634.536058956.H3.844671944.106317938.Co0.815925256.850216727.C-0.901474767.909157827.C-1.288231466.571744987.C-0.561560215.677777766.C0.211247966.464338615.C0.542799539.023031875.C0.997569725.921229124.C-0.702445384.181877296.C-2.306543446.179472298.C-1.461785469.171747667.H1.504028838.792649234.H-0.152553429.339212784.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403 59869407
H4.799144787.445779257.H2.205844513.596909568.H3.184468634.536058956.H3.844671944.106317938.Co0.815925256.850216727.C-0.901474767.909157827.C-1.288231466.571744987.C-0.561560215.677777766.C0.211247966.464338615.C0.004910807.844923356.C0.542799539.023031875.C0.997569725.921229124.C-0.702445384.181877296.C-2.306543446.179472298.C-1.461785469.171747667.H1.504028838.792649234.H0.697906629.893073116.	59516422 08723755 94326030 53295629 .82404159 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403 59869407 05041679
H4.799144787.445779257.H2.205844513.596909568.H3.184468634.536058956.H3.844671944.106317938.Co0.815925256.850216727.C-0.901474767.909157827.C-1.288231466.571744987.C-0.561560215.677777766.C0.211247966.464338615.C0.004910807.844923356.C0.542799539.023031875.C0.997569725.921229124.C-0.702445384.181877296.C-2.306543446.179472298.C-1.461785469.171747667.H1.504028838.792649234.H0.697906629.893073116.H1.825405596.588468254.	59516422 08723755 94326030 53295629 .82404159 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403 59869407 05041679 40341397
H4.799144787.445779257.H2.205844513.596909568.H3.184468634.536058956.H3.844671944.106317938.Co0.815925256.850216727.C-0.901474767.909157827.C-1.288231466.571744987.C-0.561560215.677777766.C0.211247966.464338615.C0.004910807.844923356.C0.997569725.921229124.C-0.702445384.181877296.C-2.306543446.179472298.C-1.461785469.171747667.H1.504028838.792649234.H0.697906629.893073116.H1.825405596.588468254.H0.361786045.799423403.	59516422 08723755 94326030 53295629 .82404159 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403 59869407 05041679 40341397 78829527
H4.799144787.445779257.H2.205844513.596909568.H3.184468634.536058956.H3.844671944.106317938.Co0.815925256.850216727.C-0.901474767.909157827.C-1.288231466.571744987.C-0.561560215.677777766.C0.211247966.464338615.C0.004910807.844923356.C0.542799539.023031875.C0.997569725.921229124.C-0.702445384.181877296.C-2.306543446.179472298.C-1.461785469.171747667.H1.504028838.792649234.H0.697906629.893073116.H1.825405596.588468254.H0.361786045.799423403.H1.426970034.934792774.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403 59869407 05041679 40341397 78829527 90910483
H4.799144787.445779257.H2.205844513.596909568.H3.184468634.536058956.H3.844671944.106317938.Co0.815925256.850216727.C-0.901474767.909157827.C-1.288231466.571744987.C-0.561560215.677777766.C0.211247966.464338615.C0.004910807.844923356.C0.542799539.023031875.C0.997569725.921229124.C-0.702445384.181877296.C-1.461785469.171747667.H1.504028838.792649234.H0.697906629.893073116.H1.825405596.588468254.H0.361786045.799423403.H0.219812833.689212746.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403 59869407 05041679 40341397 78829527 90910483 42015711
H4.799144787.445779257.H2.205844513.596909568.H3.184468634.536058956.H3.844671944.106317938.Co0.815925256.850216727.C-0.901474767.909157827.C-1.288231466.571744987.C-0.561560215.677777766.C0.211247966.464338615.C0.004910807.844923356.C0.542799539.023031875.C0.997569725.921229124.C-0.702445384.181877296.C-2.306543446.179472298.C-1.461785469.171747667.H1.825405596.588468254.H0.697906629.893073116.H1.825405596.588468254.H0.361786045.799423403.H0.219812833.689212746.H-1.507961903.874698366.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403 59869407 05041679 40341397 78829527 90910483 42015711 06879625
H4.799144787.445779257.H2.205844513.596909568.H3.184468634.536058956.H3.844671944.106317938.Co0.815925256.850216727.C-0.901474767.909157827.C-1.288231466.571744987.C-0.561560215.677777766.C0.211247966.464338615.C0.004910807.844923356.C0.542799539.023031875.C0.997569725.921229124.C-0.702445384.181877296.C-2.306543446.179472298.C-1.461785469.171747667.H1.504028838.792649234.H0.697906629.893073116.H1.825405596.588468254.H0.361786045.799423403.H0.219812833.689212746.H-1.507961903.874698366.H-0.951493303.781656717.	59516422 08723755 94326030 53295629 29009945 64649528 78444323 84219920 15731497 39660097 68328759 75855191 67832181 88235344 91522403 59869407 05041679 40341397 78829527 90910483 42015711 06879625 75087349

