Chalcogen stabilized trimetallic clusters: synthesis, structures, and bonding of $[(Cp*M)_3(E)_{6+m}(BH)_n]$ (M = Nb or Ta; E = S or Se; m = 0 or 1 or 2; n = 0 or 1)

Sourav Kar,^a Subhash Bairagi,^a Koushik Saha,^a Beesam Raghavendra,^a and Sundargopal Ghosh^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. Tel: +91 44-22574230; Fax: +91 44-22574202; E-mail: <u>sghosh@iitm.ac.in</u>

I Experimental

I.1 Supplementary Data	Page No.
Figure S1. Molecular structure and labeling diagram for compound 1	\$3
Figure S2. Molecular structure and labeling diagram for compound 2	S4
Figure S3. Molecular structure and labeling diagram for compound 3	S5
I.2 Spectroscopic details	
Figure S4. ESI-MS of compound 1	S6
Figure S5. HR-MS of compound 1	S7
Figure S6. ESI-MS of compound 2	S8
Figure S7. HR-MS of compound 2	S9
Figure S8. ESI-MS of compound 2	S10
Figure S9. ¹ H{ ¹¹ B} NMR spectrum of compound 1	S11
Figure S10. ¹¹ B{ ¹ H} NMR spectrum of compound 1	S12
Figure S11. ¹³ C{ ¹ H} NMR spectrum of compound 1	S13
Figure S12. ¹ H NMR spectrum of compound 2	S14
Figure S13. ¹³ C{ ¹ H} NMR spectrum of compound 2	S15
Figure S14. ¹ H NMR spectrum of compound 3	S16
Figure S15. ¹³ C{ ¹ H} NMR spectrum of compound 3	S17
Figure S16. IR spectrum of compound 1	S17

II Computational

Supplementary data

Table S1. Calculated natural charges (q_M , q_E , and q_B), natural valence population (Pop) and	
HOMO – LUMO gaps of 1 , 2 , 2 ^{se} , 4 ^s , 4 , and 3 .The transition metal and chalcogen	
atoms are indicated by M and E respectively	S18
Table S2. Selected Wiberg bond index (WBI) of 1	S19
Figure S17. Optimized geometry of 1	S20
Figure S18. Optimized geometry of 2	S21
Figure S19. Optimized geometry of 3	S22

I Experimental

I.1 Supplementary Data

Figure S1. Molecular structure and labeling diagram for compound **1**. Selected bond lengths (Å) and bond angles (°) of **1**: Nb1-Nb2 3.1750(9), Nb1-Nb1 3.1390(9), Nb1-S2 2.5514(18), Nb1-S1 2.3840(18), Nb2-S2 2.5337(17), Nb2-S1 2.3837(15), Nb1-S3 2.5336(18), B1-S3 1.937(15), S5-S2 1.941(4), S5-B1 1.880(14), B1-S2 2.086(13); Nb1-Nb2-Nb1 59.25(2), Nb1-Nb1-Nb2 60.373(11), Nb1-S3-Nb1 76.56(6), B1-S5-S2 90.7(4), B1-S3-Nb1 91.7(4).

Figure S2. Molecular structure and labeling diagram for compound $\mathbf{2}^{,1}$

Figure S3. Molecular structure and labelling diagram of **3**. Selected bond lengths (Å) and angles (°) of **3**: Ta2-Ta2 3.085(11), Ta1-Ta2 3.3499(9), Se1-Ta1 2.4790(14), Se1-Ta2 2.5488(17) Ta2-Se2 2.7095(13), Ta1-Se2 2.6201(15), Se4-Ta2 2.5045(16), Se5-Ta2 2.5303(16) Se2-Se3 2.248(3), Se3-Se3 1.938(7); Ta2-Se2-Se3 118.33(11), Ta1-Se2-Se3 115.76(11), Ta1-Se2-Ta2 77.86(4), Se3-Se3-Se2 110.03(9), Ta2-Se4-Ta2 76.03(6), Ta2-Se5-Ta2 75.12(6), Ta2-Ta2-Ta1 62.584(12), Ta2-Ta1-Ta2 54.83(2).

I.2 Spectroscopic details

Figure S4. ESI-MS of compound 1

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 63 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-30 H: 0-47 B: 0-1 S: 0-7 Nb: 0-3 SGG-NB-HOMO

05122018-04-SGG-NB-HOMO 15 (0.378) AM (Cen,5, 80.00, Ar,5000.0,0.00,1.00); Sb (1,40.00); Sm (Mn, 1x5.00); Cm (4:22) TOF MS ES+

Figure S5. HR-MS of compound 1

S8

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 56 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-30 H: 0-45 S: 0-6 K: 0-1 Nb: 0-3

SGG-NBTRIS

09112018-02-SGG-NBTRIS 20 (0.503) AM (Cen, 5, 80.00, Ar, 5000.0, 0.00, 1.00); Sb (1, 40.00); Sm (Mn, 1x5.00); Cm (4:20) TOF MS ES+

