Electronic Supplementary Material (ESI) for Dalton Transactions.

This journal is © The Royal Society of Chemistry 2018

Ultrafine Ternary Metal Oxide Particle with Carbon Nanotubes: Metal-Organic-Framework-Based Approach and Superior Lithium-Storage Performance

Xuxu Tang^{†a}, Ming Liang^{†b}, Yanfeng Zhang^a, Weiwei Sun^{*a,c}, and Yong Wang^{*a}

^aDepartment of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, P. R. China, Email: <u>vivisun@shu.edu.cn</u>, <u>yongwang@shu.edu.cn</u>

^bGuangzhou Quality Supervision and Testing Institute, No. 1-2, Zhujiang Road, Chaot ian Industrial Zone, Panyu District, Guangzhou, Guangdong, P.R. China ^cKey Laboratory of Science & Technology of Eco-Textile, Ministry of Education,

Donghua University, 2999 North Renmin Road, Shanghai, P. R. China

Fig. S1. TGA curves of ZIF-8@CNTs and Co/Zn-ZIFs@CNTs in air with 5 °C min⁻¹.

Fig. S2. XRD patterns for (a) $ZnO@CNTs-350^{\circ}C$ and (b) $ZnCo_2O_4@CNTs-400^{\circ}C$ (the insert is the SEM image of $ZnCo_2O_4@CNTs-400^{\circ}C$).

Fig. S3. SEM images of (a) ZIF-8@CNTs and (b) Co/Zn-ZIFs@CNTs.

Fig. S4. (a) XPS survey spectrum of the CNTs. High-resolution XPS spectra of (b) C 1s and (c) O 1s for the CNTs.

Fig. S5. Raman spectra of ZnO@CNTs and ZnCo₂O₄@CNTs composites

Fig. S6. Nitrogen adsorption-desorption isotherm and pore size distribution curves (a) ZnO@CNTs composite and (b) $ZnCo_2O_4@CNTs$ composite

Fig. S7. (a) The first three cyclic voltammetry curves of ZnO@CNTs at a scan rate of 0.1 mV s⁻¹ in the voltage range of 0.005-3 V, (b) the discharge/charge curve of ZnO@CNTs at current density of 100 mA g⁻¹ for the 1st, 2nd, 50th, and 100th cycles, A broad and strong cathodic peak located at 0.43 V can be observed in the lithium insertion scan of the first cycle CV curve, which can be assigned to the reduction of ZnO to metallic Zn and the formation of Zn-Li alloys together with the generation of solid electrolyte interphase (SEI) layers. In the first anodic sweep, some oxidation peaks in the potential range of 0.2-0.8 V, which can be attributed to the multistep dealloying process of Li-Zn alloy, The discharge/charge curves are in accordance with the results of CV.

Fig. S8. Cycling performances of (a) $ZnO@CNTs-350^{\circ}C$ and (b) $ZnCo_2O_4@CNTs-400^{\circ}C$.

Table S1. CHN elemental analysis results of $ZnCo_2O_4@CNTs$ and ZnO@CNTs

materials	C (wt%)	N (wt%)	H (wt%)	S (wt%)
ZnCo ₂ O ₄ @CNTs	39.56	0	0.121	0
ZnO@CNTs	50.02	0	0.35	0

Samples	Compositions	XPS results		
ZnCo ₂ O ₄ @CNTs	C (39.7 %)	Co-C/Zn-C (283.8 eV), C=C (285.1 eV), C-O (287.2 eV)		
	Co (28.6 %)	Co 2p _{3/2} (641.3 eV), Co 2p _{1/2} (653.1 eV)		
	Zn (16.3 %)	Zn $2p_{3/2}$ (1020.0 eV), Zn $2p_{1/2}$ (1043.0 eV)		
	O (15.4 %)	Co-O (528.7 eV), Zn-O (530.8 eV), C-O (531.7 eV)		
ZnO@CNTs	C (50.9 %)	Zn-C (283.4 eV), C=C (284.7 eV), C-O (286.3 eV)		
	Zn (39.2 %)	Zn $2p_{3/2}$ (1020.0 eV), Zn $2p_{1/2}$ (1043.0 eV)		
	O (9.8 %)	Zn-O (530.1 eV), C-O (531.6 eV)		

Table S2 Compositions determination of $ZnCo_2O_4$ @CNTs and ZnO@CNTs based on EDS and XPS results.

Table S3. Electrochemical properties comparison between $ZnCo_2O_4@CNTs$ and ZnO@CNTs electrodes in this work and previous reported $ZnCo_2O_4$ -involved electrode materials.