Н	-3.31835292	6.10761587	8.24014274
Н	-2.35627774	6.91122330	9.49686852
Н	-0.73520507	9.99583940	7.85265511
Н	-2.35469326	9.50493949	7.32504557
Н	-1.76343780	9.02902495	8.92903050

Ni₂Pn*Cp*₂ 3 S=0

~		1 0 6 6 0 6 0 0 0	1 10045000
C	-0.83023000	1.06696000	1.18645000
С	-1.28878000	1.78895000	0.0000000
С	-0.83023000	1.06696000	-1.18645000
С	0.0000000	0.0000000	-0.73947000
C	-1 01025000	1 54094000	2 60350000
C	-1 94674000	3 19691000	0.0000000
C	-1.84874000	1 54004000	0.00000000
C	-1.01025000	1.54094000	-2.60350000
С	-3.90138000	-0.94157000	1.16762000
С	-4.48505000	0.29122000	0.72447000
С	-4.48505000	0.29122000	-0.72447000
С	-3.90138000	-0.94157000	-1.16762000
С	-3.51412000	-1.69215000	0.0000000
С	-3 78766000	-1 41458000	2 58990000
C	-5 12700000	1 33449000	1 59649000
C	5.12700000	1 22440000	1 50640000
C	-3.12700000	1 41450000	-1.59049000
C	-3.78766000	-1.41458000	-2.58990000
С	-2.94000000	-3.08157000	0.00000000
Ni	-2.43362000	0.18939000	0.0000000
H	-1.03671000	0.70003000	3.30970000
Н	-0.18398000	2.20401000	2.91379000
Н	-1.94449000	2.10628000	2.72560000
Н	-2.46801000	3.37510000	0.88646000
н	-1 03742000	3 93830000	0 0000000
н	-2 46801000	3 37510000	-0.88646000
и П	-1 03671000	0 70003000	-3 30970000
п	-1.030/1000	0.70003000	-3.30970000
H	-0.18398000	2.20401000	-2.913/9000
Н	-1.94449000	2.10628000	-2.72560000
H	-5.05274000	2.33971000	1.15681000
Н	-6.20176000	1.12776000	1.74574000
Н	-4.66733000	1.37421000	2.59437000
Н	-5.05274000	2.33971000	-1.15681000
Н	-6.20176000	1.12776000	-1.74574000
Н	-4.66733000	1.37421000	-2.59437000
н	-3 70660000	-0 57603000	-3 29624000
и П	-4 67048000	-2 00658000	-2 890/3000
11	2.0060000	2.00030000	2.09043000
H 	-2.90600000	-2.05483000	-2.73512000
Н	-2.31542000	-3.26394000	-0.88558000
H	-3.73765000	-3.84584000	0.00000000
Н	-2.31542000	-3.26394000	0.88558000
Н	-3.70660000	-0.57603000	3.29624000
Н	-4.67048000	-2.00658000	2.89043000
Н	-2.90600000	-2.05483000	2.73512000
С	0.83023000	-1.06696000	-1.18645000
С	1.28878000	-1.78895000	0.0000000
C	0 83023000	-1 06696000	1 18645000
C	0 0000000		1 739/7000
	1 01025000	1 54004000	0.13941000
	1.01025000	-1.54094000	-2.60350000
С	1.84674000	-3.18691000	0.00000000