Figure S7. HR-MS of compound 2

Figure S8. ESI-MS of compound 3

Figure S9. ${}^{1}H{}^{11}B{}$ NMR spectrum of compound 1 in CDCl₃

Figure S10. $^{11}B{^1H}$ NMR spectrum of compound 1 in CDCl₃.^{2,3}

Figure S11. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 1 in CDCl_3

Figure S13. ¹³C{¹H} NMR spectrum of compound 2 in $CDCl_3$ (due to less yield of 2 tertiary carbon peak of Cp* are not visible in spectrum)

Figure S14. ¹H NMR spectrum of compound **3** in $CDCI_3$

Figure S15. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of compound 3 in CDCl_3

II Computational

Supplementary data

Table S1. Calculated natural charges $(q_M, q_E, and q_B)$, natural valence population (**Pop**) and HOMO – LUMO gaps of **1**, **2**, **2**^{Se}, **4**^s, **4**, and **3**. The transition metal and chalcogen atoms are indicated by **M** and **E** respectively.

	qм	q _E	q _B	Pop(M _{val})	Pop(E _{val})	Pop(B _{val})	ΔE _{H-L} (ev)
1	-0.545	0.173	-0.290	5.465	5.784	3.262	2.61
	-0.522	0.195		5.437	5.767		
		0.243			5.706		
		-0.041			5.994		
2	-0.553	0.115		5.474	5.844		2.60
	-0.531	0.250		5.434	5.698		
		0.166			5.790		
		0.071			5.888		
2 ^{Se}	-0.877	0.288		5.797	5.677		2.08
	-0.833	0.281		5.763	5.685		
		0.351			5.606		
		0.356			5.600		
4 ^s	-0.002	-0.113		4.898	6.075		2.23
	-0.138	0.026		5.058	5.934		
		0.173			5.754		
		-0.117			6.086		
4	-0.481	0.141	-	5.375	5.822		2.45
	-0.454	0.148		5.352	5.814		
		0.269			5.682		
		0.267			5.684		
3	-0.505	0.279		5.403	5.674		2.35
	-0.467	0.174		5.356	5.782		
		0.177			5.783		
		-0.073			6.039		

Table S2. Selected Wiberg bond index (WBI) of 1

	Nb1	Nb2	Nb1
Nb1	0.0000	0.3886	0.4332
Nb2	0.3886	0.0000	0.4323
Nb1	0.4332	0.4323	0.0000

Figure S17. Optimized geometry of 1 Total energy = -3565.42502489 a.u. Cartesian coordinates for the calculated structure 1 (in Å)

S	0.07277200	1.49719700	3.17134500	С	-0.20285900	-4.14118200) -1.1263	2000
В	-0.01535500	-0.32635200	2.75392600	С	-1.34199300	-4.02419500	0 -0.2920	5200
С	3.29437300	2.43198900	0.45207500	С	-0.89788200	-3.92204400	1.04604	4400
С	3.91160900	1.16531400	0.60454200	Nb	-0.09163700	-1.89424000	0 -0.1193	1300
С	4.10584100	0.61783400	-0.68364600	S	-1.82701300	-1.13221000) -1.5722	5900
с	3.60287400	1.54093700	-1.63475300	Н	1.96684200	-4.20784800	0 -0.6309	9200
С	3.11265300	2.66651600	-0.93083800	н	-0.20916000	-4.22478600	-2.2007	9500
С	-3.43131700	1.89226000	-1.63576700	н	-2.36671100	-3.99718100	0 -0.6217	3200
С	-2.83723900	2.95843500	-0.91954800	н	-1.52360600	-3.81016000) 1.9153	3900
С	-3.04761000	2.73066700	0.46046800	н	1.15665200	-3.94053900	1.9096	5300
Nb	1.66068100	0.74319300	-0.33941600	н	4.54341600	-0.34095500	0 -0.9042	3600
Nb	-1.58159900	0.89916500	-0.33926700	н	4.17779600	0.70121700	1.53909	9300
S	0.09093400	1.88945000	-1.75039100	н	3.01160100	3.09597800	1.25142	2000
S	0.10305700	2.13431500	1.18665400	н	2.65965200	3.53947400	-1.3692	9700
S	1.47748200	-0.84607500	1.62068800	н	3.59633200	1.40827900	-2.7044	6600
S	1.70938700	-1.30235000	-1.57216000	н	-2.29925600	3.78687100) -1.3481	6100
S	-1.55203500	-0.69970000	1.62121400	н	-2.70536100	3.35679200) 1.2671	2000
С	-4.02638300	1.01421400	-0.69525700	н	-3.43234800	1.76894500	-2.7066	0800
С	-3.78619400	1.52897200	0.59872000	н	-4.55420400	0.10461100	0 -0.9265	1000
С	0.51935000	-3.99071900	1.04307600	н	-4.10054900	1.08453100	0 1.5279	1100
С	0.94576400	-4.13515600	-0.29695100	н	-0.0488	2400 -1.01	936300	3.73028100

Figure S18. Optimized geometry of 2 Total energy = -3141.65688904 a.u. Cartesian coordinates for the calculated structure 2 (in Å)