Composite	morphology	IRC	RRC/CN	CD	Reference
ZnCo ₂ O ₄ @CNTs	Nanocrystal embedded	1550	1507/200	100	This work
	into CNTs				
ZnO@CNTs	Polyhedron on CNTs	792	935/200	100	This work
ZnCo ₂ O ₄ /CNTs	Nanoparticle-assembled	1050	~870/150	100	1
	polyhedron with CNTs				
ZnCo ₂ O ₄ @C	wrinkled-paper-like 3D	~810	~520/50	100	2
	structure				
ZnCo ₂ O ₄ /CNFs	Nanocube on CNFs	~750	~600/300	500	3
ZnCo ₂ O ₄ /CNFs	Urchin on CNFs	~1150	~1100/100	180	4
ZnCo ₂ O ₄ /carbon cloth	Nanowire on carbon	~1300	~1180/160	200	5
	cloth				
ZnCo ₂ O ₄ / graphene	Nanoparticle on	~950	~1100/90	90	6
	graphene				
ZnCo ₂ O ₄ / graphene	Microsphere on	854	~900/500	1000	7
	graphene				
ZnCo ₂ O ₄ / graphene	Nanosheet on graphene	936	~930/100	90	8
ZnCo ₂ O ₄ / graphene	Nanosheet on graphene	813	791/1000	1000	9
ZnCo ₂ O ₄ /graphene/CNTs	Peanut-like particle on	~902	1027/200	500	10
	graphene and CNTs				
ZnCo ₂ O ₄	Microsphere	1123	~1000/100	100	11
ZnCo ₂ O ₄	Flower-like	~1110	~900/100	100	12
	microsphere				
ZnCo ₂ O ₄	Flower-like	1177	~1100/50	100	13
	microsphere				
ZnCo ₂ O ₄	Microsphere	869	~835/50	400	14
ZnCo ₂ O ₄	Plum candy-like	950	~1000/110	200	15
	microsphere				
ZnCo ₂ O ₄	Microsphere	1205	~1200/100	100	16
ZnCo ₂ O ₄	Yolk-shell microsphere	~1000	~910/100	200	17
ZnCo ₂ O ₄	Twin microsphere	~1050	~800/100	1000	18
ZnCo ₂ O ₄	Rose-like spherical	980	~1000/50	50	19
	particle				
ZnCo ₂ O ₄	Nanorod	1515	1663/200	500	20
ZnCo ₂ O ₄	Nanorod	~1200	~800/50	100	21
ZnCo ₂ O ₄	Nanowire	~1100	1220/20	100	22
ZnCo ₂ O ₄	Nanowire	1068	~1000/100	100	23
ZnCo ₂ O ₄	Nanotube	1200	1400/30	100	24
ZnCo ₂ O ₄	Nanoflake	1020	750/25	80	25

ZnCo ₂ O ₄	Nanosheet	~1086	~930/200	200	26
ZnCo ₂ O ₄	Nanoribbon	1752	1422/80	200	27
ZnCo ₂ O ₄	Microsphere	1388	~1297/200	100	28
ZnCo ₂ O ₄	Nanoflake	~1639	~1138/500	1000	29
ZnCo ₂ O ₄	Nanosheet	936	810/200	1000	30
ZnCo ₂ O ₄	Nanorod	1118	1051/200	400	31
ZnCo ₂ O ₄	Nanoparticle	2023	1243/80	100	32
ZnCo ₂ O ₄	Nanoparticle	~880	1000/120	450	33
ZnCo ₂ O ₄	Core-shell sphere	~585	511/400	1000	34
ZnCo ₂ O ₄	Hollow octahedral	1131	1025/200	200	35
	nanocage				
ZnCo ₂ O ₄	Nanosheet	1274	1641/50	100	36
ZnCo ₂ O ₄	Particle	1110	700/100	100	37

References:

- 1 Q. Ru, X. Song, Y. D. Guo, L. Y. Mo and S. J. Hu, *J. Alloys Compd.*, 2016, **654**, 586-592.
- 2 A. K. Giri, P. Pal, R. Ananthakumar, M. Jayachandran, S. Mahanty and A. B. Panda, *Cryst. Growth Des.*, 2014, **14**, 3352-3359.
- 3 R. Z. Chen, Y. Hu, Z. Shen, Y. L. Chen, X. He, X. W. Zhang and Y. Zhang, *ACS Appl. Mater. Interfaces*, 2016, **8**, 2591-2599.
- 4 B. Liu, X. F. Wang, B. Y. Liu, Q. F. Wang, D. S. Tan, W. F. Song, X, J. Hou, D. Chen and G. Z. Hen, *Nano Res.*, 2013, **6**, 525-534.
- 5 B. Liu, J. Zhang, X. F. Wang, G. Chen, D. Chen, C. W. Zhou and G. Z. Shen, *Nano Lett.*, 2012, **12**, 3005-3011.
- 6 A. K. Rai and J. Kim, Solid State Sci., 2015, 48, 90-96.
- 7 C. Chen, B. R. Liu, Q. Ru, S. M. Ma, S. J. Hu and X. H. Hou, *RSC Adv.*, 2016, 6, 4914-4924.
- 8 G. X. Gao, H. B. Wu, B. T. Dong, S. J. Ding and X. W. Lou, Adv. Sci., 2015, 2, 1-2.
- 9 H. L. Cao, X. F. Zhou, W. Deng, Z. Y. Ma, Y. W. Liu and Z. P. Liu, *Chem. Eng. J.* 2018, 342, 654-661.
- 10 Z. Wang, Q. Ru, Y. D. Mo, L. Y. Guo1, X. Q. Chen, X. H. Hou and S. J. Hu, *Mater. Electron.*, 2017, 28, 9081-9090.
- 11 D. Wang, X. J. Qi, H. Y. Gao, J. G. Yu, Y. N. Zhao, G. T. Zhou and G. D. Li, *Mater. Lett.*, 2016, 164, 93-96.