С	1.01025000	-1.54094000	2.60350000
Н	1.03671000	-0.70003000	-3.30970000
Н	0.18398000	-2.20401000	-2.91379000
Н	1.94449000	-2.10628000	-2.72560000
Н	2.46801000	-3.37510000	-0.88646000
Н	1.03742000	-3.93830000	0.0000000
Н	2.46801000	-3.37510000	0.88646000
Н	1.03671000	-0.70003000	3.30970000
Н	0.18398000	-2.20401000	2.91379000
Н	1.94449000	-2.10628000	2.72560000
С	3.90138000	0.94157000	-1.16762000
С	4.48505000	-0.29122000	-0.72447000
С	4.48505000	-0.29122000	0.72447000
С	3.90138000	0.94157000	1.16762000
С	3.51412000	1.69215000	0.00000000
С	3.78766000	1.41458000	-2.58990000
С	5.12700000	-1.33449000	-1.59649000
С	5.12700000	-1.33449000	1.59649000
С	3.78766000	1.41458000	2.58990000
С	2.9400000	3.08157000	0.0000000
Ni	2.43362000	-0.18939000	0.0000000
Н	5.05274000	-2.33971000	-1.15681000
Н	6.20176000	-1.12776000	-1.74574000
Н	4.66733000	-1.37421000	-2.59437000
Н	5.05274000	-2.33971000	1.15681000
Н	6.20176000	-1.12776000	1.74574000
Н	4.66733000	-1.37421000	2.59437000
Н	3.70660000	0.57603000	3.29624000
Н	4.67048000	2.00658000	2.89043000
Н	2.90600000	2.05483000	2.73512000
Н	2.31542000	3.26394000	0.88558000
Н	3.73765000	3.84584000	0.0000000
Н	2.31542000	3.26394000	-0.88558000
Н	3.70660000	0.57603000	-3.29624000
Н	4.67048000	2.00658000	-2.89043000
Н	2.90600000	2.05483000	-2.73512000

Ni₂Pn*Cp*₂ 3 S=1

С	-0.77543027	1.11717878	1.19191285
С	-1.22930179	1.82195532	0.0000000
С	-0.77543027	1.11717878	-1.19191285
С	0.0000000	0.0000000	-0.73594146
С	-0.93447024	1.59309694	2.60973824
С	-1.84443125	3.19527937	0.0000000
С	-0.93447024	1.59309694	-2.60973824
С	-3.78374333	-1.02422209	1.16628342
С	-4.41459898	0.18490685	0.72225111
С	-4.41459898	0.18490685	-0.72225111
С	-3.78374333	-1.02422209	-1.16628342
С	-3.37231335	-1.76484694	0.0000000
С	-3.64988488	-1.48385627	2.59137114
С	-5.07368641	1.21594106	1.59539511
С	-5.07368641	1.21594106	-1.59539511
С	-3.64988488	-1.48385627	-2.59137114
С	-2.75749081	-3.13618728	0.0000000

Ni	-2.33116184	0.13573049	0.0000000
Н	-1.00450745	0.75144351	3.31328024
Н	-0.08125301	2.21627921	2.93544208
Н	-1.84186502	2.20134076	2.73393762
Н	-2.47155363	3.35981085	0.88691123
н	-1 06425807	3 97598483	0 0000000
н	-2 47155363	3 35981085	-0.88691123
11	1 00450745	0 75144251	2 21220024
п	-1.004J0/4J	0.75144551	-3.31320024
п	-0.08125501	2.2102/921	-2.93344200
H	-1.84186502	2.20134076	-2./3393/62
Н	-5.03008670	2.21939833	1.14//932/
Н	-6.14084796	0.98260546	1.75818355
H	-4.60282699	1.27348178	2.58700272
Н	-5.03008670	2.21939833	-1.14779327
Н	-6.14084796	0.98260546	-1.75818355
Н	-4.60282699	1.27348178	-2.58700272
Н	-3.59191656	-0.63763933	-3.29043653
Н	-4.51411391	-2.09895555	-2.89856314
Н	-2.74910816	-2.09655806	-2.73774646
Н	-2 12730553	-3,29856500	-0.88557675
н	-3 53191509	-3 92381093	
и П	-2 12720552	-3 20056500	0.00000000
п	-2.12/30333	-3.29858500	0.00007070
H	-3.59191656	-0.63763933	3.29043653
H	-4.51411391	-2.09895555	2.89856314
H	-2./4910816	-2.09655806	2./3//4646
С	0.77543027	-1.11717878	-1.19191285
С	1.22930179	-1.82195532	0.0000000
С	0.77543027	-1.11717878	1.19191285
С	0.0000000	0.0000000	0.73594146
С	0.93447024	-1.59309694	-2.60973824
С	1.84443125	-3.19527937	0.0000000
С	0.93447024	-1.59309694	2.60973824
Н	1.00450745	-0.75144351	-3.31328024
н	0 08125301	-2 21627921	-2 93544208
н	1 84186502	-2 20134076	-2 73393762
ц	2 47155363	-3 35981085	-0 88691123
11	1 06425907	2 07500402	0.00091123
п	1.00423007	-3.97598485	0.00000000
H	2.4/155363	-3.35981085	0.88691123
H	1.00450/45	-0.75144351	3.31328024
Н	0.08125301	-2.2162/921	2.93544208
H	1.84186502	-2.20134076	2.73393762
С	3.78374333	1.02422209	-1.16628342
С	4.41459898	-0.18490685	-0.72225111
С	4.41459898	-0.18490685	0.72225111
С	3.78374333	1.02422209	1.16628342
С	3.37231335	1.76484694	0.0000000
С	3.64988488	1.48385627	-2.59137114
С	5.07368641	-1.21594106	-1.59539511
С	5.07368641	-1.21594106	1.59539511
C	3.64988488	1 48385627	2 59137114
C	2 75749081	3 13618728	
Ni	2 · / J / H J U U L 2 · / J / H J U U L	_0 13572040	
	2.JJII0104 5.02000670	-0.100000000000000000000000000000000000	
п	5.030086/0	-2.21939833	-1.14//932/
н	0.14084/96	-U.98260546	-1./2010355
H	4.60282699	-1.2/3481/8	-2.58/002/2
Н	5.03008670	-2.21939833	1.14779327
H	6.14084796	-0.98260546	1.75818355
Н	4.60282699	-1.27348178	2.58700272