С

С

С

С

С

S

S

Nb

С

С

С

С

С

S

S

Nb С

С

С

С

2	2.89017300	2.92209300	0.65898700	С	1.70749100	-3.57291800	-1.20239000
	1.70879200	3.57517800	1.08992000	S	-1.10873900	-1.83340400	-1.28074100
(0.99242100	3.98134800	-0.06041400	S	-0.88598800	-1.05219900	1.88257400
	1.71874900	3.56812700	-1.20177000	Nb	1.01561700	-1.48358600	-0.05505400
	2.89488100	2.91544500	-0.75680900	н	0.02440000	-4.48974100	-0.07618000
1	L.78204800	-0.00417600	-1.77698400	н	1.41461000	-3.71442900	-2.22961200
2	2.10041100	-0.00338000	1.51601200	н	1.39084300	-3.74192500	2.11289200
	1.02149800	1.48029200	-0.05480400	н	3.63312400	-2.51815600	1.30378300
	4.12037700	1.12934000	-0.53055200	н	3.65312000	-2.50299400	-1.37793100
	4.13062900	0.77284800	0.83504400	н	-4.12929400	-1.22317100	1.82788400
	4.13260700	-0.64454100	0.91909800	н	-4.10888900	-2.20104700	-0.66782300
	4.12343800	-1.15975400	-0.39494300	н	-4.06993900	-0.12846700	-2.36988900
	4.09960100	-0.06434200	-1.29420200	н	-4.10513200	2.13124700	-0.92386700
-:	1.09866100	1.83698900	-1.28224900	н	-4.12381500	1.45451000	1.66928800
-(0.88353300	1.05706800	1.88317400	н	0.04298500	4.49014200	-0.06886700
	-1.95533700	0.00385000	-0.08653800	н	1.41345100	3.73362700	2.11476300
(0.97576600	-3.98468100	-0.06393200	н	3.64807700	2.50180900	1.29666700
	1.69006800	-3.58310100	1.08922900	н	3.65921600	2.49013300	-1.38511800
	2.87550000	-2.93427100	0.66304100	н	1.42306700	3.71211300	-2.22783700
2	2.88492400	-2.92591000	-0.75271900				

C	2	1
0	4	I

Figure S19. Optimized geometry of 3 Total energy = -19965.21468030 a.u. Cartesian coordinates for the calculated structure 3 (in Å)

С

С

С

С

С

C C C Se

Se

Se

Se

Se

Та

Та

С

С

Se

Se

С

С

-1.52932300	-1.56850100	3.53610900	С	0.59507000	-2.42628700	-3.64410900
-0.22318300	-1.33674300	4.02858100	C	-0.20674100	-3.33597500	-2.91544300
0.59507000	-2.42628700	3.64410900	C	-1.52035000	-2.80634700	-2.84840200
-0.20674100	-3.33597500	2.91544300	Se	2.09822500	0.11922600	-1.95325700
-1.52035000	-2.80634700	2.84840200	Та	-0.08594600	-1.28293700	-1.54072300
1.22342400	3.95832100	0.00000000	Н	3.93442600	2.56217200	1.34151700
1.96748600	3.58286500	-1.14475100	Н	1.66289600	3.71670100	2.16876400
3.16246700	2.96481300	-0.70796200	Н	0.25550700	4.43384500	0.00000000
2.09822500	0.11922600	1.95325700	Н	1.66289600	3.71670100	-2.16876400
-0.64099900	1.43463200	1.84805700	Н	3.93442600	2.56217200	-1.34151700
-2.80014100	2.26283900	1.20358600	Н	1.64471400	-2.53860700	-3.85925100
1.21230900	-2.83857600	0.00000000	Н	0.11847700	-4.27144100	-2.49436300
-2.11065800	-1.27660900	0.00000000	Н	-2.36364200	-3.26685200	-2.36334700
1.29365600	1.49303800	0.00000000	Н	-2.37952800	-0.91667800	-3.65313200
-0.08594600	-1.28293700	1.54072300	Н	0.09868800	-0.47115600	-4.58346500
1.96748600	3.58286500	1.14475100	Н	-2.37952800	-0.91667800	3.65313200
3.16246700	2.96481300	0.70796200	Н	-2.36364200	-3.26685200	2.36334700
-0.64099900	1.43463200	-1.84805700	Н	0.11847700	-4.27144100	2.49436300
-2.80014100	2.26283900	-1.20358600	Н	1.64471400	-2.53860700	3.85925100
-1.52932300	-1.56850100	-3.53610900	н	0.09868800	-0.47115600	4.58346500
-0.22318300	-1.33674300	-4.02858100				

Notes and references:

- 1 Due to poor data quality, hydrogens on methyl units not located and bond distances and angles are not provided.
- ¹¹B{¹H} spectra were processed with a backward linear prediction algorithm to remove the broad ¹¹B background signal of the NMR tube. For references see (*a*) J. J. Led and H. Gesmar, *Chem. Rev.*, 1991, **91**, 1413–1426; (*b*) L. Yang, R. Simionescu, A. Lough and H. Yan, *Dyes Pigm.*, 2011, **91**, 264–267; (*c*) R. Weiss and R. N. Grimes, *J. Am. Chem. Soc.*, 1978, **100**, 1401–1405.