- 12 S. J.Hao, B. W. Zhang, S. Ball, M. Copley, Z. C. Xu, M. Srinivasan, K. Zhou, S. Mhaisalkar and Y. Z. Huang, *J. Power Sources*, 2015, **294**, 112-119.
- 13 H. W. Chen, A. F. Liu, X. L. Zhang, J. B. Mu, Y. M. Bai and J. X. Hou, *Ceram. Int.*, 2015, **41**, 7556-7564.
- 14 L. Huang, G. H. Waller, Y. Ding, D. C. Chen, D. Ding, P. X. Xi, Z. L. Wang and M. L. Liu, *Nano Energy*, 2015, **11**, 64-70.
- 15 B. B. Fan, X. H. Chen, A. P. Hu, Q. L. Tang, H. N. Fan, Z. Liu and K. K. Xiao, *RSC Adv.*, 2016, 6, 79971-79977.
- 16 L. Y. Guo, Q. Ru, X. Song, S. J. Hu and Y. D. Mo, *RSC Adv.*, **2015**, **5**, 19241-19247.
- 17 J. F. Li, J. Z. Wang, D. Wexler, D. Q. Shi, J. W. Liang, H. K. Liu, S. L. Xiong and Y. T. Qian, J. Mater. Chem. A, 2013, 1, 15292-15299.
- 18 J. Bai, X. G. Li, G. Z. Liu, Y. T. Qian and S. L. Xiong, *Adv. Funct. Mater.*, 2014, 24, 3012-3020.
- 19 Y. J. Wang, J. Ke, Y. W. Zhang and Y.H. Huang, J. Mater. Chem. A, 2015, 3, 24303-24308.
- 20 R. Z. Zhao, Q. Li, C. X. Wang and L.W. Yin, *Electrochim. Acta*, 2016, 197, 58-67.
- 21 X. Song, Q. Ru, Y. D. Mo, S. J. Hu and B. N. A An, *J. Alloys Compd.*, 2014, **606**, 219-225.
- 22 H. W. Liu and J. Wang, *Electrochim. Acta*, 2013, 92, 371-375.
- 23 N. Du, Y. F. Xu, H. Zhang, J. X. Yu, C. X. Zhai and D. R. Yang, *Inorg. Chem.*, 2011, **50**, 3320-3324.
- 24 W. Luo, X. L. Hu, Y.M. Sun and Y. H. Huang, J. Mater. Chem., 2012, 22, 8916-8921.
- 25 Y. C. Qiu, S. H. Yang, H. Deng, L. M. Jin and W. S. Li, J. Mater. Chem., 2010, 20, 4439-4444.
- 26 Y. Q. Zhu, C. B. Cao, J. T. Zhang and X. Y. Xu, J. Mater. Chem. A, 2015, 3, 9556-9564.
- 27 Z. Q. Zhang, X. Y. Zhang, Y. Feng, X. F. Wang, Q. S. Sun, D. Y. Yu, W. M. Tong,
 X. D. Zhao and X. Y. Liu, *Electrochim. Acta*, 2018, 260, 823-829.
- 28 M.-H. Jung, Appl. Surf. Sci., 2018, 427, 293-301.

- 29 X. Y. Hou, S. Bai, S. Xue, X. N. Shang, Y. J. Fu and D. Y. He, *J. Alloy Compd.*, 2017, **711**, 592-597.
- 30 M. M. Zhen, L. Liu and C. Wang, *Microporous Mesoporous Mater.*, 2017, 246, 130-136.
- 31 M. Carbone, J. Electroanal. Chem., 2018, 815, 151-157.
- 32 M. J. Du, D. He, Y. B. Lou and J. X. Chen, J. Electroanal. Chem., 2017, 26, 673-680.
- 33 R. A. Adams, V. G. Pol and A. Varma, *Ind. Eng. Chem. Res.*, 2017, 56, 7173-7183.
- 34 D. H. Chen, G. Chen, J. Pei, C. H. Yan, Y. Y. Hu and Z. Z. Qin, *New J. Chem.*, 2017, **41**, 6973-6976.
- 35 B. H. Liu, H. Liu, M. F. Liang, L. X. Liu, Z. L. Lv, H. Zhou and H. Guo, Nanoscale, 2017, 9, 17174-17180.
- 36 J. C. Du, Y. H. Tang, Y. Wang, P. H. Shi, J. C. Fan, Q. J. Xu and Y. L. Min, *Dalton Trans.*, 2018, 47, 7571-7577.
- 37 Y. Pan, W. J. Zeng, L. Li, Y. Z. Zhang, Y. N. Dong, D. X. Cao, G. L. Wang, B. L. Lucht, K. Ye and K. Cheng, *Nano-Micro Lett.*, 2017, 9, 20-29.