Н	3.59191656	0.63763933	3.29043653
Н	4.51411391	2.09895555	2.89856314
Н	2.74910816	2.09655806	2.73774646
Н	2.12730553	3.29856500	0.88557675
Н	3.53191509	3.92381093	0.0000000
Н	2.12730553	3.29856500	-0.88557675
Н	3.59191656	0.63763933	-3.29043653
Н	4.51411391	2.09895555	-2.89856314
Н	2.74910816	2.09655806	-2.73774646

Fe₂Pn*Cp₂ 54

Fe	-2.00838723	-0.00965556	0.0000000
Fe	2.00838723	0.00965556	0.0000000
С	-0.80068574	1.12527033	-1.18929217
С	-1.20266730	1.85659950	0.0000000
С	-0.80068574	1.12527033	1.18929217
С	0.80068574	-1.12527033	1.18929217
С	1.20266730	-1.85659950	0.0000000
С	0.80068574	-1.12527033	-1.18929217
С	0.0000000	0.0000000	0.74221325
С	0.0000000	0.0000000	-0.74221325
С	-0.99248086	1.56744667	-2.61223395
С	-1.91414428	3.18139502	0.0000000
С	-0.99248086	1.56744667	2.61223395
С	0.99248086	-1.56744667	2.61223395
С	1.91414428	-3.18139502	0.0000000
С	0.99248086	-1.56744667	-2.61223395
С	-3.64826150	-0.52249726	-1.16217336
С	-4.05898078	0.21545478	0.0000000
С	-3.64826150	-0.52249726	1.16217336
С	-2.97539892	-1.70491777	0.71988437
С	-2.97539892	-1.70491777	-0.71988437
С	3.64826150	0.52249726	1.16217336
С	4.05898078	-0.21545478	0.0000000
С	3.64826150	0.52249726	-1.16217336
С	2.97539892	1.70491777	-0.71988437
С	2.97539892	1.70491777	0.71988437
Н	-1.07643184	0.70586175	-3.28901748
Н	-1.90205831	2.17280093	-2.73040349
Н	-0.14140235	2.17928654	-2.95982879
Н	-2.55296945	3.29824099	0.88630700
Н	-2.55296945	3.29824099	-0.88630700
Н	-1.19541199	4.01921780	0.0000000
Н	-1.07643184	0.70586175	3.28901748
Н	-1.90205831	2.17280093	2.73040349
Н	-0.14140235	2.17928654	2.95982879
Н	1.07643184	-0.70586175	3.28901748
Н	0.14140235	-2.17928654	2.95982879
Н	1.90205831	-2.17280093	2.73040349
Н	2.55296945	-3.29824099	-0.88630700
Н	1.19541199	-4.01921780	0.0000000
Н	2.55296945	-3.29824099	0.88630700
Н	1.07643184	-0.70586175	-3.28901748
Н	0.14140235	-2.17928654	-2.95982879
Н	1.90205831	-2.17280093	-2.73040349
Н	-3.80699943	-0.22526826	-2.19631004
Н	-4.58809818	1.16593352	0.0000000

Н	-3.80699943	-0.22526826	2.19631004
Н	-2.53047279	-2.46520840	1.35757971
Н	-2.53047279	-2.46520840	-1.35757971
Н	3.80699943	0.22526826	2.19631004
Н	4.58809818	-1.16593352	0.0000000
Н	3.80699943	0.22526826	-2.19631004
Н	2.53047279	2.46520840	-1.35757971
Н	2.53047279	2.46520840	1.35757971

Co₂Pn*Cp₂ 4

Co	-2 23950352	0 04380602	0 0000000
Co	2.23950352	-0 04380602	0.00000000
C	-0 87835004	1 05448387	-1 17775890
C	-1 32562674	1 78651565	
C	-0 87835004	1 05448387	1 17775890
C	0.87835004	-1 05448387	1 17775890
C	1 32562674	-1 78651565	0 0000000
C	0 87835004	-1 05448387	-1 17775890
C	-0.0000000	0 0000000	0 71725772
C	-0.00000000	0 00000000	-0 71725772
C	-1 05347846	1 49715529	-2 60391300
C	-1 98703150	3 13681688	0 00000000
C	-1 05347846	1 49715529	2 60391300
C	1 05347846	-1 49715529	2 60391300
C	1 98703150	-3 13681688	0 00000000
C	1 05347846	-1 49715529	-2 60391300
C	-3 89886680	-0 51940773	-1 15181076
C	-4 37931759	0 17567507	0 0000000
C	-3 89886680	-0 51940773	1 15181076
C	-3 17870602	-1 69136347	0 71188494
C	-3 17870602	-1 69136347	-0 71188494
C	3 89886680	0 51940773	1 15181076
C	4 37931759	-0 17567507	
C	3 89886680	0 51940773	-1 15181076
C	3 17870602	1 69136347	-0 71188494
C	3 17870602	1 69136347	0 71188494
н	-1 10671594	0 63914639	-3 28823643
н	-1,97310501	2 08391845	-2 73401447
н	-0.20884001	2 12861730	-2 93173199
н	-2 62200708	3 27362436	0 88592230
н	-2 62200708	3 27362436	-0 88592230
н	-1 23904008	3 94925050	0 00000000
н	-1, 10671594	0 63914639	3 28823643
н	-1,97310501	2 08391845	2 73401447
н	-0.20884001	2 12861730	2 93173199
Н	1.10671594	-0.63914639	3.28823643
н	0 20884001	-2 12861730	2 93173199
н	1 97310501	-2 08391845	2 73401447
Н	2.62200708	-3.27362436	-0.88592230
Н	1.23904008	-3.94925050	0.0000000
н	2 62200708	-3 27362436	0.88592230
н	1.10671594	-0.63914639	-3.28823643
Н	0.20884001	-2.12861730	-2.93173199
н	1.97310501	-2.08391845	-2.73401447
Н	-4.06897255	-0.23230403	-2.18701338

Н	-4.96274109	1.09288751	0.0000000
Н	-4.06897255	-0.23230403	2.18701338
Н	-2.71756780	-2.43616099	1.35548420
Н	-2.71756780	-2.43616099	-1.35548420
Н	4.06897255	0.23230403	2.18701338
Н	4.96274109	-1.09288751	0.0000000
Н	4.06897255	0.23230403	-2.18701338
Н	2.71756780	2.43616099	-1.35548420
Н	2.71756780	2.43616099	1.35548420

Ni₂Pn*Cp₂ 5 S=0

Ni	2.42098389	-0.00068369	-0.00000000
C	0 00125225	-1 00537163	-1 19731735
C	1 /101130/	-1 68978996	_0 0000000
C	0 90125225	-1 00537163	1 18731735
C	-0 90125225	1 00537163	1 18731735
C	-1 41011304	1 68978996	-0.0000000
C	-0 90125225	1 00537163	-1 18731735
C	-0.00000000	0 0000000	0.73958646
C	-0.00000000	0.0000000	-0.73958646
C	1.10883728	-1.46521289	-2.60429062
C	2.07760205	-3.03835463	-0.00000000
C	1.10883728	-1.46521289	2.60429062
С	-1.10883728	1.46521289	2.60429062
С	-2.07760205	3.03835463	-0.0000000
С	-1.10883728	1.46521289	-2.60429062
С	4.21087264	0.56020718	-1.16104596
С	4.60411436	-0.18071804	-0.00000000
С	4.21087264	0.56020718	1.16104596
С	3.53188024	1.73408397	0.71806901
С	3.53188024	1.73408397	-0.71806901
С	-4.21087264	-0.56020718	1.16104596
С	-4.60411436	0.18071804	-0.00000000
С	-4.21087264	-0.56020718	-1.16104596
С	-3.53188024	-1.73408397	-0.71806901
С	-3.53188024	-1.73408397	0.71806901
Н	1.07819060	-0.62380538	-3.30902327
Н	2.07698537	-1.96859532	-2.72951540
Н	0.32300587	-2.17909560	-2.90734036
Н	2.71096672	-3.17662951	0.88639952
Н	2.71096672	-3.17662951	-0.88639952
Н	1.32564530	-3.84700283	-0.00000000
Н	1.07819060	-0.62380538	3.30902327
H	2.07698537	-1.96859532	2.72951540
Н	0.32300587	-2.17909560	2.90734036
H	-1.0/819060	0.62380538	3.30902327
H	-0.32300587	2.1/909560	2.90/34036
H	-2.07698537	1.96859532	2.72951540
H	-2.71096672	3.1/662951	-0.88639952
п II	-1.32304330	3.04/UUZ03 2.17660051	
п II	-2./1U900/2	0 60200E20	U.00039932 2 2000227
п	-I.U/819060	U.0238U338 2 17000560	-3.30902327
п	-0.3230038/	2.1/909360	-2.90/34036

Н	-2.07698537	1.96859532	-2.72951540
Н	4.38906519	0.27287517	-2.19418651
Н	5.14867399	-1.12216698	-0.0000000
Н	4.38906519	0.27287517	2.19418651
Н	3.10730295	2.50743711	1.35327899
Н	3.10730295	2.50743711	-1.35327899
Н	-4.38906519	-0.27287517	2.19418651
Н	-5.14867399	1.12216698	-0.0000000
Н	-4.38906519	-0.27287517	-2.19418651
Н	-3.10730295	-2.50743711	-1.35327899
Н	-3.10730295	-2.50743711	1.35327899

Ni₂Pn*Cp₂ 5 S=1

Ni	2.43301879	-0.02344785	-0.00000000
Ni	-2.43301879	0.02344785	-0.0000000
С	0.91889025	-1.01262585	-1.17496647
С	1.39463510	-1.72918616	-0.00000000
С	0.91889025	-1.01262585	1.17496647
С	-0.91889025	1.01262585	1.17496647
С	-1.39463510	1.72918616	-0.0000000
С	-0.91889025	1.01262585	-1.17496647
С	0.0000000	-0.0000000	0.71843988
С	0.0000000	-0.0000000	-0.71843988
С	1.11547222	-1.45686932	-2.59827802
С	2.08057983	-3.06874352	-0.0000000
С	1.11547222	-1.45686932	2.59827802
С	-1.11547222	1.45686932	2.59827802
С	-2.08057983	3.06874352	-0.0000000
С	-1.11547222	1.45686932	-2.59827802
С	4.22311230	0.56094372	-1.15021156
С	4.70346382	-0.12936521	-0.0000000
С	4.22311230	0.56094372	1.15021156
С	3.48875977	1.71932434	0.71148579
С	3.48875977	1.71932434	-0.71148579
С	-4.22311230	-0.56094372	1.15021156
С	-4.70346382	0.12936521	-0.0000000
С	-4.22311230	-0.56094372	-1.15021156
С	-3.48875977	-1.71932434	-0.71148579
С	-3.48875977	-1.71932434	0.71148579
Н	1.14403471	-0.60280151	-3.28811349
Н	2.05003992	-2.01994889	-2.72282928
Н	0.28829037	-2.11288199	-2.92159416
Н	2.71946347	-3.19670916	0.88454862
Н	2.71946347	-3.19670916	-0.88454862
Н	1.34721218	-3.89459957	-0.00000000
Н	1.14403471	-0.60280151	3.28811349
Н	2.05003992	-2.01994889	2.72282928
Н	0.28829037	-2.11288199	2.92159416
Н	-1.14403471	0.60280151	3.28811349
Н	-0.28829037	2.11288199	2.92159416
Н	-2.05003992	2.01994889	2.72282928
Н	-2.71946347	3.19670916	-0.88454862
Н	-1.34721218	3.89459957	-0.0000000
Н	-2.71946347	3.19670916	0.88454862
Н	-1.14403471	0.60280151	-3.28811349

Н	-0.28829037	2.11288199	-2.92159416
Н	-2.05003992	2.01994889	-2.72282928
Н	4.40471697	0.28118465	-2.18533797
Н	5.29172987	-1.04344815	-0.00000000
Н	4.40471697	0.28118465	2.18533797
Н	3.03260095	2.46781547	1.35420569
Н	3.03260095	2.46781547	-1.35420569
Н	-4.40471697	-0.28118465	2.18533797
Н	-5.29172987	1.04344815	-0.0000000
Н	-4.40471697	-0.28118465	-2.18533797
Н	-3.03260095	-2.46781547	-1.35420569
Н	-3.03260095	-2.46781547	1.35420569

7. References

- 1. S. H. Bertz, J. M. Cook, A. Gawish, U. Weiss, T. K. Jones, S. E. Denmark, S. V Govindan, and R. M. Coates, *Org. Synth.*, 1986, **64**, 27.
- 2. K. Jonas, P. Klusmann, and R. Goddard, Z. Naturforsch., B: Chem. Sci., 1995, 50, 394.
- 3. J. M. Manriquez, E. E. Bunel, B. Oelckers, C. Vasquez, and J. S. Miller, in *Inorganic Syntheses*, ed. A. H. Cowley, John Wiley & Sons, Inc., 1997, vol. 31, p. 215.
- 4. E. E. Bunel, L. Valle, and J. M. Manriquez, Organometallics, 1985, 4, 1680.
- 5. J. Cosier and A. M. Glazer, J. Appl. Cryst., 1986, 19, 105.
- 6. Z. Otwinowski and W. Minor, in *Methods in Enzymol.*, eds. C. W. Carter and R. M. Sweet, Academic Press, 1997, p. 276.
- 7. CrysAlis PRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
- 8. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, and M. Camalli, *J. Appl. Cryst.*, 1994, **27**, 435.
- 9. L. Palatinus and G. Chapuis, J. Appl. Cryst., 2007, 40, 786.
- 10. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, and D. J. Watkin, *J. Appl. Cryst.*, 2003, **36**, 1487.
- 11. R. I. Cooper, A. L. Thompson, and D. J. Watkin, J. Appl. Cryst., 2010, 43, 1100.
- 12. J. R. Carruthers and D. J. Watkin, Acta Crystallogr. Sect. A, 1979, 35, 698.
- 13. A. L. Spek, J. Appl. Cryst., 2003, 36, 7.
- 14. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- 15. J. P. Perdew and W. Yue, *Phys. Rev. B*, 1986, **33**, 8800.
- 16. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 1980, 58, 1200.
- 17. C. Lee, W. Yang, and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.
- 18. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett., 1989, 157, 200.
- 19. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2007, **120**, 215.
- 20. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys., 1992, 96, 6796.
- 21 E. E. Bunel, L. Valle, N. L. Jones, P. J. Carroll, C. Barra, M. Gonzalez, N. Munoz, G. Visconti, A. Aizman and J. M. Manriquez, *J. Am. Chem. Soc.*, 1988, **110**, 6596.
- J. M. Manriquez, M. D. Ward, W. M. Reiff, J. C. Calabrese, N. L. Jones, P. J. Carroll, E. E. Bunel and J. S. Miller, J. Am. Chem. Soc., 1995, 117, 6182.
- C. Miravitlles, E. Molins, W. Maniukiewicz, M. Mas, J. M. Manríquez, I. Chávez, B. Oelckers, A. Alvarez-Larena and J. L. Briansó, *Acta Crystallogr. Sect. C Cryst. Struct. Commun.*, 1996, 52, 3047.
- 24 Y. Kitano, M. Kashiwagi and Y. Kinoshita, Bull. Chem. Soc. Jpn., 1973, 46, 723.
- 25 H. M. McConnell and D. B. Chesnut, J. Chem. Phys., 1958, 28, 107.
- 26 P. Hrobárik, R. Reviakine, A. V. Arbuznikov, O. L. Malkina, V. G. Malkin, F. H. Köhler and M. Kaupp, *J. Chem. Phys.*, 2007, **126**, 024107.